Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 8147, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854143

RESUMO

Mass-flowering crop monocultures, like sunflower, cannot harbour a permanent pollinator community. Their pollination is best secured if both managed honey bees and wild pollinators are present in the agricultural landscape. Semi-natural habitats are known to be the main foraging and nesting areas of wild pollinators, thus benefiting their populations, whereas crops flowering simultaneously may competitively dilute pollinator densities. In our study we asked how landscape structure affects major pollinator groups' visiting frequency on 36 focal sunflower fields, hypothesising that herbaceous semi-natural (hSNH) and sunflower patches in the landscape neighbourhood will have a scale-dependent effect. We found that an increasing area and/or dispersion of hSNH areas enhanced the visitation of all pollinator groups. These positive effects were scale-dependent and corresponded well with the foraging ranges of the observed bee pollinators. In contrast, an increasing edge density of neighbouring sunflower fields resulted in considerably lower visiting frequencies of wild bees. Our results clearly indicate that the pollination of sunflower is dependent on the composition and configuration of the agricultural landscape. We conclude that an optimization of the pollination can be achieved if sufficient amount of hSNH areas with good dispersion are provided and mass flowering crops do not over-dominate the agricultural landscape.


Assuntos
Abelhas/fisiologia , Produtos Agrícolas/fisiologia , Helianthus/fisiologia , Animais , Produtos Agrícolas/parasitologia , Ecossistema , Helianthus/parasitologia , Polinização , Dinâmica Populacional
2.
PLoS One ; 15(8): e0237318, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804952

RESUMO

The mirid bug Lygus pratensis is an important pest of cotton, and is primarily managed through insecticide application. In this study, conducted in Xinjiang (China), we assessed the relative attractiveness of sunflower (Helianthus annuus) to L. pratensis adults in local cotton plots from 2015-2016 and quantified the associated contribution of inter-planted sunflower strips to suppress field-level L. pratensis populations from 2016-2017. Field-plot trials showed that among six combinations of two sunflower varieties (XKZ6 and SH363) and three planting dates (early-, middle- and late-planted), adult abundance of L. pratensis was highest on early-planted XKZ6 and attained 3.7-5.8 times higher levels than in neighboring cotton plots. In commercial cotton fields, the combined deployment of sunflower strips at field edges and the periodic application of insecticides directed to those strips was found to (1) reduce the mean abundance of L. pratensis population on cotton by 41.9-44.0%, (2) lower the rate of cotton leaf damage by 27.3-30.6% and boll damage by 44.8-46.0%, and (3) increase the number of mature bolls by 7.5%-8.0%. Our work emphasizes how sunflower can be an effective trap crop for L. pratensis and that the establishment of sunflower strips could contribute to its effective and environmentally-sound management in cotton crops.


Assuntos
Proteção de Cultivos/métodos , Produtos Agrícolas/parasitologia , Gossypium/parasitologia , Helianthus/parasitologia , Heterópteros/fisiologia , Animais , China , Comportamento Alimentar , Folhas de Planta/parasitologia
3.
Braz J Microbiol ; 51(3): 883-892, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32363566

RESUMO

In this study, the physio pathological effects of Aspergillus alliaceus (Aa, fungi, biocontrol agent) on Orobanche (parasitic plant) were investigated by hormone and phenolic substance tests. In experimental group, Orobanches were treated with the fungi, considering control group was fungus-free. Based on the hormonal tests, in the experimental group, salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA) and gibberellic acid (GA) levels significantly decreased, and only indole acetic acid (IAA) hormone levels were fairly higher than the control group. According to phenolic substance tests, it was found that only gallic acid, syringic acid and caffeic acid values significantly increased compared with control, and catechin and p-coumaric acid values were significantly lower. Consequently, it was determined that Aa pathogenesis (1) considerably reduces the effects of all defence hormones (JA, ABA, SA), (2) operates an inadequate defence based solely on the IAA hormone and several phenolic substances (gallic acid, syringic acid and caffeic acid), (3) and inevitably the fungi lead the Orobanche to a slow and continuous death. The results were evaluated in detail in the light of similar recent article and current literature in terms of biocontrol and pathology.


Assuntos
Aspergillus/fisiologia , Agentes de Controle Biológico , Orobanche/metabolismo , Helianthus/parasitologia , Orobanche/imunologia , Orobanche/microbiologia , Fenóis/análise , Fenóis/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/metabolismo , Metabolismo Secundário
4.
Genes (Basel) ; 11(2)2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019223

RESUMO

Broomrape is a root parasitic plant causing yield losses in sunflower production. Since sunflower is an important oil crop, the development of broomrape-resistant hybrids is the prime breeding objective. Using conventional plant breeding methods, breeders have identified resistant genes and developed a number of hybrids resistant to broomrape, adapted to different growing regions worldwide. However, the spread of broomrape into new countries and the development of new and more virulent races have been noted intensively. Recent advances in sunflower genomics provide additional tools for plant breeders to improve resistance and find durable solutions for broomrape spread and virulence. This review describes the structure and distribution of new, virulent physiological broomrape races, sources of resistance for introduction into susceptible cultivated sunflower, qualitative and quantitative resistance genes along with gene pyramiding and marker assisted selection (MAS) strategies applied in the process of increasing sunflower resistance. In addition, it presents an overview of underutilized biotechnological tools, such as phenotyping, -omics, and genome editing techniques, which need to be introduced in the study of sunflower resistance to broomrape in order to achieve durable resistance.


Assuntos
Resistência à Doença , Genômica/métodos , Helianthus/crescimento & desenvolvimento , Orobanche/fisiologia , Helianthus/parasitologia , Melhoramento Vegetal , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética
5.
Acta sci., Biol. sci ; 42: e47120, fev. 2020. ilus, tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1460916

RESUMO

The establishment of invasive plants negatively affects natural environments. Invasive herbivores that attack weeds can be used as a form of biological control, but natural enemies of herbivores must be associated with this interaction to prevent the invasive phytophagous from become a local pest. We performed a greenhouse experiment to evaluate how the cotton aphid, Aphis gossypii, a ok and invasive herbivore, affects the performance of the weed Tithonia diversifolia, the Mexican sunflower. We also examined the relationship between the aphid and local natural enemies. Seedlings of T. diversifolia were divided in two groups: one infested by the aphid and another not infested. After 22 days, we assessed the relationship between aphid abundance and the presence of natural enemies (Coccinelidae and Aphidius platensis) on infested plants, and compared the vegetative performance of the two seedling groups. Both natural enemies were positively related to high aphid density on infested plants. Plants infested by the aphid presented foliar necrosis and senescence, and a reduction of around 50% in leaf number, foliar area, shoot length and shoot, root and total plant weight compared to non-infested plants. These results indicate potential biological control of Mexican sunflower seedlings by the cotton aphid, and control of this aphid by the studied natural enemies.


Assuntos
Afídeos , Helianthus/microbiologia , Helianthus/parasitologia
6.
Nat Plants ; 5(12): 1211-1215, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31819219

RESUMO

Orobanche cumana (sunflower broomrape) is an obligate parasitic plant that infects sunflower roots, causing yield losses. Here, by using a map-based cloning strategy, we identified HaOr7-a gene that confers resistance to O. cumana race F-which was found to encode a leucine-rich repeat receptor-like kinase. The complete HAOR7 protein is present in resistant lines of sunflower and prevents O. cumana from connecting to the vascular system of sunflower roots, whereas susceptible lines encode a truncated protein that lacks transmembrane and kinase domains.


Assuntos
Helianthus/parasitologia , Orobanche/enzimologia , Proteínas de Plantas/imunologia , Proteínas Quinases/imunologia , Resistência à Doença , Helianthus/crescimento & desenvolvimento , Orobanche/imunologia , Orobanche/metabolismo , Proteínas de Plantas/genética , Proteínas Quinases/genética
7.
PLoS One ; 14(10): e0223865, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31603941

RESUMO

Insect pollination is issential for hybrid seed production systems, among which, introduced and native bees are the primary pollinating agents transferring pollen from male fertile (MF) to male sterile (MS) lines. On a highly dimorphic sunflower (Helianthus annuus) crop, we assessed the foraging behavior of solitary Melissodes bees and honey bees Apis mellifera. We found that Melissodes spp. were dominant in and showed fidelity to MF plants, gathering sunflower pollen efficiently throughout the day. In contrast, honey bees dominated on MS lines, mostly gathered nectar and exhibited high floral constancy, even after interacting with a second visitor. Also, honey bees carried sunflower pollen on their bodies while visiting MS inflorescences. This study highlights the need for a thorough understanding of the factors involved in a pollinator-dependent agroecosystem crop to assess the contribution of native bees on pollination of crops which offer resources spatially separated in two highly dimorphic parental lines.


Assuntos
Abelhas/fisiologia , Comportamento Animal/fisiologia , Helianthus/fisiologia , Animais , Abelhas/classificação , Produtos Agrícolas/parasitologia , Helianthus/parasitologia , Inflorescência/parasitologia , Inflorescência/fisiologia , Polinização
8.
Plant Dis ; 103(10): 2498-2504, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31453746

RESUMO

Downy mildew is a yield-limiting disease of sunflower, caused by the pathogen Plasmopara halstedii. Zoospore infection of root tissue shortly after planting results in systemic infection, causing postemergence damping off or severe stunting and head sterility. Although fungicide-applied seed treatments can be an effective management tool, the pathogen is resistant to phenylamide fungicides in many growing regions, and other available fungicides have limited efficacy. Oxathiapiprolin, the first member of the piperidinyl thiazole isoxazoline fungicides, was evaluated for efficacy on downy mildew in field trials conducted from 2011 to 2015 in North Dakota. Throughout the course of the study, the rate range was narrowed from active ingredient (a.i.) at 0.45 to 116.0 µg a.i. seed-1 to an optimal effective rate of 9.37 to 18.75 µg a.i. seed-1. Within that optimal range, the downy mildew incidence of sunflower planted with oxathiapiprolin-treated seed was significantly lower than the incidence in the nontreated sunflower in all 11 trials with disease pressure. Additionally, downy mildew incidence of sunflower planted with oxathiapiprolin-treated seed was significantly lower than sunflower planted with competitive commercially available fungicide-treated seed in 10 of those 11 trials. The use of oxathiapiprolin by sunflower growers is likely to reduce disease incidence and subsequent yield loss to downy mildew.


Assuntos
Helianthus , Hidrocarbonetos Fluorados , Oomicetos , Doenças das Plantas , Pirazóis , Antiparasitários/farmacologia , Helianthus/parasitologia , Hidrocarbonetos Fluorados/farmacologia , North Dakota , Oomicetos/efeitos dos fármacos , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Pirazóis/farmacologia , Sementes/química
9.
Plant Sci ; 271: 100-107, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29650147

RESUMO

Sunflower broomrape (Orobanche cumana) is a root holoparasitic plant causing major damage to sunflower (Helianthus annuus L.). Parasite infection initiates source-sink relations between the parasite (sink) and the host (source), allocating carbohydrates, water and nutrients to the parasite. The primary aim of the current study was to explore responses of sunflower to broomrape parasitism, specifically to examine alternations in leaf area, leaf mass per area (LMA), mesophyll structure and root hydraulic conductivity. Leaf changes revealed modifications similar to described previously in shade adapted plants, causing larger and thinner leaves. These traits were accompanied with significantly higher root hydraulics. These changes were caused by carbohydrate depletion due to source-sink relationships between the host and parasite. An Imazapic herbicide (ALS inhibitor) was used for controlling broomrape attachments and by to investigate the plasticity of the traits found. Broomrape infected plants which were treated with Imazapic had leaves similar to non-infected plants, including mesophyll structure and carbon assimilation rates. These results demonstrated source-sink effects of broomrape which cause a low-light-like acclimation behavior which is reversible.


Assuntos
Carbono/metabolismo , Helianthus/parasitologia , Orobanche/metabolismo , Folhas de Planta/parasitologia , Helianthus/anatomia & histologia , Helianthus/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Água/metabolismo
10.
J Basic Microbiol ; 58(3): 217-226, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29380873

RESUMO

The insect gut has been the house of many taxonomically and physiologically diverse groups of microbial colonizers as symbionts and commensals, which are evolving to support the physiological requirement of insects. Lepidoptera is one of the important family of class hexapoda, comprising agriculture insect pest Spodoptera litura and Spilosoma obliqua. Information on gut microbiota and their functional role in these insects was meager to elucidate the wide-ranging survivalist mechanisms. In this context, we analyzed the composition, diversity and functional role of gut bacteria in S. litura and S. obliqua collected from soybean and sunflower crops, respectively, using Next Generation Sequencing of 16S rRNA. A total of 3427 and 206 Operation Taxonomic Units (OTUs) were identified in S. litura and S. obliqua gut metagenome, respectively. Highest number of sequences were annotated to unclassified bacteria (34%), followed by Proteobacteria (27%), and Chlorobi (14%) in S. litura, while S. obliqua has significant representation of Firmicutes (48%), followed by Bacteroidetes (20%), and unclassified bacteria (11%). Functionality of both metagenomes revealed, high abundance of ammonia oxidizers (20.1 58.0%) followed by relative abundance of detoxifying processes - dehalogenation (17.4-41.2%) and aromatic hydrocarbons degradation (1.1-3.1%). This study highlights the significance of the inherent microbiome of two defoliators in shaping the metagenome for nutrition and detoxifying the chemical molecules, and opens an avenue for exploring role of insect gut bacteria in host selection, metabolic endurance of insecticides and synergistic or agonistic mechanisms inside gut of insects feeding on insect-resistant biotech crops.


Assuntos
Bactérias/classificação , Bactérias/genética , Biota , Lepidópteros/microbiologia , Animais , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Trato Gastrointestinal/microbiologia , Helianthus/parasitologia , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Glycine max/parasitologia
11.
Avian Dis ; 61(3): 311-315, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28956991

RESUMO

Trichomonas gallinae has emerged worldwide as a cause of mortality in songbirds (passerines). The congregation of numerous birds, including the reservoir hosts, pigeons and doves (columbids), at backyard feeding and watering sources has been suggested as a potential driver for the outbreaks. Evidence supporting a role for water in transmission has been established, but the role of birdseed in the transmission of trichomoniasis remained to be investigated. We assessed the survival of T. gallinae in three commercial birdseeds (mixed seed, black-oil sunflower seed, and niger seed) routinely used to attract passerine birds to local properties. Trichomonad suspensions were inoculated (low dose: 1 × 103; high dose: 1 × 105) into each of the three seed types in petri dishes, using both dry and moist (water-soaked) conditions, in triplicate. Petri dishes were incubated at 37 C and monitored for T. gallinae survival for 48 hr by wet-mount microscopy and by InPouch™ TF medium culture for 10 days. Surviving trichomonads were not detected in any of the dry birdseed treatments. In moist conditions, however, trichomonads were found to survive ≤24 hr in all three seed types and ≤48 hr in the mixed seed that contained organic debris. We demonstrate that T. gallinae has the ability to survive in moist birdseed, which suggests that public bird-feeding sites may play a significant role in the transmission of trichomoniasis.


Assuntos
Ração Animal/parasitologia , Doenças das Aves/transmissão , Sementes/parasitologia , Tricomoníase/veterinária , Trichomonas/fisiologia , Animais , Asteraceae/parasitologia , Doenças das Aves/parasitologia , Helianthus/parasitologia , Tricomoníase/parasitologia , Tricomoníase/transmissão
12.
Proteomics ; 17(13-14)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28618117

RESUMO

Orobanche cumana is an obligate root parasite causing severe damage to many economically important crops, including sunflowers worldwide. For efficient control measures, it is necessary to understand the resistant mechanism during interaction at molecular level. The present study emphasizes on comparative proteomics to investigate the mechanistic basis of compatible and incompatible interaction of O. cumana with resistant (JY207) and susceptible (TK0409) sunflowers. More than 3500 proteins were identified from two cultivars by iTRAQ analysis. Identified proteins associated with general functions, posttranslational modification, energy production and conversion, carbohydrate transport and metabolism, and signal transduction mechanisms were the most represented category of induced proteins in both cultivars. The resistant interaction was characterized by alteration of defense-related proteins involved in recognition of parasites, accumulation of pathogenesis-related proteins, biosynthesis of lignin, and detoxification of toxic metabolites in JY207 after inoculation. The susceptible interaction was characterized by decreased abundance of proteins involved in biosynthesis and signaling of plant growth regulators including auxin, gibberellin, brassinosteroid, and ethylene in TK0409 after inoculation. The present study provides comprehensive details of proteins and differential modulation of pathways regulated under compatible and incompatible interaction, allowing the identification of important molecular components for development of sustainable resistance against this parasite.


Assuntos
Helianthus/imunologia , Orobanche/crescimento & desenvolvimento , Orobanche/imunologia , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Proteômica/métodos , Resistência à Doença , Helianthus/crescimento & desenvolvimento , Helianthus/parasitologia , Interações Hospedeiro-Parasita , Marcação por Isótopo , Orobanche/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/parasitologia , Espectrometria de Massas em Tandem/métodos
13.
Pest Manag Sci ; 73(2): 380-388, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27199092

RESUMO

BACKGROUND: Models describing the effects of climate change on arthropod pest ecology are needed to help mitigate and adapt to forthcoming changes. Challenges arise because climate data are at resolutions that do not readily synchronize with arthropod biology. Here we explain how multiple sources of climate and weather data can be synthesized to quantify the effects of climate change on pest phenology. RESULTS: Predictions of phenological events differ substantially between models that incorporate scale-appropriate temperature variability and models that do not. As an illustrative example, we predicted adult emergence of a pest of sunflower, the sunflower stem weevil Cylindrocopturus adspersus (LeConte). Predictions of the timing of phenological events differed by an average of 11 days between models with different temperature variability inputs. Moreover, as temperature variability increases, developmental rates accelerate. CONCLUSION: Our work details a phenological modeling approach intended to help develop tools to plan for and mitigate the effects of climate change. Results show that selection of scale-appropriate temperature data is of more importance than selecting a climate change emission scenario. Predictions derived without appropriate temperature variability inputs will likely result in substantial phenological event miscalculations. Additionally, results suggest that increased temperature instability will lead to accelerated pest development. © 2016 Society of Chemical Industry.


Assuntos
Mudança Climática , Temperatura , Gorgulhos/crescimento & desenvolvimento , Animais , Previsões , Helianthus/parasitologia , Modelos Teóricos , Método de Monte Carlo , Tempo (Meteorologia)
14.
ScientificWorldJournal ; 2014: 150432, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25143963

RESUMO

Orobanche cumana is a holoparasitic plant naturally distributed from central Asia to south-eastern Europe, where it parasitizes wild Asteraceae species. It is also an important parasitic weed of sunflower crops. The objective of this research was to investigate genetic diversity, population structure, and virulence on sunflower of O. cumana populations parasitizing wild plants in eastern Bulgaria. Fresh tissue of eight O. cumana populations and mature seeds of four of them were collected in situ on wild hosts. Genetic diversity and population structure were studied with SSR markers and compared to weedy populations. Two main gene pools were identified in Bulgarian populations, with most of the populations having intermediate characteristics. Cross-inoculation experiments revealed that O. cumana populations collected on wild species possessed similar ability to parasitize sunflower to those collected on sunflower. The results were explained on the basis of an effective genetic exchange between populations parasitizing sunflower crops and those parasitizing wild species. The occurrence of bidirectional gene flow may have an impact on wild populations, as new physiological races continuously emerge in weedy populations. Also, genetic variability of wild populations may favour the ability of weedy populations to overcome sunflower resistance mechanisms.


Assuntos
Orobanchaceae/genética , Orobanchaceae/fisiologia , Bulgária , Fluxo Gênico , Helianthus/parasitologia , Orobanchaceae/classificação
15.
PLoS One ; 7(11): e49273, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23145139

RESUMO

Broomrapes (Orobanche and Phelipanche spp) are parasitic plants responsible for important crop losses, and efficient procedures to control these pests are scarce. Biological control is one of the possible strategies to tackle these pests. Arbuscular Mycorrhizal (AM) fungi are widespread soil microorganisms that live symbiotically with the roots of most plant species, and they have already been tested on sorghum for their ability to reduce infestation by witchweeds, another kind of parasitic plants. In this work AM fungi were evaluated as potential biocontrol agents against Orobanche cumana, a broomrape species that specifically attacks sunflower. When inoculated simultaneously with O. cumana seeds, AM fungi could offer a moderate level of protection against the broomrape. Interestingly, this protection did not only rely on a reduced production of parasitic seed germination stimulants, as was proposed in previous studies. Rather, mycorrhizal root exudates had a negative impact on the germination of O. cumana induced by germination stimulants. A similar effect could be obtained with AM spore exudates, establishing the fungal origin of at least part of the active compounds. Together, our results demonstrate that AM fungi themselves can lead to a reduced rate of parasitic seed germination, in addition to possible effects mediated by the mycorrhizal plant. Combined with the other benefits of AM symbiosis, these effects make AM fungi an attractive option for biological control of O. cumana.


Assuntos
Agentes de Controle Biológico , Germinação , Micorrizas/fisiologia , Orobanche/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Helianthus/metabolismo , Helianthus/microbiologia , Helianthus/parasitologia , Micorrizas/metabolismo , Orobanche/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Sementes/microbiologia , Esporos Fúngicos/metabolismo , Esporos Fúngicos/fisiologia
16.
Fungal Biol ; 116(9): 976-84, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22954340

RESUMO

Sunflower white blister rust has become an important disease in many countries with intensive cultivation of the important oil crop. The biology of the pathogen is still partly unclear, particular with respect to its sexual reproduction and primary mode of infection. Zoospores released from sporangia of Pustula helianthicola were isolated individually and used for the inoculation of sunflower in order to generate unithallic, genetically homogenous infections. Single zoospore inoculation of young seedlings resulted in mitotic sporulation within subepidermal blisters on cotyledons and true leaves after approximately 2 weeks. Three weeks postinoculation, the infected plants started forming oospores, hence indicating homothallic sexual reproduction of the pathogen. The development of oogonia and antheridia was studied using light and fluorescence microscopy. Oospores were isolated from infected plant tissue and used for infection and germination studies. Microscopic observation of isolated oospores showed germination that formed sessile vesicle-like structures, germ sporangia or only germ tubes. The rate of germination reached approximately 40 %. Germination was not dependant on a resting phase after oospore formation. Oospores applied to the above ground parts of sunflower seedlings lead to infections within a similar time frame as was achieved with mitotic sporangia. The results underline the importance of oospores for primary infection at the beginning of the season and for long-distance dispersal of the pathogen with sunflower seeds contaminated by oospores.


Assuntos
Oomicetos/crescimento & desenvolvimento , Esporos/crescimento & desenvolvimento , Helianthus/parasitologia , Oomicetos/genética , Oomicetos/isolamento & purificação , Doenças das Plantas/parasitologia , Reprodução Assexuada , Esporos/genética , Esporos/isolamento & purificação
17.
Fungal Genet Biol ; 49(10): 847-55, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22789868

RESUMO

The sunflower downy mildew pathogen Plasmopara halstedii is an invasive plant pathogen in Europe of American origin. Despite efforts to produce resistant host varieties, nationwide monitoring in France has revealed the rapid emergence of new virulent races increasing the number from one founder identified in 1966 to as many as 14 today. We have genotyped 146 samples (including all 14 races) using 13 nuclear and one mtDNA marker. Samples of the same race were found to share alleles/mtDNA haplotype and the two most common races had individuals with multiple matching genotypes. Cluster analyses confirmed that the samples form three groups to which races strongly adhere. Clusters were highly differentiated (F(ST) 0.65) and characterised by high inbreeding coefficients. Despite this, samples of recently emergent races, including six that are unique to France had mixed ancestry between the groups suggesting they have arisen in situ due to hybridisation. Five such samples also had conflicting mtDNA and nuclear DNA profiles. This demonstrates that multiple introductions have aided the establishment of this pathogen in France, and suggests recombination facilitated by these introductions is driving the emergence of new and endemic races in response to host resistance.


Assuntos
Helianthus/parasitologia , Hibridização Genética/genética , Oomicetos/patogenicidade , Doenças das Plantas/parasitologia , Alelos , Análise por Conglomerados , DNA/genética , DNA Mitocondrial/genética , Resistência à Doença , Monitoramento Ambiental , França , Marcadores Genéticos/genética , Estruturas Genéticas , Variação Genética , Genótipo , Geografia , Haplótipos , Espécies Introduzidas , Tipagem de Sequências Multilocus , Oomicetos/genética , Oomicetos/fisiologia , Fenótipo , Virulência
18.
BMC Genomics ; 12: 498, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21988821

RESUMO

BACKGROUND: Downy mildew in sunflowers (Helianthus annuus L.) is caused by the oomycete Plasmopara halstedii (Farl.) Berlese et de Toni. Despite efforts by the international community to breed mildew-resistant varieties, downy mildew remains a major threat to the sunflower crop. Very few genomic, genetic and molecular resources are currently available to study this pathogen. Using a 454 sequencing method, expressed sequence tags (EST) during the interaction between H. annuus and P. halstedii have been generated and a search was performed for sites in putative effectors to show polymorphisms between the different races of P. halstedii. RESULTS: A 454 pyrosequencing run of two infected sunflower samples (inbred lines XRQ and PSC8 infected with race 710 of P. halstedii, which exhibit incompatible and compatible interactions, respectively) generated 113,720 and 172,107 useable reads. From these reads, 44,948 contigs and singletons have been produced. A bioinformatic portal, HP, was specifically created for in-depth analysis of these clusters. Using in silico filtering, 405 clusters were defined as being specific to oomycetes, and 172 were defined as non-specific oomycete clusters. A subset of these two categories was checked using PCR amplification, and 86% of the tested clusters were validated. Twenty putative RXLR and CRN effectors were detected using PSI-BLAST. Using corresponding sequences from four races (100, 304, 703 and 710), 22 SNPs were detected, providing new information on pathogen polymorphisms. CONCLUSIONS: This study identified a large number of genes that are expressed during H. annuus/P. halstedii compatible or incompatible interactions. It also reveals, for the first time, that an infection mechanism exists in P. halstedii similar to that in other oomycetes associated with the presence of putative RXLR and CRN effectors. SNPs discovered in CRN effector sequences were used to determine the genetic distances between the four races of P. halstedii. This work therefore provides valuable tools for further discoveries regarding the H. annuus/P. halstedii pathosystem.


Assuntos
Helianthus/genética , Oomicetos/genética , Polimorfismo de Nucleotídeo Único , Transcriptoma , Sequência de Aminoácidos , Análise por Conglomerados , Mapeamento de Sequências Contíguas , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Helianthus/parasitologia , Dados de Sequência Molecular , Alinhamento de Sequência , Fatores de Tempo
19.
J Econ Entomol ; 104(4): 1236-44, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21882688

RESUMO

Neotephritisfinalis (Loew) (Diptera: Tephritidae), and sunflower bud moth, Suleima helianthana (Riley) (Lepidoptera: Tortricidae) are major head-infesting insect pests of cultivated sunflower (Helianthus annuus L.). Planting date was evaluated as a cultural pest management strategy for control of N. finalis and S. helianthana in several production regions of North Dakota during 2009 and 2010. Results of the nine site-year study revealed that late planting date (early to mid-June) reduced damage ratings and percentage of damaged heads for N. finalis compared with early planting dates (mid- to late May). Visual observations of adult N. finalis found that the majority of flies were found in the early planted sunflower (78.2%) compared with the late planted sunflower (21.8%). Late planting date also reduced the percentage of S. helianthana damaged heads compared with early planting dates. Yield losses were reduced with late planting date when populations of N. finalis and S. helianthana were high enough to cause damage. Results of this study showed that delayed planting is an effective integrated pest management strategy that can reduce head damage caused by N. finalis and S. helianthana and mitigate yield losses.


Assuntos
Helianthus/parasitologia , Interações Hospedeiro-Parasita , Mariposas/fisiologia , Sementes/parasitologia , Tephritidae/fisiologia , Agricultura/métodos , Animais , Biomassa , North Dakota , Densidade Demográfica , Fatores de Tempo
20.
An Acad Bras Cienc ; 82(4): 1127-36, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21152781

RESUMO

Chlosyne lacinia saundersii is one of the most important pests of sunflower and it is the main target of insecticides applications. Larvae were collected in Londrina (PR), Santa Maria (RS), Dourados (MS), Ribeirão Preto (SP), Brasília (DF), Barreiras (BA), Uberaba (MG) and Vilhena (RO). Genomic DNA was extracted and amplified with ten-mer primers, which produced 101 loci. The size of the RAPD amplicons ranged from 180 to 2564 bp. Polymorphism among populations ranged from 31% to 67%, with the highest polymorphisms of 57% and 67% being detected in Uberaba and Vilhena populations, respectively. Populations with the highest similarity determined with Dice coefficient were from Ribeirão Preto and Barreiras, while insects from Londrina showed the highest similarity among them. Gene flow of C. lacinia saundersii 1.1 was lower than those previously observed for the noctuid Anticarsia gemmatalis Hübner, suggesting that C. lacinia saundersii populations are more isolated than the ones of this noctuid. Through the Analysis of Molecular Variance (AMOVA), RAPD variance was 33.64% among geographical populations and 66.36% within populations. These results suggest that populations of C. lacinia saundersii are genetically structured.


Assuntos
Variação Genética/genética , Helianthus/parasitologia , Lepidópteros/genética , Animais , Brasil , Marcadores Genéticos/genética , Lepidópteros/classificação , Filogeografia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA