Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
BMC Infect Dis ; 18(1): 576, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442123

RESUMO

BACKGROUND: Since macrophages are one of the major cell types involved in the Mycobacterium leprae immune response, roles of the M1 and M2 macrophage subpopulations have been well defined. However, the role of M4 macrophages in leprosy or other infectious diseases caused by mycobacteria has not yet been clearly characterized. This study aimed to investigate the presence and potential role of M4 macrophages in the immunopathology of leprosy. METHODS: We analyzed the presence of M4 macrophage markers (CD68, MRP8, MMP7, IL-6, and TNF-α) in 33 leprosy skin lesion samples from 18 patients with tuberculoid leprosy and 15 with lepromatous leprosy by immunohistochemistry. RESULTS: The M4 phenotype was more strongly expressed in patients with the lepromatous form of the disease, indicating that this subpopulation is less effective in the elimination of the bacillus and consequently is associated with the evolution to one of the multibacillary clinical forms of infection. CONCLUSION: M4 macrophages are one of the cell types involved in the microbial response to M. leprae and probably are less effective in controlling bacillus replication, contributing to the evolution to the lepromatous form of the disease.


Assuntos
Hanseníase/metabolismo , Macrófagos/metabolismo , Mycobacterium leprae/imunologia , Dermatopatias/metabolismo , Pele/metabolismo , Adulto , Biomarcadores/metabolismo , Brasil , Feminino , Humanos , Imuno-Histoquímica , Hanseníase/imunologia , Hanseníase/patologia , Hanseníase Virchowiana/imunologia , Hanseníase Virchowiana/metabolismo , Hanseníase Virchowiana/patologia , Hanseníase Tuberculoide/imunologia , Hanseníase Tuberculoide/metabolismo , Hanseníase Tuberculoide/patologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Pele/imunologia , Pele/patologia , Dermatopatias/imunologia , Dermatopatias/microbiologia , Dermatopatias/patologia
2.
Microb Pathog ; 118: 277-284, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29605649

RESUMO

Mast cells (MCs) have important immunoregulatory roles in skin inflammation. Annexin A1 (ANXA1) is an endogenous anti-inflammatory protein that can be expressed by mast cells, neutrophils, eosinophils, monocytes, epithelial and T cells. This study investigated MCs heterogeneity and ANXA1 expression in human dermatoses with special emphasis in leprosy. Sixty one skin biopsies from 2 groups were investigated: 40 newly diagnosed untreated leprosy patients (18 reaction-free, 11 type 1 reaction/T1R, 11 type 2 reaction/T2R); 21 patients with other dermatoses. Tryptase/try+ and chymase/chy + phenotypic markers and toluidine blue stained intact/degranulated MC counts/mm2 were evaluated. Try+/chy+ MCs and ANXA1 were identified by streptavidin-biotin-peroxidase immunostaining and density was reported. In leprosy, degranulated MCs outnumbered intact ones regardless of the leprosy form (from tuberculoid/TT to lepromatous/LL), leprosy reactions (reactional/reaction-free) and type of reaction (T1R/T2R). Compared to other dermatoses, leprosy skin lesions showed lower numbers of degranulated and intact MCs. Try+ MCs outnumbered chy+ in leprosy lesions (reaction-free/reactional, particularly in T2R), but not in other dermatoses. Compared to other dermatoses, ANXA1 expression, which is also expressed in mast cells, was higher in the epidermis of leprosy skin lesions, independently of reactional episode. In leprosy, higher MC degranulation and differential expression of try+/chy+ subsets independent of leprosy type and reaction suggest that the Mycobacterium leprae infection itself dictates the inflammatory MCs activation in skin lesions. Higher expression of ANXA1 in leprosy suggests its potential anti-inflammatory role to maintain homeostasis preventing tissue and nerve damage.


Assuntos
Anexina A1/biossíntese , Anexina A1/imunologia , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/metabolismo , Hanseníase/imunologia , Hanseníase/metabolismo , Mastócitos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Brasil , Quimases/metabolismo , Epiderme/imunologia , Epiderme/patologia , Feminino , Humanos , Hanseníase/patologia , Hanseníase Virchowiana/metabolismo , Hanseníase Tuberculoide/metabolismo , Masculino , Mastócitos/patologia , Pessoa de Meia-Idade , Mycobacterium leprae/imunologia , Mycobacterium leprae/patogenicidade , Pele/patologia , Dermatopatias/metabolismo , Dermatopatias/patologia , Triptases/metabolismo , Adulto Jovem
3.
Dis Markers ; 2018: 7067961, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30647798

RESUMO

Mycobacterium leprae causes leprosy, a dermatoneurological disease which affects the skin and peripheral nerves. One of several cellular structures affected during M. leprae infection is the endoplasmic reticulum (ER). Infection by microorganisms can result in ER stress and lead to the accumulation of unfolded or poorly folded proteins. To restore homeostasis in the cell, the cell induces a series of signaling cascades known as the unfolded protein response called UPR (unfolded protein response). The present work is aimed at investigating the in situ expression of these markers in cutaneous lesions of clinical forms of leprosy and establish possible correlation expression patterns and types of lesion. A total of 43 samples from leprosy patients were analyzed by immunohistochemistry with monoclonal antibodies against GRP78/BiP, PERK, IRE1α, and ATF6. A statistically significant difference between the indeterminate, tuberculoid, and lepromatous clinical forms was detected, with high expression of GRP78/BiP, PERK, IRE1α, and ATF6 in tuberculoid forms (TT) when compared to lepromatous leprosy (LL) and indeterminate (I) leprosy. These results represent the first evidence of ER stress in samples of skin lesions from leprosy patients. We believe that they will provide better understanding of the complex pathogenesis of the disease and facilitate further characterization of the cascade of molecular events elicited during infection.


Assuntos
Biomarcadores/metabolismo , Estresse do Retículo Endoplasmático , Hanseníase Virchowiana/diagnóstico , Hanseníase Tuberculoide/diagnóstico , Fator 6 Ativador da Transcrição/metabolismo , Diagnóstico Diferencial , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Hanseníase/classificação , Hanseníase/metabolismo , Hanseníase Virchowiana/metabolismo , Hanseníase Tuberculoide/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Regulação para Cima , eIF-2 Quinase/metabolismo
4.
J Biol Chem ; 291(41): 21375-21387, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27555322

RESUMO

Mycobacterium leprae, the intracellular etiological agent of leprosy, infects Schwann promoting irreversible physical disabilities and deformities. These cells are responsible for myelination and maintenance of axonal energy metabolism through export of metabolites, such as lactate and pyruvate. In the present work, we observed that infected Schwann cells increase glucose uptake with a concomitant increase in glucose-6-phosphate dehydrogenase (G6PDH) activity, the key enzyme of the oxidative pentose pathway. We also observed a mitochondria shutdown in infected cells and mitochondrial swelling in pure neural leprosy nerves. The classic Warburg effect described in macrophages infected by Mycobacterium avium was not observed in our model, which presented a drastic reduction in lactate generation and release by infected Schwann cells. This effect was followed by a decrease in lactate dehydrogenase isoform M (LDH-M) activity and an increase in cellular protection against hydrogen peroxide insult in a pentose phosphate pathway and GSH-dependent manner. M. leprae infection success was also dependent of the glutathione antioxidant system and its main reducing power source, the pentose pathway, as demonstrated by a 50 and 70% drop in intracellular viability after treatment with the GSH synthesis inhibitor buthionine sulfoximine, and aminonicotinamide (6-ANAM), an inhibitor of G6PDH 6-ANAM, respectively. We concluded that M. leprae could modulate host cell glucose metabolism to increase the cellular reducing power generation, facilitating glutathione regeneration and consequently free-radical control. The impact of this regulation in leprosy neuropathy is discussed.


Assuntos
Metabolismo Energético , Glucose/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Hanseníase Tuberculoide/metabolismo , Mycobacterium leprae/metabolismo , Células de Schwann/metabolismo , Linhagem Celular , Humanos , Metionina/análogos & derivados , Metionina/farmacologia , Mitocôndrias/metabolismo , Células de Schwann/microbiologia
5.
s.l; s.n; 2016. 13 p. ilus, tab, graf.
Não convencional em Inglês | Sec. Est. Saúde SP, HANSEN, Hanseníase, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1095631

RESUMO

Mycobacterium leprae, the intracellular etiological agent of leprosy, infects Schwann promoting irreversible physical disabilities and deformities. These cells are responsible for myelination and maintenance of axonal energy metabolism through export of metabolites, such as lactate and pyruvate. In the present work, we observed that infected Schwann cells increase glucose uptake with a concomitant increase in glucose-6-phosphate dehydrogenase (G6PDH) activity, the key enzyme of the oxidative pentose pathway. We also observed a mitochondria shutdown in infected cells and mitochondrial swelling in pure neural leprosy nerves. The classic Warburg effect described in macrophages infected by Mycobacterium avium was not observed in our model, which presented a drastic reduction in lactate generation and release by infected Schwann cells. This effect was followed by a decrease in lactate dehydrogenase isoform M (LDH-M) activity and an increase in cellular protection against hydrogen peroxide insult in a pentose phosphate pathway and GSH-dependent manner. M. leprae infection success was also dependent of the glutathione antioxidant system and its main reducing power source, the pentose pathway, as demonstrated by a 50 and 70% drop in intracellular viability after treatment with the GSH synthesis inhibitor buthionine sulfoximine, and aminonicotinamide (6-ANAM), an inhibitor of G6PDH 6-ANAM, respectively. We concluded that M. leprae could modulate host cell glucose metabolism to increase the cellular reducing power generation, facilitating glutathione regeneration and consequently free-radical control. The impact of this regulation in leprosy neuropathy is discussed.


Assuntos
Humanos , Células de Schwann/metabolismo , Células de Schwann/microbiologia , Hanseníase Tuberculoide/metabolismo , Linhagem Celular , Ácido Láctico/metabolismo , Metabolismo Energético , Glucose/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Metionina/análogos & derivados , Metionina/farmacologia , Mitocôndrias/metabolismo , Mycobacterium leprae/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-26515838

RESUMO

BACKGROUND: Leprosy is a chronic granulomatous infection caused by Mycobacterium leprae, an intracellular parasite that resides within macrophages and cannot be eliminated effectively. Solute carrier family 11a member 1 (Slc11a1) and inducible nitric oxide synthase (iNOS), both expressed in macrophages, play major roles in host defense against several intracellular pathogens. However, the roles of these molecules in natural infection with M. leprae remain unknown. OBJECTIVE: We aimed to investigate the expression of Slc11a1 and iNOS in macrophages (CD68+ cells) infiltrating skin lesions in leprosy. METHODS: Skin biopsies from 48 Mexican patients of leprosy [(33 lepromatous (LL), 15 tuberculoid (TT)] and from 10 healthy controls, were subjected to immunohistochemistry to determine expression of CD68, Slc11a1 and iNOS. RESULTS: We found a high expression of Slc11a1 and iNOS in most lepromatous leprosy samples. In tuberculoid leprosy samples, Slc11a1 expression was moderate or low, and that of iNOS was almost always low. In addition, Slc11a1 and iNOS expression levels were positively associated with bacillary loads in lepromatous leprosy lesions (P=0.05). CONCLUSIONS: These observations suggest that M. leprae infection promotes the expression of Slc11a1 and iNOS in macrophages and that lepromatous leprosy can occur despite this response.


Assuntos
Proteínas de Transporte de Cátions/análise , Hanseníase Virchowiana/metabolismo , Hanseníase Tuberculoide/metabolismo , Macrófagos/química , Óxido Nítrico Sintase Tipo II/análise , Adulto , Idoso , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Estudos de Casos e Controles , Feminino , Humanos , Hanseníase Virchowiana/patologia , Hanseníase Tuberculoide/patologia , Masculino , Pessoa de Meia-Idade
7.
Acta Trop ; 149: 227-31, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26051909

RESUMO

Leprosy is an infectious-contagious disease whose clinical evolution depends on the immune response pattern of the host. Adhesion molecules and leukocyte migration from blood to tissue are of the utmost importance for the recognition and elimination of infectious pathogens. Selectins are transmembrane glycoproteins that share a similar structural organization and can be divided into three types according to their site of expression. The biopsies were cut into 5µm thick sections and submitted to immunohistochemistry using antibodies against E-selectin and P-selectin. The number of E-selectin-positive cells was significantly higher in the tuberculoid form than in the lepromatous form. The immunostaining pattern of P-selectin differed from that of E-selectin. Analysis showed a larger number of endothelial cells expressing CD62P in the lepromatous form compared to the tuberculoid form. The presence of these adhesins in the endothelium contributing to or impairing the recruitment of immune cells to inflamed tissue and consequently influences the pattern of immune response and the clinical presentation of the disease.


Assuntos
Selectina E/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Hanseníase Virchowiana/metabolismo , Hanseníase Tuberculoide/metabolismo , Selectina-P/metabolismo , Pele/metabolismo , Moléculas de Adesão Celular , Endotélio Vascular/citologia , Humanos , Imuno-Histoquímica
8.
Science ; 339(6126): 1448-53, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23449998

RESUMO

Type I interferons (IFN-α and IFN-ß) are important for protection against many viral infections, whereas type II interferon (IFN-γ) is essential for host defense against some bacterial and parasitic pathogens. Study of IFN responses in human leprosy revealed an inverse correlation between IFN-ß and IFN-γ gene expression programs. IFN-γ and its downstream vitamin D-dependent antimicrobial genes were preferentially expressed in self-healing tuberculoid lesions and mediated antimicrobial activity against the pathogen Mycobacterium leprae in vitro. In contrast, IFN-ß and its downstream genes, including interleukin-10 (IL-10), were induced in monocytes by M. leprae in vitro and preferentially expressed in disseminated and progressive lepromatous lesions. The IFN-γ-induced macrophage vitamin D-dependent antimicrobial peptide response was inhibited by IFN-ß and by IL-10, suggesting that the differential production of IFNs contributes to protection versus pathogenesis in some human bacterial infections.


Assuntos
Interferon beta/imunologia , Interferon gama/imunologia , Hanseníase Virchowiana/imunologia , Hanseníase Tuberculoide/imunologia , Mycobacterium leprae/imunologia , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Hanseníase Virchowiana/genética , Hanseníase Virchowiana/metabolismo , Hanseníase Tuberculoide/genética , Hanseníase Tuberculoide/metabolismo , Viabilidade Microbiana , Monócitos/imunologia , Monócitos/metabolismo , Mycobacterium leprae/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Transcriptoma , Tuberculose/genética , Tuberculose/imunologia , Regulação para Cima , beta-Defensinas/genética , beta-Defensinas/metabolismo , Catelicidinas
9.
J Infect Dis ; 207(6): 947-56, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23255567

RESUMO

Galectin-3 is a ß-galactoside-binding lectin widely expressed on epithelial and hematopoietic cells, and its expression is frequently associated with a poor prognosis in cancer. Because it has not been well-studied in human infectious disease, we examined galectin-3 expression in mycobacterial infection by studying leprosy, an intracellular infection caused by Mycobacterium leprae. Galectin-3 was highly expressed on macrophages in lesions of patients with the clinically progressive lepromatous form of leprosy; in contrast, galectin-3 was almost undetectable in self-limited tuberculoid lesions. We investigated the potential function of galectin-3 in cell-mediated immunity using peripheral blood monocytes. Galectin-3 enhanced monocyte interleukin 10 production to a TLR2/1 ligand, whereas interleukin 12p40 secretion was unaffected. Furthermore, galectin-3 diminished monocyte to dendritic cell differentiation and T-cell antigen presentation. These data demonstrate an association of galectin-3 with unfavorable host response in leprosy and a potential mechanism for impaired host defense in humans.


Assuntos
Galectina 3/farmacologia , Hanseníase Virchowiana/imunologia , Hanseníase Tuberculoide/imunologia , Monócitos/metabolismo , Apresentação de Antígeno/efeitos dos fármacos , Antígenos CD1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Galectina 3/genética , Galectina 3/metabolismo , Expressão Gênica , Humanos , Imunidade Celular , Imunidade Inata , Interleucina-10/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Hanseníase Virchowiana/metabolismo , Hanseníase Tuberculoide/metabolismo , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Mycobacterium leprae , RNA Mensageiro/metabolismo
10.
Lepr Rev ; 82(1): 25-35, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21644469

RESUMO

OBJECTIVE: We investigated the in vitro and skin lesions production of cytokines in non-treated borderline tuberculoid (BT) and borderline lepromatous (BL) patients. PATIENTS AND METHODS: Seven untreated, non-reactional BT patients and 12 untreated, non-reactional BL patients were studied. Levels of the cytokines IFN-gamma, IL-10, TGF-beta1 and TNF-alpha were measured in supernantant of peripheral blood mononuclear cells (PBMC) cultures, stimulated with specific M. leprae antigen (sonicated and whole). The cytokines iNOS, IL-10 and TGF-beta1 were detected by immunohistochemistry in skin biopsies. RESULTS: BT patients produced higher levels of IFN-gamma than BL patients; iNOS expression in skin lesions was also higher in BT patients. TGF-beta1 was detected in more cells in BL patients; IL-10 expression was similar in both groups. There was a negative correlation between iNOS and TGF-beta1 expression in skin biopsies, positive correlation between TGF-beta1 in skin lesions and bacillary index, as well as positive correlation between iNOS detected in skin biopsies and PBMC IFN-gamma production. CONCLUSIONS: The BT patients had a mainly a Th1-profile of cytokines in their skin lesions and BL patients had a Th2 profile.


Assuntos
Citocinas/metabolismo , Hanseníase Dimorfa/metabolismo , Hanseníase Virchowiana/metabolismo , Hanseníase Tuberculoide/metabolismo , Biomarcadores/metabolismo , Biópsia , Brasil/epidemiologia , Feminino , Humanos , Imuno-Histoquímica , Interferon gama/metabolismo , Interleucina-10/metabolismo , Hanseníase Dimorfa/epidemiologia , Hanseníase Virchowiana/epidemiologia , Hanseníase Tuberculoide/epidemiologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo II/metabolismo , Estatísticas não Paramétricas , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
J Cutan Pathol ; 33(7): 482-6, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16872470

RESUMO

BACKGROUND: The diagnosis of tuberculoid leprosy is often difficult on hematoxylin and eosin (H&E) due to the absence of demonstrable nerve destruction. This study evaluates the utility of S-100 staining in identifying nerve fragmentation and differentiation of tuberculoid leprosy from other cutaneous granulomatous diseases. METHODS: Fifty cases of leprosy including 38 borderline tuberculoid (BT), two tuberculoid (TT), and 10 indeterminate leprosy (IL) were studied. Eleven controls of non-lepromatous cutaneous granulomatous lesions were included. S-100 was used for identifying the following dermal nerve patterns: infiltrated (A), fragmented (B), absent (C), and intact (D) nerves. RESULTS: On H&E, only 18/38 (47.4%) BT cases and 1/2 (50%) TT cases revealed neural inflammation. On S-100 staining of BT cases, 28/38 (73.7%) showed pattern B followed by patterns C and A in 8/38 (21.1%) and 2/38 (5.3%) cases, respectively. Both the TT cases showed pattern B. Only intact nerves (D) were seen in all the control cases. S-100 identified nerve damage in 4/10 (40%) IL cases. The patterns A, B, and C had sensitivity, specificity, and positive and negative predictive values of 100% in diagnosing tuberculoid (BT + TT) leprosy. CONCLUSIONS: S-100 is superior to H&E in identifying nerve fragmentation (p < 0.01). It also aids the differential diagnosis of tuberculoid leprosy.


Assuntos
Biomarcadores/metabolismo , Hanseníase Dimorfa/metabolismo , Hanseníase Tuberculoide/metabolismo , Nervos Periféricos/metabolismo , Proteínas S100/metabolismo , Pele/patologia , Biópsia , Células Epitelioides/metabolismo , Células Epitelioides/microbiologia , Células Epitelioides/patologia , Granuloma/microbiologia , Granuloma/patologia , Humanos , Técnicas Imunoenzimáticas , Hanseníase Dimorfa/diagnóstico , Hanseníase Dimorfa/microbiologia , Hanseníase Tuberculoide/diagnóstico , Hanseníase Tuberculoide/microbiologia , Mycobacterium leprae/isolamento & purificação , Nervos Periféricos/microbiologia , Nervos Periféricos/patologia , Estudos Prospectivos , Pele/inervação , Pele/microbiologia , Dermatopatias/metabolismo , Dermatopatias/microbiologia , Dermatopatias/patologia
12.
Immunology ; 111(4): 472-80, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15056385

RESUMO

Macrophages are decisive cells for the course of leprosy as they phagocytose Mycobacterium leprae and have the potential to influence the specific immune response. Expression and release of the myeloid-related protein (MRP) 8 and MRP14 (S100A8 and S100A9) characterize a proinflammatory subtype of macrophage that is prominent in, for example, murine infection with lack of a T helper 1 cell response and in certain highly active chronic inflammations of mice and humans. We investigated cutaneous biopsies of the different forms of leprosy (41 untreated patients) including leprosy reaction type 1 (reversal reaction) and type 2 (erythema nodosum leprosum) (n = 18) for expression of MRP8 and MRP14 by subtypes of macrophages. Concomitantly we determined serum levels of MRP8 and MRP14 by sandwich enzyme-linked immunosorbent assay. Expression of MRP8 and MRP14 by CD68-positive macrophages was low in tuberculoid leprosy and rose significantly in borderline tuberculoid leprosy and especially in multibacillary forms, there being expressed by mycobacteria-loaded foam cells. A significant rise of MRP8 and MRP14 expression also occurred in lepra reactions compared to the corresponding non-reactional forms. In type 2 reactions this additional increase was associated with a significant elevation of serum levels. In type 1 it was associated with expression of MRP8 and MRP14 by epitheloid and giant cells, which so far were considered not to express both proteins. In conclusion, we present evidence that the two prominent proteins MRP8 and MRP14 can be re-expressed in vivo by tissue macrophages in chronic infection, that their increased expression is characteristic for a macrophage subtype associated with high inflammatory but low antimycobacterial activity in the absence of a T helper 1 response, and that their significant rise in serum during erythema nodosum leprosum bears diagnostic and pathophysiological relevance.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Hanseníase/imunologia , Macrófagos/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Calgranulina A/sangue , Calgranulina B/sangue , Moléculas de Adesão Celular/metabolismo , Endotélio Vascular/metabolismo , Eritema Nodoso/imunologia , Humanos , Técnicas Imunoenzimáticas , Hanseníase/microbiologia , Hanseníase Virchowiana/imunologia , Hanseníase Tuberculoide/imunologia , Hanseníase Tuberculoide/metabolismo , Macrófagos/imunologia , Pessoa de Meia-Idade , Pele/imunologia , Pele/metabolismo , Regulação para Cima
13.
Scand J Immunol ; 57(3): 279-85, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12641657

RESUMO

Leprosy is an infectious disease with two polar forms, tuberculoid leprosy (TT) and lepromatous leprosy (LL), that are characterized by strong cell-mediated immunity (CMI) and CMI anergy, respectively. Transforming growth factor-beta (TGF-beta) belongs to a family of pleiotropic cytokines (TGF-beta1, TGF-beta2 and TGF-beta3) that participate in the control of cell differentiation and proliferation, as well as tissue repair. This cytokine family is unique because it suppresses CMI. In this study, we compared the expression of the three TGF-beta isoforms and their receptors in skin biopsies from LL and TT patients (LL = 20; TT = 20) using immunohistochemistry and automated morphometry. The percentage of cells immunostained for the three TGF-beta isoforms and cells positive for the three TGF-beta receptors in the inflammatory infiltrate located in the papillary dermis, reticular dermis and periadnexal tissue were significantly higher in LL than that in TT, with macrophages being the most common and strongest immunoreactive cells. Some lymphocytes, fibroblasts, keratinocytes and epithelial cells from sweat glands and hair roots were also positive. In situ reverse-transcription polymerase chain reaction corroborated the capacity of these cells to synthesize TGF-beta1 and TGF-beta receptor 2. This high expression of TGF-beta isoforms and their receptors could contribute to CMI anergy and other clinical characteristic features of leprosy, like skin atrophy.


Assuntos
Hanseníase Virchowiana/metabolismo , Hanseníase Tuberculoide/metabolismo , Mycobacterium leprae , Receptores de Fatores de Crescimento Transformadores beta/biossíntese , Fator de Crescimento Transformador beta/biossíntese , Biópsia , Humanos , Imuno-Histoquímica , Hibridização In Situ , Hanseníase Virchowiana/imunologia , Hanseníase Tuberculoide/imunologia , Isoformas de Proteínas , RNA Mensageiro/química , RNA Mensageiro/genética , Receptores de Fatores de Crescimento Transformadores beta/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/citologia , Pele/imunologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia
14.
s.l; s.n; 2003. 7 p. ilus, tab, graf.
Não convencional em Inglês | Sec. Est. Saúde SP, HANSEN, Hanseníase, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1241182

RESUMO

Leprosy is an infectious disease with two polar forms, tuberculoid leprosy (TT) and lepromatous leprosy (LL), that are characterized by strong cell-mediated immunity (CMI) and CMI anergy, respectively. Transforming growth factor-beta (TGF-beta) belongs to a family of pleiotropic cytokines (TGF-beta1, TGF-beta2 and TGF-beta3) that participate in the control of cell differentiation and proliferation, as well as tissue repair. This cytokine family is unique because it suppresses CMI. In this study, we compared the expression of the three TGF-beta isoforms and their receptors in skin biopsies from LL and TT patients (LL = 20; TT = 20) using immunohistochemistry and automated morphometry. The percentage of cells immunostained for the three TGF-beta isoforms and cells positive for the three TGF-beta receptors in the inflammatory infiltrate located in the papillary dermis, reticular dermis and periadnexal tissue were significantly higher in LL than that in TT, with macrophages being the most common and strongest immunoreactive cells. Some lymphocytes, fibroblasts, keratinocytes and epithelial cells from sweat glands and hair roots were also positive. In situ reverse-transcription polymerase chain reaction corroborated the capacity of these cells to synthesize TGF-beta1 and TGF-beta receptor 2. This high expression of TGF-beta isoforms and their receptors could contribute to CMI anergy and other clinical characteristic features of leprosy, like skin atrophy.


Assuntos
Humanos , Biópsia , Fator de Crescimento Transformador beta/biossíntese , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Hanseníase Tuberculoide/imunologia , Hanseníase Tuberculoide/metabolismo , Hanseníase Virchowiana/imunologia , Hanseníase Virchowiana/metabolismo , Hibridização In Situ , Imuno-Histoquímica , Isoformas de Proteínas , Mycobacterium leprae , Pele/citologia , Pele/imunologia , RNA Mensageiro/genética , RNA Mensageiro/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptores de Fatores de Crescimento Transformadores beta/biossíntese , Receptores de Fatores de Crescimento Transformadores beta/imunologia
15.
Br J Dermatol ; 145(5): 809-15, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11736907

RESUMO

BACKGROUND: In the response to T-helper cell (Th1)-type cytokines and interactions with pathogens, high levels of nitric oxide (NO) are produced by activated macrophages expressing the inducible NO synthase (iNOS). The role and importance of reactive nitrogen intermediates (RNIs) such as NO and peroxynitrite in the host response to diseases caused by intracellular pathogens such as Mycobacterium leprae and M. tuberculosis is unclear. OBJECTIVES: The aim of this study was to investigate the presence of local production of NO and peroxynitrite in borderline leprosy by using antibodies against iNOS and the product of peroxynitrite, nitrotyrosine (NT). METHODS: We detected the presence of iNOS and NT in skin biopsies from borderline leprosy patients, with and without reversal reaction (RR), by immunohistochemistry (n = 26). RESULTS: In general, the granulomas from borderline leprosy lesions with and without RR showed high and specific expression of iNOS and NT. Moreover, strong immunoreactivity to iNOS and NT was observed in granulomas surrounding and infiltrating dermal nerves. The expression of iNOS and NT was also strong in keratinocytes, fibroblasts and endothelial cells in close relation to the granulomatous reaction. In contrast, normal human skin showed no expression of iNOS and NT in these cells. CONCLUSIONS: We conclude that iNOS and NT are expressed in granulomas from borderline leprosy patients with and without RR and propose that RNIs might be involved in the nerve damage following RR in leprosy.


Assuntos
Hanseníase Dimorfa/metabolismo , Óxido Nítrico Sintase/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Biópsia , Humanos , Técnicas Imunoenzimáticas , Hanseníase Dimorfa/enzimologia , Hanseníase Dimorfa/patologia , Hanseníase Tuberculoide/enzimologia , Hanseníase Tuberculoide/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II , Ácido Peroxinitroso/biossíntese , Pele/enzimologia , Pele/metabolismo
16.
J Immunol ; 165(3): 1506-12, 2000 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-10903757

RESUMO

The interaction of CD40 ligand (CD40L) expressed by activated T cells with CD40 on macrophages has been shown to be a potent stimulus for the production of IL-12, an obligate signal for generation of Th1 cytokine responses. The expression and interaction of CD40 and CD40L were investigated in human infectious disease using leprosy as a model. CD40 and CD40L mRNA and surface protein expression were predominant in skin lesions of resistant tuberculoid patients compared with the highly susceptible lepromatous group. IL-12 release from PBMC of tuberculoid patients stimulated with Mycobacterium leprae was partially inhibited by mAbs to CD40 or CD40L, correlating with Ag-induced up-regulation of CD40L on T cells. Cognate recognition of M. leprae Ag by a T cell clone derived from a tuberculoid lesion in the context of monocyte APC resulted in CD40L-CD40-dependent production of IL-12. In contrast, M. leprae-induced IL-12 production by PBMC from lepromatous patients was not dependent on CD40L-CD40 ligation, nor was CD40L up-regulated by M. leprae. Furthermore, IL-10, a cytokine predominant in lepromatous lesions, blocked the IFN-gamma up-regulation of CD40 on monocytes. These data suggest that T cell activation in situ by M. leprae in tuberculoid leprosy leads to local up-regulation of CD40L, which stimulates CD40-dependent induction of IL-12 in monocytes. The CD40-CD40L interaction, which is not evident in lepromatous leprosy, probably participates in the cell-mediated immune response to microbial pathogens.


Assuntos
Antígenos CD40/fisiologia , Citocinas/biossíntese , Hanseníase Virchowiana/imunologia , Hanseníase Tuberculoide/imunologia , Glicoproteínas de Membrana/fisiologia , Células Th1/imunologia , Células Th1/metabolismo , Antígenos CD40/biossíntese , Antígenos CD40/genética , Antígenos CD40/metabolismo , Ligante de CD40 , Membrana Celular/genética , Membrana Celular/imunologia , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Imunidade Celular , Interleucina-12/biossíntese , Hanseníase Virchowiana/metabolismo , Hanseníase Virchowiana/patologia , Hanseníase Tuberculoide/metabolismo , Hanseníase Tuberculoide/patologia , Ligantes , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Mycobacterium leprae/imunologia , RNA Mensageiro/biossíntese , Regulação para Cima/genética , Regulação para Cima/imunologia
18.
J Cutan Pathol ; 25(10): 530-7, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9870671

RESUMO

In the defense against Mycobacterium leprae, macrophages play an essential part in the mechanism of bacterial lysis but require the presence of cytokines such as interleukin 2 and gamma interferon from lymphocytes in order to effectively kill the organisms in any number. While there have been many studies of the lymphocytes in lesions of leprosy, less attention has been given to the immunohistochemical characterization of the macrophage populations. In this study, the cutaneous lesions of 69 patients with leprosy (42 lepromatous, 5 mid-borderline, and 22 tuberculoid) were evaluated by immunohistochemistry for the expression of S100 protein, CD1a, CD68, muramidase, HLA-DR, and Factor 13a. The macrophages from lesions of polar, subpolar, and borderline lepromatous leprosy patients expressed S100 protein intensely and constantly. In contrast, the lesions of polar and subpolar tuberculoid leprosy had very few cells that were immunoreactive for S100 protein ('S100+') in the granulomas in the dermis. The macrophages in all lesions were reactive for CD68 and muramidase. In paraffin sections, macrophages of lepromatous lesions failed to stain for HLA-DR, whereas in tuberculoid lesions, they were strongly positive for HLA-DR. Three patients with histoid leprosy (relapse lesions) had lesions that were strongly positive for Factor 13a and were negative for S100 protein ('S100-'). Given the possible chemotactic and migration inhibition effects of the calcium-binding proteins of the S100 family, these data suggest a possibly important role for S100 protein in the accumulation of macrophages in lepromatous leprosy, and also reveal infection of Factor 13a + dermal dendritic cells in histoid leprosy.


Assuntos
Hanseníase/metabolismo , Antígenos CD/análise , Antígenos CD1/análise , Antígenos de Diferenciação Mielomonocítica/análise , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Humanos , Imuno-Histoquímica , Hanseníase/patologia , Hanseníase Dimorfa/metabolismo , Hanseníase Dimorfa/patologia , Hanseníase Virchowiana/metabolismo , Hanseníase Virchowiana/patologia , Hanseníase Tuberculoide/metabolismo , Hanseníase Tuberculoide/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Muramidase/análise , Proteínas S100/análise , Transglutaminases/análise
20.
Indian J Lepr ; 69(3): 251-4, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-9394173

RESUMO

Studies have been made on the semen of three categories (borderline, borderline tuberculoid and lepromatous) of leprosy patients to evaluate the seminal biochemical constituents viz. fructose, glycerylphosphorylcholine and acid phosphatase besides the physical properties viz. volume, pH, liquefaction time, sperm density and sperm motility. In all categories of leprosy patients, seminal pH, liquefaction time and sperm density underwent significant decline. The decline in the seminal volume and sperm motility was significant only in borderline leprosy. It was observed that seminal glycerylphosphorylcholine (GPC) concentration and acid phosphatase activity declined in all categories of leprosy patients but GPC showed a significant decline only in borderline tuberculoid and acid phosphatase declined significantly only in borderline and lepromatous leprosy.


Assuntos
Hanseníase Dimorfa/metabolismo , Hanseníase Virchowiana/metabolismo , Hanseníase Tuberculoide/metabolismo , Sêmen/metabolismo , Fosfatase Ácida/metabolismo , Adulto , Contagem de Células , Frutose/metabolismo , Glicerilfosforilcolina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hanseníase Dimorfa/fisiopatologia , Hanseníase Virchowiana/fisiopatologia , Hanseníase Tuberculoide/fisiopatologia , Masculino , Pessoa de Meia-Idade , Motilidade dos Espermatozoides , Espermatozoides/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA