Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(1): e0093421, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019679

RESUMO

Phaeocystis globosa causes severe marine pollution by forming harmful algal blooms and releasing hemolytic toxins and is therefore harmful to marine ecosystems and aquaculture industries. In this study, Microbulbifer sp. YX04 exerted high algicidal activity against P. globosa by producing and secreting metabolites. The algicidal activity of the YX04 supernatant was stable after exposure to different temperatures (-80 to 100°C) and pH values (4 to 12) for 2 h, suggesting that algicidal substances could temporarily be stored under these temperature and pH value conditions. To explore the algicidal process and mechanism, morphological and structural changes, oxidative stress, photosynthesis, autophagic flux, and global gene expression were investigated. Biochemical analyses showed that the YX04 supernatant induced reactive oxygen species (ROS) overproduction, which caused lipid peroxidation and malondialdehyde (MDA) accumulation in P. globosa. Transmission electron microscopy (TEM) observation and the significant decrease in both maximum photochemical quantum yield (Fv/Fm) and relative electron transfer rate (rETR) indicated damage to thylakoid membranes and destruction of photosynthetic system function. Immunofluorescence, immunoblot, and TEM analyses indicated that cellular damage caused autophagosome formation and triggered large-scale autophagic flux in P. globosa. Transcriptome analysis revealed many P. globosa genes that were differentially expressed in response to YX04 stress, most of which were involved in photosynthesis, respiration, cytoskeleton, microtubule, and autophagosome formation and fusion processes, which may trigger autophagic cell death. In addition to P. globosa, the YX04 supernatant showed high algicidal activity against Thalassiosira pseudonana, Thalassiosira weissflogii, Skeletonema costatum, Heterosigma akashiwo, and Prorocentrum donghaiense. This study highlights multiple mechanisms underlying YX04 supernatant toxicity toward P. globosa and its potential for controlling the occurrence of harmful algal blooms. IMPORTANCEP. globosa is one of the most notorious harmful algal bloom (HAB)-causing species, which can secrete hemolytic toxins, frequently cause serious ecological pollution, and pose a health hazard to animals and humans. Hence, screening for bacteria with high algicidal activity against P. globosa and studies on the algicidal characteristics and mechanism will contribute to providing an ecofriendly microorganism-controlling agent for preventing the occurrence of algal blooms and reducing the harm of algal blooms to the environment. Our study first reported the algicidal characteristic and mechanism of Microbulbifer sp. YX04 against P. globosa and demonstrated that P. globosa shows different response mechanisms, including movement ability, antioxidative systems, photosynthetic systems, gene expression, and cell death mode, to adapt to the adverse environment when algicidal compounds are present.


Assuntos
Morte Celular Autofágica , Gammaproteobacteria/química , Haptófitas/citologia , Haptófitas/efeitos dos fármacos , Herbicidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Gammaproteobacteria/metabolismo , Haptófitas/crescimento & desenvolvimento , Haptófitas/metabolismo , Proliferação Nociva de Algas , Herbicidas/química , Herbicidas/metabolismo , Herbicidas/farmacologia , Concentração de Íons de Hidrogênio , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio
2.
PLoS One ; 15(7): e0235755, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32649709

RESUMO

As a widespread phytoplankton species, the coccolithophore Gephyrocapsaoceanica has a significant impact on the global biogeochemical cycle through calcium carbonate precipitation and photosynthesis. As global change continues, marine phytoplankton will experience alterations in multiple parameters, including temperature, pH, CO2, and nitrogen sources, and the interactive effects of these variables should be examined to understand how marine organisms will respond to global change. Here, we show that the specific growth rate of G. oceanica is reduced by elevated CO2 (1000 µatm) in [Formula: see text]-grown cells, while it is increased by high CO2 in [Formula: see text]-grown ones. This difference was related to intracellular metabolic regulation, with decreased cellular particulate organic carbon and particulate organic nitrogen (PON) content in the [Formula: see text] and high CO2 condition compared to the low CO2 condition. In contrast, no significant difference was found between the high and low CO2 levels in [Formula: see text] cultures (p > 0.05). The temperature increase from 20°C to 25°C increased the PON production rate, and the enhancement was more prominent in [Formula: see text] cultures. Enhanced or inhibited particulate inorganic carbon production rate in cells supplied with [Formula: see text] relative to [Formula: see text] was observed, depending on the temperature and CO2 condition. These results suggest that a greater disruption of the organic carbon pump can be expected in response to the combined effects of increased [Formula: see text]/[Formula: see text] ratio, temperature, and CO2 level in the oceans of the future. Additional experiments conducted under nutrient limitation conditions are needed before we can extrapolate our findings to the global oceans.


Assuntos
Dióxido de Carbono/farmacologia , Haptófitas/crescimento & desenvolvimento , Nitrogênio/farmacologia , Dióxido de Carbono/análise , Haptófitas/efeitos dos fármacos , Nitrogênio/análise , Temperatura
3.
Artigo em Inglês | MEDLINE | ID: mdl-32294556

RESUMO

Florfenicol (FFC) is one of the most universally used antibiotics in aquaculture, which is substitute for chloramphenicol extensively, while the massive residues in aquatic environment were assumed to threaten the non-target organisms. Present research investigated the effects of florfenicol on growth, chlorophyll content, photosynthesis, and antioxidant ability of Isochrysis galbana. The results showed that FFC at 0.001-1 mg/L stimulated the growth of I. galbana and increased the content of chlorophyll. In addition, photosynthesis of I. galbana was inhibited and the photosynthetic parameters were uplifted with the increased exposure duration and FFC concentration. Furthermore, superoxide dismutase (SOD), catalase (CAT) activity significantly dropped at 0.01-20 mg/L FFC, while the contents of malondialdehyde (MDA), glutathione (GSH) and reactive oxygen species (ROS) increased after 72 h exposure, indicating that FFC at high concentrations caused a serious oxidative stress on algae. The simultaneous increase of ROS disrupted the equilibration between oxidants and antioxidant systems. Under the high concentration of FFC, the excessive of ROS was generated in algae which affected the membrane permeability and further decreased the cell biomass. Present study showed that acute exposure (72 h) at the environmental relevant concentration (0.01 mg/L) cannot induce the physiological dysfunction of the microalgae I. galbana, but the feeding concentration (20 mg/L) can. Additionally, this study hinted the possible negative impacts on ecosystems with the chronic exposure even at low FFC concentration or with the uncontrolled use of FFC.


Assuntos
Antibacterianos/toxicidade , Haptófitas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Tianfenicol/análogos & derivados , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Clorofila/metabolismo , Haptófitas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Tianfenicol/toxicidade
4.
Artigo em Inglês | MEDLINE | ID: mdl-31484378

RESUMO

Antialgal compounds from plants have been identified as promising candidates for controlling harmful algal blooms (HABs). In our previous study, luteolin-7-O-glucuronide was used as a promising algistatic agent to control Phaeocystis globosa (P. globose) blooms; however, its antialgal mechanism on P. globosa have not yet been elaborated in detail. In this study, a liquid chromatography linked to tandem mass spectrometry (LC-MS/MS)-based untargeted metabolomic approach was used to investigate changes in intracellular and extracellular metabolites of P. globosa after exposure to luteolin-7-O-glucuronide. Significant differences in intracellular metabolites profiles were observed between treated and untreated groups; nevertheless, metabolic statuses for extracellular metabolites were similar among these two groups. For intracellular metabolites, 20 identified metabolites showed significant difference. The contents of luteolin, gallic acid, betaine and three fatty acids were increased, while the contents of α-Ketoglutarate and acetyl-CoA involved in tricarboxylic acid cycle, glutamate, and 11 organic acids were decreased. Changes in those metabolites may be induced by the antialgal compound in response to stress. The results revealed that luteolin played a vital role in the antialgal mechanism of luteolin-7-O-glucuronide on P. globosa, because luteolin increased the most in the treatment groups and had strong antialgal activity on P. globosa. α-Ketoglutarate and acetyl-CoA were the most inhibited metabolites, indicating that the antialgal compound inhibited the growth through disturbed the tricarboxylic acid (TCA) cycle of algal cells. To summarize, our data provides insights into the antialgal mechanism of luteolin-7-O-glucuronide on P. globosa, which can be used to further control P. globosa blooms.


Assuntos
Haptófitas/efeitos dos fármacos , Herbicidas/farmacologia , Luteolina/farmacologia , Cromatografia Líquida , Haptófitas/crescimento & desenvolvimento , Haptófitas/metabolismo , Luteolina/metabolismo , Metabolômica , Espectrometria de Massas em Tandem
5.
Artigo em Inglês | MEDLINE | ID: mdl-31340457

RESUMO

Enhalus acoroides (E. acoroides) is one of the most common species in seagrass meadows. Based on the application of allelochemicals from aquatic plants to inhibit harmful algal blooms (HABs), we used E. acoroides aqueous extract against harmful algae species Phaeocystis globosa (P. globosa). The results showed that E. acoroides aqueous extract could significantly inhibited the growth of P. globosa, decrease the chlorophyll-a content and photosynthetic efficiency (Fv/Fm) values of P. globosa, followed by vacuolization, plasmolysis, and the destruction of organelles. Twelve types of major chemical constituents were identified in E. acoroides aqueous extracts by ultraperformance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS), including six flavonoids, two homocyclic peptides, two long-chain aliphatic amides, one tannin, and one nitrogen heterocyclic compound. Flavonoids were the characteristic chemical constituents of E. acoroides aqueous extract. Furthermore, the antialgal activity of luteolin-7-O-glucuronide (68.125 µg/mL in 8 g/L E. acoroides aqueous extract) was assessed. The EC50-96 h value was 34.29 µg/mL. In conclusion, the results revealed that luteolin 7-O-glucuronide was one of the antialgal compounds of E. acoroides aqueous extract, with potential application as novel algaecide.


Assuntos
Haptófitas/efeitos dos fármacos , Herbicidas/farmacologia , Hydrocharitaceae , Luteolina/farmacologia , Extratos Vegetais/farmacologia , Haptófitas/fisiologia , Proliferação Nociva de Algas/efeitos dos fármacos , Luteolina/análise , Fotossíntese/efeitos dos fármacos , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia
6.
Sci Rep ; 9(1): 8417, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182768

RESUMO

Vitamin B12 (cobalamin) can control phytoplankton development and community composition, with around half of microalgal species requiring this vitamin for growth. B12 dependency is determined by the absence of cobalamin-independent methionine synthase and is unrelated across lineages. Despite their important role in carbon and sulphur biogeochemistry, little is known about haptophytes utilization of vitamin B12 and their ability to cope with its limitation. Here we report the first evaluation of B12 auxotrophy among this lineage based on molecular data of 19 species from 9 families. We assume that all species encode only a B12-dependent methionine synthase, suggesting ubiquitous B12 auxotrophy in this phylum. We further address the effect of different B12 limitations on the molecular physiology of the model haptophyte Tisochrysis lutea. By coupling growth assays in batch and chemostat to cobalamin quantification and expression analyses, we propose that haptophytes use three strategies to cope with B12 limitation. Haptophytes may assimilate dissolved methionine, finely regulate genes involved in methionine cycle and B12 transport and/or limit B12 transport to the mitochondrion. Taken together, these results provide better understanding of B12 metabolism in haptophytes and represent valuable data for deciphering how B12-producing bacteria shape the structure and dynamics of this important phytoplankton community.


Assuntos
Haptófitas/metabolismo , Microalgas/metabolismo , Vitamina B 12/farmacologia , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Técnicas de Cultura Celular por Lotes , Regulação da Expressão Gênica , Haptófitas/efeitos dos fármacos , Haptófitas/genética , Haptófitas/crescimento & desenvolvimento , Funções Verossimilhança , Microalgas/efeitos dos fármacos , Microalgas/genética , Microalgas/crescimento & desenvolvimento , Filogenia
7.
Environ Sci Pollut Res Int ; 26(23): 23763-23776, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31209750

RESUMO

Red tides that occur off coasts have become a worldwide phenomenon over the past decades. In order to mitigate the damage of the red tides on the aquatic ecosystems, it is crucial to develop a method for predicting algicidal activities that requires less labor and time, and most importantly, this method can quickly screen potential algicides to control red tides. In this study, we have investigated the algicidal activity of 19 natural flavonoids against a typical red tide alga, Phaeocystis globosa. Our results indicate that after 5 days of flavonoid exposure, the half inhibition concentrations (IC50) ranged from 0.068 to 3.065 mg L-1, which showed the strong algicidal activities of the flavonoids. Furthermore, quantitative structure activity relationship (QSAR) model has been carried out between negative scale logarithm (pIC50) of the flavonoids and the corresponding molecular descriptors. The developed model was validated, both internally and externally, which displayed statistical robustness (R2 = 0.867, p = 0.0002, Q2LOO = 0.825, RMSEC = 0.182, Q2extF3 = 0.896, RMSEP = 0.161, CCC = 0.935). This indicates that the developed model was obtained successfully with satisfactory predictability and robustness for the future rapid screening of natural flavonoids with high inhibition activity on the red tide alga growth. Moreover, the main descriptors in the QSAR model were the molar refractivity, partition coefficient, lowest unoccupied molecular orbital, and highest occupied molecular orbital, illustrating that the molecular electro-chemical characteristics are significant in the algicidal actions of the flavonoids. Graphical abstract Red tides frequently occur worldwide and have become a global environment problem. Flavonoids showed great potential in allelopathic control of the excessive growth of red tide algae. In this study, the algicidal activity of 19 natural flavonoids was investigated on a typical red tide organism Phaeocystis globosa. Futhermore, we applied the quantitative structure-activity relationship (QSAR) model to the experimental data. The model between molecular descriptors of flavonoids and their antialgal activity displays statistical robustness, and 4 of 45 selected molecular descriptors were obtained by regression of training set. The numbers in the figure represent the half inhibition concentration (IC50) of flavonoids. Our results show that the algicidal activity of flavonoids is closely related to molar refraction, partition coefficient, lowest unoccupied molecular orbital, and highest occupied molecular orbital. The QSAR model can efficaciously predict the algicidal activity and provide insights into the inhibitory mechanisms of flavonoids.


Assuntos
Flavonoides/toxicidade , Haptófitas/efeitos dos fármacos , Proliferação Nociva de Algas/efeitos dos fármacos , Herbicidas/toxicidade , Ecossistema , Relação Quantitativa Estrutura-Atividade
8.
Aquat Toxicol ; 211: 148-162, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30981038

RESUMO

This study screened binary mixtures of pesticides for potential synergistic interaction effects on growth of the marine microalgae Tisochrysis lutea and Skeletonema marinoi. It also examined the single and combined effects of three of the most toxic substances on microalgal physiology. Single substances were first tested on each microalgal species to determine their respective EC50 and concentration-response relationships. The toxicity of six and seven binary mixtures was then evaluated in microplate experiments on the growth of T. lutea and S. marinoi, respectively, using two mixture modelling approaches: isobolograms and the MIXTOX tool, based on Concentration Addition (CA) or Independent Action (IA) models. Significant cases of antagonism (for both species) and synergism (for S. marinoi) were observed for the mixtures of isoproturon and spiroxamine, and isoproturon and metazachlor, respectively. These two mixtures, together with that of isoproturon and diuron, for which additivity was observed, were further studied for their impacts on the physiology of each species. Exposures were thus made in culture flasks at three concentrations, or concentration combinations for mixtures, selected to cause 25%, 50% and 75% growth rate inhibition. The effects of the selected pesticides singly and in combination were evaluated at three perceived effect concentrations on esterase metabolic activity, relative lipid content, cytoplasmic membrane potential and reactive oxygen species (ROS) content by flow cytometry, and on photosynthetic quantum yield (ϕ'M) by PAM-fluorescence. Isoproturon and diuron singly and in mixtures induced 20-40% decreases in ϕ'M which was in turn responsible for a significant decrease in relative lipid content for both species. Spiroxamine and metazachlor were individually responsible for an increase in relative lipid content (up to nearly 300% for metazachlor on S. marinoi), as well as cell depolarization and increased ROS content. The mixture of isoproturon and metazachlor tested on S. marinoi caused a 28-34% decrease in ϕ'M that was significantly higher than levels induced by each of substances when tested alone. This strong decrease in ϕ'M could be due to a combined effect of these substances on the photosynthetic apparatus, which is likely the cause of the synergy found for this mixture.


Assuntos
Diatomáceas/efeitos dos fármacos , Haptófitas/efeitos dos fármacos , Microalgas/efeitos dos fármacos , Praguicidas/toxicidade , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Diatomáceas/fisiologia , Sinergismo Farmacológico , Haptófitas/fisiologia , Microalgas/fisiologia , Praguicidas/metabolismo , Poluentes Químicos da Água/metabolismo
9.
Chemosphere ; 225: 775-784, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30903851

RESUMO

Contamination with both oxytetracycline (OTC) and Cu is prevalent in water. OTC can chelate with Cu to form OTC + Cu composites. Through the study of the effects of the interaction of OTC and Cu on the algae Isochrysis galbana at multiple coordination ratios, it was found that the OTC + Cu complex was antagonistic to algae growth after 24 h of exposure but was synergistic in treatment (T) 3 and T4 after 48 and 72 h. Compared with OTC alone, the addition of Cu addition significantly inhibited the biosynthesis of chlorophyll a, but the ratio (R) in the OTC + Cu and OTC treatments gradually increased from T1 to T4. The addition of Cu also led to a significant increase in malondialdehyde and reactive oxygen species, but R gradually decreased and increased, respectively, from T1 to T4. The accumulation of OTC in algae was considerably promoted by the addition of Cu, with R increasing 1.5 in T2 to 2.6 in T4; moreover, the residue of OTC in water was reduced in the presence of algae. OTC alone dramatically inhibited the absorption of Cu by algae, while in the presence of OTC + Cu, only the two high-OTC treatments showed a significant decrease in Cu absorption. In addition, the absorption of Mg was markedly inhibited in all OTC treatments and the adsorption of K in the high-OTC treatment, but these inhibitory effects were alleviated in the OTC + Cu treatment. These results indicated that the effects of the OTC + Cu complex on algae were different from the effects of OTC and Cu alone.


Assuntos
Cobre/toxicidade , Microalgas/efeitos dos fármacos , Oxitetraciclina/toxicidade , Poluentes Químicos da Água/toxicidade , Adsorção , Clorofila A/biossíntese , Interações Medicamentosas , Haptófitas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Fatores de Tempo
10.
Ecotoxicol Environ Saf ; 173: 103-109, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30769202

RESUMO

It is highly likely that phytoplanktonic organisms will interact with MPs in the ocean, and consequently with the pollutants sorbed onto their surfaces. Microalgae play an essential role in maintaining the balance of the marine ecosystem due to the fact that they are a primary producer and the base of marine trophic chains. Therefore, their fitness represents an important index in the assessment of water quality. The objectives of this study were i) to assess the toxicity of MPs and the pesticide chlorpyrifos (CPF) to the microalgae, Isochrysis galbana, clone t-ISO and ii) to ascertain whether the presence of MPs affects the toxicity of CPF. Microalgae growth rate was selected as the endpoint and a commercial virgin PE micronized powder was chosen as a micro-plastic model, with mean size ranging from 2 to 6 µm, assayed until 25 mg L-1. CPF was tested at concentrations ranging from 0 to 4 mg L-1. A constant concentration of MPs (5 mg L-1) was loaded with increasing doses of CPF (0-3 mg L-1) with a 2 h incubation period. Bioassays were performed at 20 °C, in glass tubes of 50 ml, with air and constant light and an exposure time of 72 h. Cell counts were performed using a Coulter Counter Multisizer III and HPLC was used to quantify the partition of this pollutant among MPs and water. Although microalgae growth was not impacted by MPs, growth was clearly affected by exposure to CPF from 2 mg L-1 and above, with a total growth inhibition at concentrations over 3 mg L-1. Subsequent to incubation, 80% of CPF was sorbed onto MP surfaces. Two different dose-response curves resulted from CPF bioassays depending on the presence of MP, with lower percentages of inhibition when CPF was presented through MP. Thus, the adsorption of CPF onto MP surfaces modulates the toxicity of CPF on I. galbana growth through a reduction in its toxicity, as CPF is adsorbed onto MP surfaces which are less bio-available to the algal cells.


Assuntos
Clorpirifos/toxicidade , Haptófitas/efeitos dos fármacos , Microalgas/efeitos dos fármacos , Plásticos/química , Poluentes Químicos da Água/toxicidade , Adsorção , Clorpirifos/química , Haptófitas/crescimento & desenvolvimento , Inseticidas/química , Inseticidas/toxicidade , Microalgas/crescimento & desenvolvimento , Tamanho da Partícula , Plásticos/toxicidade , Água do Mar/química , Poluentes Químicos da Água/química
11.
Sci Total Environ ; 656: 952-958, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30625681

RESUMO

The present study elucidates the role of natural iron fertilization of the coastal ocean by so-called "blackwater rivers". Areas of marsh, fen, peatland, boreal forest etc. are characterized by organic-rich soils. From those soils, humic substances (humic and fulvic acids) are leached to the aquatic system resulting in river water that is low in pH and dark-brown in color. The point is that "blackwater rivers" tend to be rich in dissolved iron due to the unique chelating properties of humic and fulvic acids which bind Fe(III) and keep it in solution. We performed algal physiological (growth rate) experiments under conditions of iron deficiency with the marine unicellular phytoplankton algae Chlorella salina and Diacronema lutheri in 0.2 µm cut-off filtered mixtures of natural "blackwater river" water and synthetic seawater. Our results demonstrate that the iron naturally present in "blackwater rivers" is readily bioavailable to both marine algal species. Furthermore, the humic and fulvic acids exert an additional stimulatory effect on the marine algae. Both algae thrive much better in the presence of natural humic and fulvic acids as compared to a medium where EDTA is used as an iron-chelating agent. Our results indicate that "blackwater rivers", in sharp contrast to other types of rivers, are excellent sources of bioavailable iron to marine phytoplankton. This natural iron fertilization may give rise to photosynthesis-driven sequestration of CO2 from the atmosphere to the sea, as can be seen from the visualization of CO2 surface concentrations by NASA (NASA GEOS-5 model) which shows the global sources and sinks of CO2 localized in time and space. The results by NASA suggest that strong marine CO2 sinks in coastal waters tend to occur close to "blackwater river" estuaries. It is thus evident that "blackwater rivers" act as important sources of a limiting nutrient (iron) to the ocean.


Assuntos
Substâncias Húmicas , Ferro/química , Microalgas/crescimento & desenvolvimento , Rios/química , Água do Mar/química , Chlorella/efeitos dos fármacos , Chlorella/crescimento & desenvolvimento , Fertilizantes , Haptófitas/efeitos dos fármacos , Haptófitas/crescimento & desenvolvimento , Microalgas/efeitos dos fármacos , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/crescimento & desenvolvimento , Escócia
12.
ISME J ; 13(4): 1019-1031, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30607029

RESUMO

Emiliania huxleyi is a globally important marine phytoplankton that is routinely infected by viruses. Understanding the controls on the growth and demise of E. huxleyi blooms is essential for predicting the biogeochemical fate of their organic carbon and nutrients. In this study, we show that the production of nitric oxide (NO), a gaseous, membrane-permeable free radical, is a hallmark of early-stage lytic infection in E. huxleyi by Coccolithoviruses, both in culture and in natural populations in the North Atlantic. Enhanced NO production was detected both intra- and extra-cellularly in laboratory cultures, and treatment of cells with an NO scavenger significantly reduced viral production. Pre-treatment of exponentially growing E. huxleyi cultures with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) prior to challenge with hydrogen peroxide (H2O2) led to greater cell survival, suggesting that NO may have a cellular antioxidant function. Indeed, cell lysates generated from cultures treated with SNAP and undergoing infection displayed enhanced ability to detoxify H2O2. Lastly, we show that fluorescent indicators of cellular ROS, NO, and death, in combination with classic DNA- and lipid-based biomarkers of infection, can function as real-time diagnostic tools to identify and contextualize viral infection in natural E. huxleyi blooms.


Assuntos
Haptófitas/virologia , Peróxido de Hidrogênio/toxicidade , Óxido Nítrico/biossíntese , Phycodnaviridae/fisiologia , Antioxidantes/metabolismo , Haptófitas/efeitos dos fármacos , Haptófitas/metabolismo , Fitoplâncton/metabolismo , Fitoplâncton/virologia
13.
Harmful Algae ; 80: 130-139, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30502805

RESUMO

Glyphosate-based herbicides (GBH) are widely used around the globe. While generally toxic to phototrophs, organic phosphorus in glyphosate can become available to glyphosate-resistant phytoplankton and contribute to algal bloom development. Few studies have examined the effects of GBH on growth of eukaryotic microalgae and information for the toxic bloom-forming haptophyte, Prymnesium parvum, is limited. Using a batch-culture system, this study examined the effects on P. parvum growth of a single application of Roundup Weed and Grass Killer Super Concentrate Plus® (Roundup SC), Roundup Weed and Grass Killer Ready-to-Use III® (Roundup RtU), and technical-grade glyphosate at low concentrations [0-1000 µg glyphosate acid equivalent (ae) l-1]. Roundup formulations differ in the percent of glyphosate as active ingredient (Roundup SC, ∼50%; Roundup RtU, 2%), allowing indirect evaluation of the influence of inactive ingredients. Roundup SC enhanced exponential growth rate at 10-1000 µg glyphosate ae l-1, and a positive monotonic association was noted between Roundup SC concentration and early (pre-exponential growth) but not maximum cell density. Glyphosate and both Roundup formulations enhanced growth rate at 100 µg glyphosate l-1, but only Roundup SC and glyphosate significantly stimulated early and maximum density. This observation suggests the higher concentration of inactive ingredients and other compounds in Roundup RtU partially counteracts glyphosate-dependent growth stimulation. When phosphate concentration was varied while maintaining other conditions constant, addition of Roundup SC and glyphosate at 100 µg l-1 influenced growth more strongly than equivalent changes in phosphate-associated phosphorus. It appears, therefore, that low doses of glyphosate stimulate growth by mechanisms unrelated to the associated small increases in total phosphorus. In conclusion, glyphosate and GBH stimulate P. parvum growth at low, environmentally relevant concentrations. This finding raises concerns about the potential contribution to P. parvum blooms by glyphosate-contaminated runoff or by direct application of GBH to aquatic environments.


Assuntos
Glicina/análogos & derivados , Haptófitas/efeitos dos fármacos , Proliferação Nociva de Algas/efeitos dos fármacos , Herbicidas/farmacologia , Glicina/farmacologia , Haptófitas/crescimento & desenvolvimento , Herbicidas/química , Microalgas/efeitos dos fármacos , Glifosato
14.
Artigo em Inglês | MEDLINE | ID: mdl-30388797

RESUMO

The presence of harmful algal blooms (HABs) can cause significant problems to the quality of the water, the marine ecosystems, and the human health, and economy worldwide. Biological remediation can inhibit harmful algal growth efficiently in an environmental-friendly manner. Therefore, the research conducted on biological remediation with regard to the inhibition of HABs is becoming a major focus in marine ecology. To date, no study has been reported with regard to the red tides occurring in mangrove wetlands. Therefore, the present study used two mangrove species, namely Bruguiera gymnorrhiza and Kandelia candel and one harmful algae species Phaeocystis globosa as experimental organisms. The present study determined the inhibitory effects and algae physiology of specific aqueous extracts from mangrove leaves on the viability of harmful algae, and analyzed the main chemical composition of the aqueous extracts by ultra-performance liquid chromatography coupled to high resolution mass spectrometry (UPLC-QTOF-MS). The results indicated that the aqueous extracts from different leaf ages of B. gymnorrhiza and K. candel leaves exhibited apparent inhibitory effects on the growth of P. globosa. The inhibitory effects of B. gymnorrhiza and K. candel leaves aqueous extracts on the growth of P. globosa were in the following order: senescent > mature > young leaves. The levels of the parameters superoxide dismutase (SOD) activity, glutathione (GSH), and malondialdehyde (MDA)content in P. globosa following treatment with B. gymnorrhiza and K. candel leaves aqueous extracts were increased as follows: senescent > mature > young leaves. Simultaneously, the intensity of the ion peaks of the specific secondary metabolites assigned 4 (No.: 4 Rt: 2.83 min), 7 (No.: 7 Rt: 3.14 min), 8 (No.: 8 Rt: 3.24 min), 9 (No.: 9 Rt: 3.82min) and 10 (No.: 10 Rt: 4.10 min) were increased. These metabolites were found in the aqueous extracts from B. gymnorrhiza leaves. The intensities of the ion peaks of the secondary metabolites 7, 8 in the aqueous extracts from the K. candel leaves were also increased. The majority of the substances that inhibited the algae found in the mangrove plants were secondary metabolites. Therefore, we considered that the norsesquiterpenes compounds 4, 8, 9, and 10 and a phenolic glycoside compound 7 were the active constituents in the aqueous extracts of the mangrove leaves responsible for the inhibition of algae growth. This evidence provided theoretical guidance for the development of biological methods to control red tides and for the further use of substances with antiproliferative activity against algae.


Assuntos
Recuperação e Remediação Ambiental/métodos , Eutrofização/efeitos dos fármacos , Haptófitas/efeitos dos fármacos , Folhas de Planta/química , Rhizophoraceae/química , China
15.
Protist ; 169(6): 958-975, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30453274

RESUMO

Ocean acidification (OA) and high light was found to negatively affect the Antarctic key species Phaeocystis antarctica, Fragilariopsis kerguelensis and Chaetoceros debilis. To unravel the underlying physiological response at the transcriptomic level, these species were grown under ambient and elevated pCO2 combined with low or high light. RNA sequencing revealed that the haptophyte was much more tolerant towards OA than the two diatoms as only these showed distinct OA-dependent gene regulation patterns. Under ambient pCO2, high light resulted in decreased glycolysis in P. antarctica. Contrastingly, upregulation of genes related to cell division and transcription as well as reduced expression of both cata- and anabolic carbon related pathways were seen in C. debilis. OA in combination with low light led to reduced respiration, but also surprisingly to higher expression of genes involved in light protection, transcription and translation in C. debilis. Though not affecting P. antarctica, OA combined with high light caused also photosensitivity in both diatoms. As additional response reallocation of carbon to lipids was found in C. debilis under these conditions. Overall, we conclude that P. antarctica is better adapted than the two diatoms to OA and high light.


Assuntos
Ácidos/toxicidade , Adaptação Fisiológica , Luz , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/efeitos da radiação , Estresse Fisiológico , Dióxido de Carbono/metabolismo , Diatomáceas/efeitos dos fármacos , Diatomáceas/genética , Diatomáceas/fisiologia , Diatomáceas/efeitos da radiação , Perfilação da Expressão Gênica , Haptófitas/efeitos dos fármacos , Haptófitas/genética , Haptófitas/fisiologia , Haptófitas/efeitos da radiação , Redes e Vias Metabólicas/genética , Oceanos e Mares , Fitoplâncton/genética , Fitoplâncton/fisiologia , Água do Mar/química , Análise de Sequência de RNA
16.
Environ Pollut ; 242(Pt B): 1319-1330, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30121486

RESUMO

Metal contaminants are rarely present in the environment individually, yet environmental quality guidelines are derived from single-metal toxicity data. Few metal mixture studies have investigated more than binary mixtures and many are at unrealistically high effect concentrations to freshwater organisms. This study investigates the toxicity of five metals (Cd, Cu, Ni, Pb, and Zn) to the Antarctic marine microalgae Phaeocystis antarctica and Cryothecomonas armigera. Two mixtures were tested: (i) an equitoxic mixture of contaminants present at their single-metal EC10 concentrations, and (ii) an environmental mixture based on the ratio metal concentrations in a contaminated Antarctic marine bay. Observed toxicity, as chronic population growth rate inhibition, was compared to Independent Action (IA) and Concentration Addition (CA) predictions parameterised to use EC10 values. This allowed for the inclusion of metals with low toxicities. The biomarkers chlorophyll a fluorescence, cell size and complexity, and intracellular lipid concentrations were assessed to investigate possible mechanisms behind metal-mixture interactions. Both microalgae had similar responses to the equitoxic mixture: non-interactive by IA and antagonistic by CA. Toxicity from the environmental mixture was antagonistic by IA to P. antarctica; however, to C. armigera it was concentration-dependent with antagonism at low toxicities and synergism at high toxicities by both IA and CA. Differences in dissolved organic carbon production and detoxification mechanisms may be responsible for these responses and warrants further investigation. This study shows that mixture toxicity interactions can be ratio, species, and concentration dependent. The responses of the microalgae to different mixture ratios highlight the need to assess toxicity at environmentally realistic metal ratios. Parameterising IA and CA reference models to use EC10s allowed for the inclusion of metals at low effect concentrations, which may otherwise be ignored. Reference mixture models are generally suitable for predicting chronic toxicity of metals to these marine microalgae at environmentally realistic ratios and concentrations.


Assuntos
Haptófitas/efeitos dos fármacos , Metais Pesados/toxicidade , Microalgas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Regiões Antárticas , Clorofila/metabolismo , Clorofila A , Interações Medicamentosas , Haptófitas/metabolismo , Microalgas/metabolismo , Água do Mar
17.
Mar Pollut Bull ; 133: 18-29, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30041305

RESUMO

National and international regulations require that ships' ballast water is treated to minimize the risk of introducing potentially invasive species. A common approach employed by commercial ballast water management systems is chlorination. This study presents the algal toxicity findings for three chlorination-based BWMS and their implications to environmental safety of port waters receiving treated ballast water from ships. Discharged treated ballast water from all three BWMS was toxic to algae with IC25s (25% growth inhibition) ranging from 9.9% to 17.9%, despite having total residual oxidant concentrations below 0.02 mg/l, based on Whole Effluent Toxicity assays. When held at 4 °C, some of the ballast water samples continued to exhibit toxic effects with no observed effect concentrations as low as 18% after a 134 day holding time. Thirteen individual disinfection by-products were measured above the detected limit at the time of discharge. No correlation between DBPs and algal toxicity was observed.


Assuntos
Diatomáceas/efeitos dos fármacos , Halogenação , Haptófitas/efeitos dos fármacos , Navios , Poluentes Químicos da Água/toxicidade , Cloro/química , Cloro/toxicidade , Diatomáceas/crescimento & desenvolvimento , Desinfecção , Haptófitas/crescimento & desenvolvimento , Espécies Introduzidas , Oxidantes/química , Oxidantes/toxicidade , Poluentes Químicos da Água/química , Purificação da Água
18.
PLoS One ; 13(7): e0200012, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29966023

RESUMO

A natural pH gradient caused by marine CO2 seeps off the Methana peninsula (Saronikos Gulf, eastern Peloponnese peninsula) was used as a natural laboratory to assess potential effects of ocean acidification on coccolithophores. Coccolithophore communities were therefore investigated in plankton samples collected during September 2011, September 2016 and March 2017. The recorded cell concentrations were up to ~50 x103 cells/l, with a high Shannon index of up to 2.8, along a pH gradient from 7.61 to 8.18, with values being occasionally <7. Numerous holococcolithophore species represented 60-90% of the surface water assemblages in most samples during September samplings. Emiliania huxleyi was present only in low relative abundances in September samples, but it dominated in March assemblages. Neither malformed nor corroded coccolithophores were documented. Changes in the community structure can possibly be related to increased temperatures, while the overall trend associates low pH values with high cell densities. Our preliminary results indicate that in long-termed acidified, warm and stratified conditions, the study of the total coccolithophore assemblage may prove useful to recognize the intercommunity variability, which favors the increment of lightly calcified species such as holococcolithophores.


Assuntos
Dióxido de Carbono/farmacologia , Haptófitas/efeitos dos fármacos , Dióxido de Carbono/química , Ácido Carbônico/química , Ácido Carbônico/farmacologia , Clorofila A/metabolismo , Mudança Climática , Grécia , Haptófitas/crescimento & desenvolvimento , Haptófitas/metabolismo , Concentração de Íons de Hidrogênio , Mar Mediterrâneo , Nutrientes/farmacologia , Salinidade , Temperatura
19.
Ecotoxicol Environ Saf ; 161: 92-98, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29879578

RESUMO

The rapid development and application of nanotechnology have led to increasing concern about the environmental implications of released nanomaterials and potential risks to public health and aquatic ecosystems. Information on the joint effect of nanomaterials and co-existing contaminants such as heavy metals is still inadequate. Our work investigated the effect of Al2O3 nanoparticles (NPs; nano-Al2O3) on the toxic effect of Pb in the unicellular marine phytoplankton Isochrysis galbana. Results showed that a dose-response effect of nano-Al2O3 was found. Significant enhancement of fluorescence in cell cytoplasm rather than cell membrane occurred in the presence of nano-Al2O3, indicating that nano-Al2O3 can penetrate cells and affect the fluorescence emitted from the chloropigments inside them. The presence of nano-Al2O3 has no impact on the toxic effect of Pb at an NP concentration of 1 mg/L but increased that at NP concentrations of 10 mg/L and 100 mg/L. A synergistic effect was also found for the toxic effect of Pb in the presence of 10 mg/L nano-Al2O3. The presence of 100 mg/L nano-Al2O3 significantly increased the bio-uptake of Pb in the range of 0.25 mg/L to 2.0 mg/L Pb, and the maximum accumulated Pb in algae can reach up to 18.22 ng/105 cells with 100 mg/L nano-Al2O3 compared with Pb alone at 2.0 mg/L(12.53 ng/105 cells). Inside cells, Pb loaded onto nano-Al2O3 can be more toxic than the same amount of free Pb species. The results of toxicity tests and accumulated Pb in algae imply that, in addition to the total Pb cell content, the bioavailability of Pb inside algae should be taken into consideration in evaluating the joint toxicity effect. Our work enhances understanding of the combined toxicity of NPs and co-existing heavy metals and is of practical significance in the natural environment.


Assuntos
Haptófitas/efeitos dos fármacos , Chumbo/toxicidade , Microalgas/efeitos dos fármacos , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Óxido de Alumínio , Fluorescência , Haptófitas/metabolismo , Haptófitas/fisiologia , Chumbo/metabolismo , Pigmentos Biológicos , Água do Mar , Testes de Toxicidade , Poluentes Químicos da Água/metabolismo
20.
Mar Pollut Bull ; 130: 170-178, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29866543

RESUMO

Phytoplankton alter their macromolecule composition in response to changing environmental conditions. Often these changes are consistent and can be used as indicators to predict their exposure to a given condition. FTIR-spectroscopy is a powerful tool that provides rapid snapshot of microbial samples. We used FTIR to develop signature macromolecular composition profiles of three cultures: Skeletonema costatum, Emiliania huxleyi, and Navicula sp., exposed to chemically enhanced water accommodated oil fraction (CEWAF) in artificial seawater and control. Using a multivariate model created with a Partial Least Square Discriminant Analysis of the FTIR-spectra, classification of CEWAF exposed versus control samples was possible. This model was validated using aggregate samples from a mesocosm study. Analysis of spectra and PCA-loadings plot showed changes to carbohydrates and proteins in response to CEWAF. Overall we developed a robust multivariate model that can be used to identify if a phytoplankton sample has been exposed to oil with dispersant.


Assuntos
Monitoramento Ambiental/métodos , Petróleo/toxicidade , Fitoplâncton/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Carboidratos , Diatomáceas/química , Diatomáceas/efeitos dos fármacos , Análise Discriminante , Haptófitas/química , Haptófitas/efeitos dos fármacos , Modelos Teóricos , Petróleo/análise , Poluição por Petróleo/efeitos adversos , Poluição por Petróleo/análise , Fitoplâncton/química , Análise de Componente Principal , Água do Mar , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA