Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
J Math Biol ; 88(6): 77, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695878

RESUMO

A dynamic reaction-diffusion model of four variables is proposed to describe the spread of lytic viruses among phytoplankton in a poorly mixed aquatic environment. The basic ecological reproductive index for phytoplankton invasion and the basic reproduction number for virus transmission are derived to characterize the phytoplankton growth and virus transmission dynamics. The theoretical and numerical results from the model show that the spread of lytic viruses effectively controls phytoplankton blooms. This validates the observations and experimental results of Emiliana huxleyi-lytic virus interactions. The studies also indicate that the lytic virus transmission cannot occur in a low-light or oligotrophic aquatic environment.


Assuntos
Número Básico de Reprodução , Eutrofização , Conceitos Matemáticos , Modelos Biológicos , Fitoplâncton , Fitoplâncton/virologia , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Número Básico de Reprodução/estatística & dados numéricos , Haptófitas/virologia , Haptófitas/crescimento & desenvolvimento , Haptófitas/fisiologia , Simulação por Computador
2.
Science ; 376(6590): 312-316, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35420932

RESUMO

Directing crystal growth into complex morphologies is challenging, as crystals tend to adopt thermodynamically stable morphologies. However, many organisms form crystals with intricate morphologies, as exemplified by coccoliths, microscopic calcite crystal arrays produced by unicellular algae. The complex morphologies of the coccolith crystals were hypothesized to materialize from numerous crystallographic facets, stabilized by fine-tuned interactions between organic molecules and the growing crystals. Using electron tomography, we examined multiple stages of coccolith development in three dimensions. We found that the crystals express only one set of symmetry-related crystallographic facets, which grow differentially to yield highly anisotropic shapes. Morphological chirality arises from positioning the crystals along specific edges of these same facets. Our findings suggest that growth rate manipulations are sufficient to yield complex crystalline morphologies.


Assuntos
Haptófitas , Anisotropia , Carbonato de Cálcio/química , Cristalização , Cristalografia , Haptófitas/crescimento & desenvolvimento , Haptófitas/ultraestrutura
3.
Microbiol Spectr ; 10(1): e0093421, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019679

RESUMO

Phaeocystis globosa causes severe marine pollution by forming harmful algal blooms and releasing hemolytic toxins and is therefore harmful to marine ecosystems and aquaculture industries. In this study, Microbulbifer sp. YX04 exerted high algicidal activity against P. globosa by producing and secreting metabolites. The algicidal activity of the YX04 supernatant was stable after exposure to different temperatures (-80 to 100°C) and pH values (4 to 12) for 2 h, suggesting that algicidal substances could temporarily be stored under these temperature and pH value conditions. To explore the algicidal process and mechanism, morphological and structural changes, oxidative stress, photosynthesis, autophagic flux, and global gene expression were investigated. Biochemical analyses showed that the YX04 supernatant induced reactive oxygen species (ROS) overproduction, which caused lipid peroxidation and malondialdehyde (MDA) accumulation in P. globosa. Transmission electron microscopy (TEM) observation and the significant decrease in both maximum photochemical quantum yield (Fv/Fm) and relative electron transfer rate (rETR) indicated damage to thylakoid membranes and destruction of photosynthetic system function. Immunofluorescence, immunoblot, and TEM analyses indicated that cellular damage caused autophagosome formation and triggered large-scale autophagic flux in P. globosa. Transcriptome analysis revealed many P. globosa genes that were differentially expressed in response to YX04 stress, most of which were involved in photosynthesis, respiration, cytoskeleton, microtubule, and autophagosome formation and fusion processes, which may trigger autophagic cell death. In addition to P. globosa, the YX04 supernatant showed high algicidal activity against Thalassiosira pseudonana, Thalassiosira weissflogii, Skeletonema costatum, Heterosigma akashiwo, and Prorocentrum donghaiense. This study highlights multiple mechanisms underlying YX04 supernatant toxicity toward P. globosa and its potential for controlling the occurrence of harmful algal blooms. IMPORTANCEP. globosa is one of the most notorious harmful algal bloom (HAB)-causing species, which can secrete hemolytic toxins, frequently cause serious ecological pollution, and pose a health hazard to animals and humans. Hence, screening for bacteria with high algicidal activity against P. globosa and studies on the algicidal characteristics and mechanism will contribute to providing an ecofriendly microorganism-controlling agent for preventing the occurrence of algal blooms and reducing the harm of algal blooms to the environment. Our study first reported the algicidal characteristic and mechanism of Microbulbifer sp. YX04 against P. globosa and demonstrated that P. globosa shows different response mechanisms, including movement ability, antioxidative systems, photosynthetic systems, gene expression, and cell death mode, to adapt to the adverse environment when algicidal compounds are present.


Assuntos
Morte Celular Autofágica , Gammaproteobacteria/química , Haptófitas/citologia , Haptófitas/efeitos dos fármacos , Herbicidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Gammaproteobacteria/metabolismo , Haptófitas/crescimento & desenvolvimento , Haptófitas/metabolismo , Proliferação Nociva de Algas , Herbicidas/química , Herbicidas/metabolismo , Herbicidas/farmacologia , Concentração de Íons de Hidrogênio , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio
4.
Nat Microbiol ; 6(11): 1357-1366, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34697459

RESUMO

Phytoplankton are key components of the oceanic carbon and sulfur cycles1. During bloom events, some species can emit large amounts of the organosulfur volatile dimethyl sulfide (DMS) into the ocean and consequently the atmosphere, where it can modulate aerosol formation and affect climate2,3. In aquatic environments, DMS plays an important role as a chemical signal mediating diverse trophic interactions. Yet, its role in microbial predator-prey interactions remains elusive with contradicting evidence for its role in either algal chemical defence or in the chemo-attraction of grazers to prey cells4,5. Here we investigated the signalling role of DMS during zooplankton-algae interactions by genetic and biochemical manipulation of the algal DMS-generating enzyme dimethylsulfoniopropionate lyase (DL) in the bloom-forming alga Emiliania huxleyi6. We inhibited DL activity in E. huxleyi cells in vivo using the selective DL-inhibitor 2-bromo-3-(dimethylsulfonio)-propionate7 and overexpressed the DL-encoding gene in the model diatom Thalassiosira pseudonana. We showed that algal DL activity did not serve as an anti-grazing chemical defence but paradoxically enhanced predation by the grazer Oxyrrhis marina and other microzooplankton and mesozooplankton, including ciliates and copepods. Consumption of algal prey with induced DL activity also promoted O. marina growth. Overall, our results demonstrate that DMS-mediated grazing may be ecologically important and prevalent during prey-predator dynamics in aquatic ecosystems. The role of algal DMS revealed here, acting as an eat-me signal for grazers, raises fundamental questions regarding the retention of its biosynthetic enzyme through the evolution of dominant bloom-forming phytoplankton in the ocean.


Assuntos
Diatomáceas/fisiologia , Haptófitas/metabolismo , Fitoplâncton/fisiologia , Sulfetos/metabolismo , Zooplâncton/fisiologia , Animais , Ecossistema , Eutrofização , Haptófitas/crescimento & desenvolvimento , Água do Mar/microbiologia , Água do Mar/parasitologia
5.
Appl Opt ; 60(16): 4778-4786, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34143042

RESUMO

An inelastic hyperspectral Scheimpflug lidar system was developed for microalgae classification and quantification. The correction for the refraction at the air-glass-water interface was established, making our system suitable for aquatic environments. The fluorescence spectrum of microalgae was extracted by principal component analysis, and seven species of microalgae from different phyla have been classified. It was verified that when the cell density of Phaeocystis globosa was in the range of ${{1}}{{{0}}^4}\sim{{1}}{{{0}}^6}\;{\rm{cell}}\;{\rm{m}}{{\rm{L}}^{- 1}}$, the cell density had a linear relationship with the fluorescence intensity. The experimental results show our system can identify and quantify microalgae, with application prospects for microalgae monitoring in the field environment and early warning of red tides or algal blooms.


Assuntos
Imageamento Hiperespectral/instrumentação , Microalgas/classificação , Microalgas/crescimento & desenvolvimento , Imagem Óptica/métodos , Contagem de Células , Monitoramento Ambiental/métodos , Haptófitas/classificação , Haptófitas/crescimento & desenvolvimento
6.
Sci Rep ; 11(1): 12672, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135441

RESUMO

Prymnesium parvum is an environmentally harmful algae and well known for its toxic effects to the fish culture. However, there is a dearth of studies on the growth behavior of P. parvum and information on how the availability of nutrients and environmental factors affect their growth rate. To address this knowledge gap, we used a uniform design approach to quantify the effects of major nutrients (N, P, Si and Fe) and environmental factors (water temperature, pH and salinity) on the biomass density of P. parvum. We also generated the growth model for P. parvum as affected by each of these nutrients and environmental factors to estimate optimum conditions of growth. Results showed that P. parvum can reach its maximum growth rate of 0.789, when the water temperature, pH and salinity is 18.11 °C, 8.39, and 1.23‰, respectively. Moreover, maximum growth rate (0.895-0.896) of P. parvum reached when the concentration of nitrogen, phosphorous, silicon and iron reach 3.41, 1.05, 0.69 and 0.53 mg/l, respectively. The order of the effects of the environmental factors impacting the biomass density of P. parvum was pH > salinity > water temperature, while the order of the effects of nutrients impacting the biomass density of P. parvum was nitrogen > phosphorous > iron > silicon. These findings may assist to implement control measures of the population of P. parvum where this harmful alga threatens aquaculture industry in the waterbodies such as Ningxia region in China.


Assuntos
Haptófitas/crescimento & desenvolvimento , Aquicultura , Biomassa , Água Doce/química , Ferro , Microalgas/crescimento & desenvolvimento , Nitrogênio , Nutrientes , Controle de Pragas , Fósforo , Salinidade
7.
J Photochem Photobiol B ; 217: 112145, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33735745

RESUMO

Photophysiological responses of phytoplankton to changing multiple environmental drivers are essential in understanding and predicting ecological consequences of ocean climate changes. In this study, we investigated the combined effects of two CO2 levels (410 and 925 µatm) and five light intensities (80 to 480 µmol photons m-2 s-1) on cellular pigments contents, photosynthesis and calcification of the coccolithophore Emiliania huxleyi grown under nutrient replete and limited conditions, respectively. Our results showed that high light intensity, high CO2 level and nitrate limitation acted synergistically to reduce cellular chlorophyll a and carotenoid contents. Nitrate limitation predominantly enhanced calcification rate; phosphate limitation predominantly reduced photosynthetic carbon fixation rate, with larger extent of the reduction under higher levels of CO2 and light. Reduced availability of both nitrate and phosphate under the elevated CO2 concentration decreased saturating light levels for the cells to achieve the maximal relative electron transport rate (rETRmax). Light-saturating levels for rETRmax were lower than that for photosynthetic and calcification rates under the nutrient limitation. Regardless of the culture conditions, rETR under growth light levels correlated linearly and positively with measured photosynthetic and calcification rates. Our findings imply that E. huxleyi cells acclimated to macro-nutrient limitation and elevated CO2 concentration decreased their light requirement to achieve the maximal electron transport, photosynthetic and calcification rates, indicating a photophysiological strategy to cope with CO2 rise/pH drop in shoaled upper mixing layer above the thermocline where the microalgal cells are exposed to increased levels of light and decreased levels of nutrients.


Assuntos
Dióxido de Carbono/farmacologia , Haptófitas/crescimento & desenvolvimento , Luz , Nutrientes/química , Fotossíntese/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/efeitos da radiação , Clorofila A/metabolismo , Transporte de Elétrons , Haptófitas/metabolismo , Concentração de Íons de Hidrogênio , Nutrientes/deficiência , Fotossíntese/efeitos da radiação
8.
Mar Biotechnol (NY) ; 23(2): 331-341, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33713238

RESUMO

The natural pigment fucoxanthin has attracted global attention because of its superior antioxidant properties. The haptophyte marine microalgae Pavlova spp. are assumed to be promising industrial fucoxanthin producers as their lack of a cell wall could facilitate the commercialization of cultured cells as a whole food. This study screened promising Pavlova strains with high fucoxanthin content to develop an outdoor cultivation method for fucoxanthin production. Initial laboratory investigations of P. pinguis NBRC 102807, P. lutheri NBRC 102808, and Pavlova sp. OPMS 30543 identified OPMS 30543 as having the highest fucoxanthin content. The culture conditions were optimized for OPMS 30543. Compared with f/2 and Walne's media, the use of Daigo's IMK medium led to the highest biomass production and highest fucoxanthin accumulation. The presence of seawater elements in Daigo's IMK medium was necessary for the growth of OPMS 30543. OPMS 30543 was then cultured outdoors using acrylic pipe photobioreactors, a plastic bag, an open tank, and a raceway pond. Acrylic pipe photobioreactors with small diameters enabled the highest biomass production. Using an acrylic pipe photobioreactor with 60-mm diameter, a fucoxanthin productivity of 4.88 mg/L/day was achieved in outdoor cultivation. Thus, this study demonstrated the usefulness of Pavlova sp. OPMS 30543 for fucoxanthin production in outdoor cultivation.


Assuntos
Haptófitas/química , Haptófitas/crescimento & desenvolvimento , Xantofilas/metabolismo , Biomassa , Meios de Cultura , Fotobiorreatores
9.
PLoS One ; 16(2): e0246745, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33571269

RESUMO

The future physiology of marine phytoplankton will be impacted by a range of changes in global ocean conditions, including salinity regimes that vary spatially and on a range of short- to geological timescales. Coccolithophores have global ecological and biogeochemical significance as the most important calcifying marine phytoplankton group. Previous research has shown that the morphology of their exoskeletal calcified plates (coccoliths) responds to changing salinity in the most abundant coccolithophore species, Emiliania huxleyi. However, the extent to which these responses may be strain-specific is not well established. Here we investigated the growth response of six strains of E. huxleyi under low (ca. 25) and high (ca. 45) salinity batch culture conditions and found substantial variability in the magnitude and direction of response to salinity change across strains. Growth rates declined under low and high salinity conditions in four of the six strains but increased under both low and high salinity in strain RCC1232 and were higher under low salinity and lower under high salinity in strain PLYB11. When detailed changes in coccolith and coccosphere size were quantified in two of these strains that were isolated from contrasting salinity regimes (coastal Norwegian low salinity of ca. 30 and Mediterranean high salinity of ca. 37), the Norwegian strain showed an average 26% larger mean coccolith size at high salinities compared to low salinities. In contrast, coccolith size in the Mediterranean strain showed a smaller size trend (11% increase) but severely impeded coccolith formation in the low salinity treatment. Coccosphere size similarly increased with salinity in the Norwegian strain but this trend was not observed in the Mediterranean strain. Coccolith size changes with salinity compiled for other strains also show variability, strongly suggesting that the effect of salinity change on coccolithophore morphology is likely to be strain specific. We propose that physiological adaptation to local conditions, in particular strategies for plasticity under stress, has an important role in determining ecotype responses to salinity.


Assuntos
Haptófitas/crescimento & desenvolvimento , Salinidade
10.
Chemosphere ; 263: 127927, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32814137

RESUMO

Prymnesium parvum continues to spread globally, producing harmful algal blooms that release toxins known to cause fish kills. While previous work has identified possible P. parvum toxin(s) (e.g., prymnesins, fatty acids, fatty acid amides) and investigated treatment strategies targeted at minimizing cell abundance, studies examining efficacy of treatment approaches to remove toxins are lacking. To understand influences of sunlight on toxins stability and toxicity to fish, acutely toxic P. parvum cultures were exposed to three light scenarios (lab dark control, field dark, and field light) and then evaluated for acute toxicity to fish and prymnesins abundance. Previous work showed acute toxicity to fathead minnow larvae was ameliorated after 2 h of sunlight exposure, and results observed herein found an identical trend. Acute toxicity disappeared in light exposed filtrate, but filtrate exposed to 35 °C without sunlight remained acutely toxic to fish. Additionally, six prymnesins were identified through high-resolution mass spectrometry and abundance corresponded to acute toxicity levels. Prymnesins were present at the highest level in filtrate that was acutely toxic but diminished in filtrate that was exposed to light and correspondingly ameliorated acute toxicity to fish. These findings suggest prymnesins are responsible for measured acute toxicity and are photo-labile, which represents an important implication for treatment strategies.


Assuntos
Haptófitas/crescimento & desenvolvimento , Lipoproteínas/química , Luz Solar , Toxinas Biológicas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cyprinidae , Ácidos Graxos , Proliferação Nociva de Algas , Larva , Espectrometria de Massas
11.
Prep Biochem Biotechnol ; 51(5): 511-518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33078672

RESUMO

Marine microalga Isochrysis sp. contains omega-3 fatty acids like eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Environmental factors play a major role in PUFA biosynthesis. Hence, the study focused to optimize factors such as temperature, pH, and photoperiod by response surface methodology (RSM). RSM results showed that the model is significant (p ≤ 0.05) with a high correlation coefficient (R2 = 0.908). The optimum conditions showed that maximum biomass (327 mg/L) at the temperature of 30 °C, pH of 7.5 and 16:8 (Light: Dark cycle), whereas the higher amount of DHA (13.3%) and EPA (9.0%) was observed in the conditions of 18 °C, pH of 7.5 and 16:8 (Light: Dark cycle). The biomass content was directly proportional to the temperature whereas DHA content was inversely proportional. It was revealed that the mRNA expression of EPA and DHA specific desaturases (5Des & 4Des) were significantly elevated in low temperature (20 °C) conditions. The results were highly correlated with the fatty acid profile of Isochrysis sp. grown under low temperature (20 °C) conditions which enhanced the EPA and DHA levels. This study suggests that the temperature is the most influencing factor which can be exploited in the industrial application of DHA and EPA production from Isochrysis sp.


Assuntos
Biomassa , Ácidos Graxos Ômega-3/biossíntese , Haptófitas/crescimento & desenvolvimento , Temperatura Alta , Microalgas/crescimento & desenvolvimento
12.
Ecotoxicol Environ Saf ; 207: 111571, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254419

RESUMO

Marine microalgae with high removal efficiency of phenol are needed for the remediation of polluted seawater in cases involving phenol spills. To achieve this purpose, adaptive laboratory evolution (ALE) was performed by a microalga Isochrysis galbana Parke MACC/H59, which is capable of degrading phenol at concentrations of less than 100 mg L-1 in 4 d. Two acclimation conditions were used: (i) 90 d at 100 mg L-1 phenol, and (ii) 90 d at 100 mg L-1 phenol followed by another 90 d at 200 mg L-1 phenol. By doing so, two strains (PAS-1 and PAS-2) could be obtained respectively. They grew rapidly at phenol concentrations up to 200 mg L-1 and 300 mg L-1, respectively, with a specific growth rate 2.52-3.40 times and 1.93-3.23 times that of the control (without phenol). Also, both strains had a higher removal capacity of phenol than the unacclimated alga. Phenol at an initial concentration of 200 mg L-1 was completely removed in 5 d thereby. For 300 mg L-1 phenol, a removal efficiency of 92% was achieved in 10 days by using PAS-2, with a removal rate constant of 30.01 d-1 (about twice that of PAS-1) and a half-life of 4.90 d (about half that of PAS-1), showing that a better strain may be obtained by extending the acclimation time. The enhancement of phenol biodegradation can be explained by the elevated activity of phenol hydroxylase (PH) in both strains. These results indicated that ALE could be an efficient tool used to enhance the tolerance and biodegradation of marine microalgae to phenol in seawater.


Assuntos
Aclimatação/fisiologia , Biodegradação Ambiental , Haptófitas/fisiologia , Fenóis/metabolismo , Poluentes Químicos da Água/metabolismo , Haptófitas/crescimento & desenvolvimento , Microalgas/metabolismo , Fenol/metabolismo , Água do Mar
13.
Sci Rep ; 10(1): 20444, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235278

RESUMO

Phaeocystis pouchetii (Hariot) Lagerheim, 1893 regularly dominates phytoplankton blooms in higher latitudes spanning from the English Channel to the Arctic. Through zooplankton grazing and microbial activity, it is considered to be a key resource for the entire marine food web, but the actual relevance of biomass transfer to higher trophic levels is still under discussion. Cell physiology and algal nutritional state are suggested to be major factors controlling the observed variability in zooplankton grazing. However, no data have so far yielded insights into the metabolic state of Phaeocystis populations that would allow testing this hypothesis. Therefore, endometabolic markers of different growth phases were determined in laboratory batch cultures using comparative metabolomics and quantified in different phytoplankton blooms in the field. Metabolites, produced during exponential, early and late stationary growth of P. pouchetii, were profiled using gas chromatography-mass spectrometry. Then, metabolites were characterized that correlate with the growth phases using multivariate statistical analysis. Free amino acids characterized the exponential growth, whereas the early stationary phase was correlated with sugar alcohols, mono- and disaccharides. In the late stationary phase, free fatty acids, sterols and terpenes increased. These marker metabolites were then traced in Phaeocystis blooms during a cruise in the Barents Sea and North Norwegian fjords. About 50 endometabolites of P. pouchetii were detected in natural phytoplankton communities. Mannitol, scyllo-inositol, 24-methylcholesta-5,22-dien-3ß-ol, and several free fatty acids were characteristic for Phaeocystis-dominated blooms but showed variability between them. Distinct metabolic profiles were detected in the nutrient-depleted community in the inner Porsangerfjord (< 0.5 µM NO3-, < 0.1 µM PO 4 3- ), with high relative amounts of free mono- and disaccharides indicative for a limited culture. This study thereby shows how the variable physiology of phytoplankton can alter the metabolic landscape of entire plankton communities.


Assuntos
Haptófitas/crescimento & desenvolvimento , Metabolômica/métodos , Fitoplâncton/crescimento & desenvolvimento , Técnicas de Cultura Celular por Lotes , Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas , Haptófitas/metabolismo , Fitoplâncton/metabolismo , Esteróis/análise , Álcoois Açúcares/análise , Terpenos/análise
14.
Biomolecules ; 10(10)2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053668

RESUMO

Polar lipids from microalgae have aroused greater interest as a natural source of omega-3 (n-3) polyunsaturated fatty acids (PUFA), an alternative to fish, but also as bioactive compounds with multiple applications. The present study aims to characterize the polar lipid profile of cultured microalga Emiliania huxleyi using hydrophilic interaction liquid chromatography coupled with high-resolution mass spectrometry (HILIC-MS) and fatty acids (FA) analysis by gas chromatography (GC-MS). The lipidome of E. huxleyi revealed the presence of distinct n-3 PUFA (40% of total FA), namely docosahexaenoic acid (22:6n-3) and stearidonic acid (18:4n-3), which give this microalga an increased commercial value as a source of n-3 PUFA present in the form of polar lipids. A total of 134 species of polar lipids were identified and some of these species, particularly glycolipids, have already been reported for their bioactive properties. Among betaine lipids, the diacylglyceryl carboxyhydroxymethylcholine (DGCC) class is the least reported in microalgae. For the first time, monomethylphosphatidylethanolamine (MMPE) has been found in the lipidome of E. huxleyi. Overall, this study highlights the potential of E. huxleyi as a sustainable source of high-value polar lipids that can be exploited for different applications, namely human and animal nutrition, cosmetics, and pharmaceuticals.


Assuntos
Haptófitas/química , Lipídeos/análise , Biotecnologia/métodos , Células Cultivadas , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Haptófitas/crescimento & desenvolvimento , Haptófitas/metabolismo , Metabolismo dos Lipídeos , Lipidômica , Engenharia Metabólica/métodos , Técnicas Microbiológicas , Espectrometria de Massas em Tandem
15.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190357, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862820

RESUMO

Increasing contributions of prymnesiophytes such as Phaeocystis pouchetii and Emiliania huxleyi to Barents Sea (BS) phytoplankton production have been suggested based on in situ observations of phytoplankton community composition, but the scattered and discontinuous nature of these records confounds simple inference of community change or its relationship to salient environmental variables. However, provided that meaningful assessments of phytoplankton community composition can be inferred based on their optical characteristics, ocean-colour records offer a potential means to develop a synthesis between sporadic in situ observations. Existing remote-sensing algorithms to retrieve phytoplankton functional types based on chlorophyll-a (chl-a) concentration or indices of pigment packaging may, however, fail to distinguish Phaeocystis from other blooms of phytoplankton with high pigment packaging, such as diatoms. We develop a novel algorithm to distinguish major phytoplankton functional types in the BS and apply it to the MODIS-Aqua ocean-colour record, to study changes in the composition of BS phytoplankton blooms in July, between 2002 and 2018, creating time series of the spatial distribution and intensity of coccolithophore, diatom and Phaeocystis blooms. We confirm a north-eastward expansion in coccolithophore bloom distribution, identified in previous studies, and suggest an inferred increase in chl-a concentrations, reported by previous researchers, may be partly explained by increasing frequencies of Phaeocystis blooms. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Haptófitas/isolamento & purificação , Oceanos e Mares , Tecnologia de Sensoriamento Remoto/métodos , Água do Mar/microbiologia , Algoritmos , Regiões Árticas , Clorofila A/metabolismo , Cor , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/isolamento & purificação , Diatomáceas/metabolismo , Ecossistema , Eutrofização , Aquecimento Global , Haptófitas/crescimento & desenvolvimento , Haptófitas/metabolismo , Modelos Biológicos , Noruega , Fenômenos Ópticos , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/isolamento & purificação , Fitoplâncton/metabolismo , Tecnologia de Sensoriamento Remoto/estatística & dados numéricos , Estações do Ano
16.
Ecotoxicol Environ Saf ; 202: 110963, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800234

RESUMO

Harmful Phaeocystis blooms disrupt seawater recreation and pose serious challenges to aquatic animals. The growth performance, phenotypic traits, and antioxidant responses of Brachionus plicatilis Müller to different proportions of Phaeocystis globosa were evaluated. B. plicatilis rotifers were exposed to cultures with Chlorella sp. and P. globosa alone and in mixtures of these two algae with proportions of 25%, 50%, and 75%. The total proportions of the two algae were maintained at 100%. Results showed that P. globosa inhibited the rotifer net reproduction rate, intrinsic growth rate, and finite rate of increase (P < 0.01). It induced the formation of defense phenotypic traits in terms of the increased posterolateral spine length and the reduced body length, swimming speed, and grazing rate of B. plicatilis (P < 0.001). Superoxide dismutase and catalase activities decreased, but the reactive oxygen species levels increased as the proportions of P. globosa increased (P < 0.01). The mixture of 50% Chlorella and 50% Phaeocystis positively affected the glutathione content, glutathione peroxidase activity, and generation time of rotifers (P < 0.01). Although P. globosa released toxicants with harmful effects on the growth performance of B. plicatilis, rotifers changed their antioxidant defense system and formed defense phenotypic traits in response to eutrophic conditions.


Assuntos
Antioxidantes/metabolismo , Haptófitas/crescimento & desenvolvimento , Proliferação Nociva de Algas , Rotíferos/crescimento & desenvolvimento , Animais , Chlorella/crescimento & desenvolvimento , Glutationa/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Rotíferos/metabolismo , Rotíferos/fisiologia , Água do Mar/química , Natação
17.
PLoS One ; 15(7): e0235755, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32649709

RESUMO

As a widespread phytoplankton species, the coccolithophore Gephyrocapsaoceanica has a significant impact on the global biogeochemical cycle through calcium carbonate precipitation and photosynthesis. As global change continues, marine phytoplankton will experience alterations in multiple parameters, including temperature, pH, CO2, and nitrogen sources, and the interactive effects of these variables should be examined to understand how marine organisms will respond to global change. Here, we show that the specific growth rate of G. oceanica is reduced by elevated CO2 (1000 µatm) in [Formula: see text]-grown cells, while it is increased by high CO2 in [Formula: see text]-grown ones. This difference was related to intracellular metabolic regulation, with decreased cellular particulate organic carbon and particulate organic nitrogen (PON) content in the [Formula: see text] and high CO2 condition compared to the low CO2 condition. In contrast, no significant difference was found between the high and low CO2 levels in [Formula: see text] cultures (p > 0.05). The temperature increase from 20°C to 25°C increased the PON production rate, and the enhancement was more prominent in [Formula: see text] cultures. Enhanced or inhibited particulate inorganic carbon production rate in cells supplied with [Formula: see text] relative to [Formula: see text] was observed, depending on the temperature and CO2 condition. These results suggest that a greater disruption of the organic carbon pump can be expected in response to the combined effects of increased [Formula: see text]/[Formula: see text] ratio, temperature, and CO2 level in the oceans of the future. Additional experiments conducted under nutrient limitation conditions are needed before we can extrapolate our findings to the global oceans.


Assuntos
Dióxido de Carbono/farmacologia , Haptófitas/crescimento & desenvolvimento , Nitrogênio/farmacologia , Dióxido de Carbono/análise , Haptófitas/efeitos dos fármacos , Nitrogênio/análise , Temperatura
18.
PLoS One ; 15(3): e0230569, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218602

RESUMO

Different morphotypes of the abundant marine calcifying algal species Emiliania huxleyi are commonly linked to various degrees of E. huxleyi calcification, but few studies have been done to validate this assumption. This study investigated therefore whether E. huxleyi morphotypes can be related to coccolithophore calcification and coccolith mass. Samples from January (high productivity) and September (low productivity) 1997 at an open ocean and a coastal site near the Canary Islands were analysed using a combination of thickness measurements (Circular Polarizer Retardation estimates (CPR) method), Scanning Electron Microscope imaging, and Markov Chain Monte Carlo (MCMC) models. Mean E. huxleyi coccolith mass varied from a maximum of 2.9pg at the open ocean station in January to a minimum of 1.7pg in September at both stations. In contrast, overall calcite produced by E. huxleyi (assuming 23 coccoliths/cell) varied from a maximum of 2.6 µgL-1 at the coastal station in January to a minimum of 0.5 µgL-1 in September at the open ocean site. The relative abundance of "Overcalcified" Type A, Type A, Group B and malformed coccoliths was determined from SEM images. The mean coccolith mass of "Overcalcified" Type A was 2.0pg using the CPR-method, while mean mass of Type A and Group B coccoliths was determined using coccolith length measurements from SEM images and MCMC models relating thickness measurements to morphotype relative abundance. Type A cocccolith mass varied from a 1.6pg to 2.6pg and Group B coccolith mass varied from 1.5pg to 2.0pg. These results demonstrate that the coccolith mass of Type A, "Overcalcified" Type A, and Group B do not differ systematically and there is no systematic relationship between relative abundance of a morphotype and the overall calcite production of E. huxleyi. Therefore, morphotype appearance and relative abundance can not be uniformly used as reliable indicators of E. huxleyi calcification or calcite production.


Assuntos
Haptófitas/fisiologia , Carbonato de Cálcio/metabolismo , Haptófitas/química , Haptófitas/crescimento & desenvolvimento , Ilhas , Microscopia Eletrônica de Varredura , Método de Monte Carlo , Estações do Ano , Espanha , Temperatura
19.
PLoS One ; 14(9): e0223266, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31560717

RESUMO

Golden alga Prymnesium parvum Carter is a euryhaline, ichthyotoxic haptophyte (Chromista). Because of its presumed coastal/marine origin where SO42- levels are high, the relatively high SO42- concentration of its brackish inland habitats, and the sensitivity of marine chromists to sulfur deficiency, this study examined whether golden alga growth is sensitive to SO42- concentration. Fluoride is a ubiquitous ion that has been reported at higher levels in golden alga habitat; thus, the influence of F- on growth also was examined. In low-salinity (5 psu) artificial seawater medium, overall growth was SO42-dependent up to 1000 mg l-1 using MgSO4 or Na2SO4 as source; the influence on growth rate, however, was more evident with MgSO4. Transfer from 5 to 30 psu inhibited growth when salinity was raised with NaCl but in the presence of seawater levels of SO42-, these effects were fully reversed with MgSO4 as source and only partially reversed with Na2SO4. Growth inhibition was not observed after acute transfer to 30 psu in a commercial sea salt mixture. In 5-psu medium, F- inhibited growth at all concentrations tested. These observations support the hypothesis that spatial differences in SO42- -but not F--concentration help drive the inland distribution and growth of golden alga and also provide physiological relevance to reports of relatively high Mg2+ concentrations in golden alga habitat. At high salinity, however, the ability of sulfate to maintain growth under osmotic stress was weak and overshadowed by the importance of Mg2+. A mechanistic understanding of growth responses of golden alga to SO42-, Mg2+ and other ions at environmentally relevant levels and under different salinity scenarios will be necessary to clarify their ecophysiological and evolutionary relevance.


Assuntos
Haptófitas/crescimento & desenvolvimento , Proliferação Nociva de Algas , Fitoplâncton/crescimento & desenvolvimento , Água do Mar/química , Fluoretos/análise , Pressão Osmótica , Salinidade , Análise Espacial , Sulfatos/análise
20.
Artigo em Inglês | MEDLINE | ID: mdl-31484378

RESUMO

Antialgal compounds from plants have been identified as promising candidates for controlling harmful algal blooms (HABs). In our previous study, luteolin-7-O-glucuronide was used as a promising algistatic agent to control Phaeocystis globosa (P. globose) blooms; however, its antialgal mechanism on P. globosa have not yet been elaborated in detail. In this study, a liquid chromatography linked to tandem mass spectrometry (LC-MS/MS)-based untargeted metabolomic approach was used to investigate changes in intracellular and extracellular metabolites of P. globosa after exposure to luteolin-7-O-glucuronide. Significant differences in intracellular metabolites profiles were observed between treated and untreated groups; nevertheless, metabolic statuses for extracellular metabolites were similar among these two groups. For intracellular metabolites, 20 identified metabolites showed significant difference. The contents of luteolin, gallic acid, betaine and three fatty acids were increased, while the contents of α-Ketoglutarate and acetyl-CoA involved in tricarboxylic acid cycle, glutamate, and 11 organic acids were decreased. Changes in those metabolites may be induced by the antialgal compound in response to stress. The results revealed that luteolin played a vital role in the antialgal mechanism of luteolin-7-O-glucuronide on P. globosa, because luteolin increased the most in the treatment groups and had strong antialgal activity on P. globosa. α-Ketoglutarate and acetyl-CoA were the most inhibited metabolites, indicating that the antialgal compound inhibited the growth through disturbed the tricarboxylic acid (TCA) cycle of algal cells. To summarize, our data provides insights into the antialgal mechanism of luteolin-7-O-glucuronide on P. globosa, which can be used to further control P. globosa blooms.


Assuntos
Haptófitas/efeitos dos fármacos , Herbicidas/farmacologia , Luteolina/farmacologia , Cromatografia Líquida , Haptófitas/crescimento & desenvolvimento , Haptófitas/metabolismo , Luteolina/metabolismo , Metabolômica , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA