Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Immunol ; 393-394: 104779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37935074

RESUMO

Inflammatory bowel diseases are associated with dysregulated inflammatory immune responses in the gastrointestinal tract. We found that deficiencies of both IL-4 receptor alpha chain (IL-4Rα) and IL-10 in BALB/c mice (IL-4Rα × IL-10 KO mice) highly induced spontaneous rectal prolapse and diarrhea. These mice also exhibited severe colitis in their cecum and colon and marked elevation of serum proinflammatory cytokines including TNFα and IFNγ. These pathologies were transmittable with their cecal contents containing Helicobacter spp. Their mesenteric LN cells produced TNFα and IFNγ in response to soluble H. hepaticus antigens and high titers of H. hepaticus-specific serum IgG were also detected. These results suggested the important function of IL-4Rα signaling in controlling the intestinal inflammation and the susceptibility to intestinal microbes including H. hepaticus. Therefore, these IL-4Rα × IL-10 KO mice potentially provide the significant murine model for clarifying the causes and control of spontaneous colitis and intestinal inflammation.


Assuntos
Colite , Interleucina-10 , Receptores de Interleucina-4 , Animais , Camundongos , Colite/genética , Helicobacter hepaticus/fisiologia , Inflamação/patologia , Interleucina-10/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-4/genética , Fator de Necrose Tumoral alfa
2.
Immunity ; 54(12): 2812-2824.e4, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34861182

RESUMO

The composition of the intestinal microbiota is associated with both the development of tumors and the efficacy of anti-tumor immunity. Here, we examined the impact of microbiota-specific T cells in anti-colorectal cancer (CRC) immunity. Introduction of Helicobacter hepaticus (Hhep) in a mouse model of CRC did not alter the microbial landscape but increased tumor infiltration by cytotoxic lymphocytes and inhibited tumor growth. Anti-tumor immunity was independent of CD8+ T cells but dependent upon CD4+ T cells, B cells, and natural killer (NK) cells. Hhep colonization induced Hhep-specific T follicular helper (Tfh) cells, increased the number of colon Tfh cells, and supported the maturation of Hhep+ tumor-adjacent tertiary lymphoid structures. Tfh cells were necessary for Hhep-mediated tumor control and immune infiltration, and adoptive transfer of Hhep-specific CD4+ T cells to Tfh cell-deficient Bcl6fl/flCd4Cre mice restored anti-tumor immunity. Thus, introduction of immunogenic intestinal bacteria can promote Tfh-associated anti-tumor immunity in the colon, suggesting therapeutic approaches for the treatment of CRC.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Colo/patologia , Neoplasias Colorretais/imunologia , Microbioma Gastrointestinal/imunologia , Infecções por Helicobacter/imunologia , Helicobacter hepaticus/fisiologia , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células T Auxiliares Foliculares/imunologia , Estruturas Linfoides Terciárias/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo
3.
Mucosal Immunol ; 10(5): 1178-1189, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28145441

RESUMO

Epidemiological and experimental observations suggest that chronic microbial colonization can impact the immune control of other unrelated pathogens contracted in a concomitant or sequential manner. Possible interactions between Mycobacterium tuberculosis infection and persistence of other bacteria have scarcely been investigated. Here we demonstrated that natural colonization of the digestive tract with Helicobacter hepaticus in mice is concomitant with modification of the gut microbiota, subclinical inflammation, and drastic impairment of immune control of the growth of subsequently administered M. tuberculosis, which results in severe lung tissue injury. Our results provided insights upon the fact that this prior H. hepaticus colonization leads to failures in the mechanisms that could prevent the otherwise balanced cross-talk between M. tuberculosis and the immune system. Such disequilibrium ultimately leads to the inhibition of control of mycobacterial growth, outbreak of inflammation, and lung pathology. Among the dysregulated immune signatures, we noticed a correlation between the detrimental lung injury and the accumulation of activated T-lymphocytes. Our findings suggest that the impact of prior Helicobacter spp. colonization and subsequent M. tuberculosis parasitism might be greater than previously thought, which is a key point given that both species are among the most frequent invasive bacteria in human populations.


Assuntos
Microbioma Gastrointestinal/imunologia , Infecções por Helicobacter/imunologia , Helicobacter hepaticus/fisiologia , Inflamação/imunologia , Pulmão/imunologia , Mycobacterium tuberculosis/fisiologia , Linfócitos T/imunologia , Tuberculose/imunologia , Animais , Carga Bacteriana , Interações Hospedeiro-Patógeno , Humanos , Pulmão/microbiologia , Pulmão/patologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL
4.
Biosensors (Basel) ; 5(3): 562-76, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26262647

RESUMO

Current bacterial detection techniques are relatively slow, require bulky instrumentation, and usually require some form of specialized training. The gold standard for bacterial detection is culture testing, which can take several days to receive a viable result. Therefore, simpler detection techniques that are both fast and sensitive could greatly improve bacterial detection and identification. Here, we present a new method for the detection of the bacteria Helicobacter hepaticus using whispering-gallery mode (WGM) optical microcavity-based sensors. Due to minimal reflection losses and low material adsorption, WGM-based sensors have ultra-high quality factors, resulting in high-sensitivity sensor devices. In this study, we have shown that bacteria can be non-specifically detected using WGM optical microcavity-based sensors. The minimum detection for the device was 1 × 10(4) cells/mL, and the minimum time of detection was found to be 750 s. Given that a cell density as low as 1 × 10(3) cells/mL for Helicobacter hepaticus can cause infection, the limit of detection shown here would be useful for most levels where Helicobacter hepaticus is biologically relevant. This study suggests a new approach for H. hepaticus detection using label-free optical sensors that is faster than, and potentially as sensitive as, standard techniques.


Assuntos
Técnicas Biossensoriais , Helicobacter hepaticus/fisiologia , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/microbiologia , Dispositivos Ópticos , Sensibilidade e Especificidade
5.
Vaccine ; 33(15): 1808-14, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25748336

RESUMO

BCG, the only licensed vaccine against tuberculosis (TB), provides geographically variable protection, an effect ascribed to exposure to environmental mycobacteria (EM). Here we show that altering the intestinal microbiota of mice by early-life infection with the commensal bacterium Helicobacter hepaticus (Hh) increases their susceptibility to challenge with Mycobacterium tuberculosis (Mtb). Furthermore Hh-infected mice immunised parenterally with the recombinant subunit vaccine, human adenovirus type 5 expressing the immunodominant antigen 85A of Mtb (Ad85A), display a reduced lung immune response and protection against Mtb challenge is also reduced. Expression of interleukin 10 (IL10) messenger RNA is increased in the colon of Hh infected mice. Treatment of Hh-infected Ad85A-immunised mice with anti-IL10 receptor antibody, following challenge with Mtb, restores the protective effect of the vaccine. These data show for the first time that alteration of the intestinal microbiota by addition of a single commensal organism can profoundly influence protection induced by a TB subunit vaccine via an IL10-dependent mechanism, a result with implications for the deployment of such vaccines in the field.


Assuntos
Microbioma Gastrointestinal , Infecções por Helicobacter/imunologia , Helicobacter hepaticus/fisiologia , Interleucina-10/imunologia , Vacinas contra a Tuberculose/imunologia , Adenovírus Humanos/genética , Administração Intranasal , Animais , Antígenos de Bactérias/imunologia , Carga Bacteriana , Colo/imunologia , Infecções por Helicobacter/microbiologia , Helicobacter hepaticus/crescimento & desenvolvimento , Humanos , Interleucina-10/genética , Pulmão/imunologia , Pulmão/patologia , Pulmão/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/patogenicidade , Tuberculose/prevenção & controle , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/imunologia
6.
Helicobacter ; 20(3): 223-30, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25582431

RESUMO

BACKGROUND AND AIMS: The biliary tract cancer or cholangiocarcinoma (CCA) represents the sixth leading cause of gastrointestinal tumors in the Western world, and mortality varies across the world, with regions such as Chile, Thailand, Japan, and northeastern India presenting the highest rates. CCA may develop in the bile duct, gallbladder, or ampulla of Vater; and risk factors include obesity, parity, genetic background, geographical and environmental factors. Inflammation induced by bacterial infections might play a role in the pathogenesis of CCA. In this work, we investigated whether there is an association between extrahepatic cholangiocarcinoma (ECCA) and infection with S. typhi, H. hepaticus, or H. bilis in a Mexican population. METHODS: A total of 194 patients were included and divided into 91 patients with benign biliary pathology (controls) and 103 with ECCA (cases). Tumor samples were taken during endoscopic retrograde cholangiopancreatography by biliary brushing, followed by DNA extraction and PCR testing for infections. RESULTS: We found that 44/103 cases were positive for H. bilis, compared with 19/91 controls (p = 0.002; OR 2.83, 95% CI 1.49-5.32), and when analyzed by sub-site, H. bilis infection was significantly more associated with cancer in the common bile duct (p = 0.0005; OR 3.56, 95% CI 1.77-7.17). In contrast, H. hepaticus infection was not different between cases (17/103) and controls (13/91) (p = 0.82; OR 1.19, 95% CI 0.54-2.60). None of the samples were positive for S. typhi infection. CONCLUSION: In conclusion, infection with H. bilis but neither H. Hepaticus nor S. typhi was significantly associated with ECCA, particularly with tumors located in the common bile duct.


Assuntos
Neoplasias dos Ductos Biliares/microbiologia , Neoplasias do Sistema Biliar/microbiologia , Colangiocarcinoma/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter hepaticus/fisiologia , Helicobacter/fisiologia , Adulto , Idoso , Ductos Biliares Extra-Hepáticos/microbiologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , México , Pessoa de Meia-Idade
7.
PLoS One ; 9(6): e99713, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24932686

RESUMO

Helicobacter hepaticus can lead to chronic hepatitis and hepatocellular carcinoma in certain strains of mice. Until now the pathogenic role of Helicobacter species on human liver tissue is still not clarified though Helicobacter species identification in human liver cancer was successful in case controlled studies. Therefore we established an in vitro model to investigate the interaction of primary human hepatocytes (PHH) with Helicobacter hepaticus. Successful co-culturing of PHH with Helicobacter hepaticus was confirmed by visualization of motile bacteria by two-photon-microscopy. Isolated human monocytes were stimulated with PHH conditioned media. Changes in mRNA expression of acute phase cytokines and proteins in PHH and stimulated monocytes were determined by Real-time PCR. Furthermore, cytokines and proteins were analyzed in PHH culture supernatants by ELISA. Co-cultivation with Helicobacter hepaticus induced mRNA expression of Interleukin-1 beta (IL-1ß), Tumor necrosis factor-alpha, Interleukin-8 (IL-8) and Monocyte chemotactic protein-1 (MCP-1) in PHH (p<0.05) resulting in a corresponding increase of IL-8 and MCP-1 concentrations in PHH supernatants (p<0.05). IL-8 and IL-1ß mRNA expression was induced in monocytes stimulated with Helicobacter hepaticus infected PHH conditioned media (p<0.05). An increase of Cyclooxygenase-2 mRNA expression was observed, with a concomitant increase of prostaglandin E2 concentration in PHH supernatants at 24 and 48 h (p<0.05). In contrast, at day 7 of co-culture, no persistent elevation of cytokine mRNA could be detected. High expression of intercellular adhesion molecule-1 on PHH cell membranes after co-culture was shown by two-photon-microscopy and confirmed by flow-cytometry. Finally, expression of Cytochrome P450 3A4 and albumin mRNA were downregulated, indicating an impairment of hepatocyte synthesis function by Helicobacter hepaticus presence. This is the first in vitro model demonstrating a pathogenic effect of a Helicobacter spp. on human liver cells, resulting in an inflammatory response with increased synthesis of inflammatory mediators and consecutive monocyte activation.


Assuntos
Helicobacter hepaticus/fisiologia , Hepatócitos/microbiologia , Hepatócitos/patologia , Inflamação/patologia , Aspartato Aminotransferases/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Ciclo-Oxigenase 2/biossíntese , Citocinas/metabolismo , Dinoprostona/biossíntese , Indução Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Helicobacter hepaticus/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
PLoS One ; 8(8): e70783, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951007

RESUMO

The mouse pathobiont Helicobacter hepaticus can induce typhlocolitis in interleukin-10-deficient mice, and H. hepaticus infection of immunodeficient mice is widely used as a model to study the role of pathogens and commensal bacteria in the pathogenesis of inflammatory bowel disease. C57BL/6J Il10(-/-) mice kept under specific pathogen-free conditions in two different facilities (MHH and MIT), displayed strong differences with respect to their susceptibilities to H. hepaticus-induced intestinal pathology. Mice at MIT developed robust typhlocolitis after infection with H. hepaticus, while mice at MHH developed no significant pathology after infection with the same H. hepaticus strain. We hypothesized that the intestinal microbiota might be responsible for these differences and therefore performed high resolution analysis of the intestinal microbiota composition in uninfected mice from the two facilities by deep sequencing of partial 16S rRNA amplicons. The microbiota composition differed markedly between mice from both facilities. Significant differences were also detected between two groups of MHH mice born in different years. Of the 119 operational taxonomic units (OTUs) that occurred in at least half the cecum or colon samples of at least one mouse group, 24 were only found in MIT mice, and another 13 OTUs could only be found in MHH samples. While most of the MHH-specific OTUs could only be identified to class or family level, the MIT-specific set contained OTUs identified to genus or species level, including the opportunistic pathogen, Bilophila wadsworthia. The susceptibility to H. hepaticus-induced colitis differed considerably between Il10(-/-) mice originating from the two institutions. This was associated with significant differences in microbiota composition, highlighting the importance of characterizing the intestinal microbiome when studying murine models of IBD.


Assuntos
Colite/microbiologia , Suscetibilidade a Doenças/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter hepaticus/patogenicidade , Interleucina-10/imunologia , Microbiota/imunologia , Animais , Ceco/imunologia , Ceco/microbiologia , Ceco/patologia , Colite/imunologia , Colite/patologia , Colo/imunologia , Colo/microbiologia , Colo/patologia , DNA Complementar/classificação , DNA Complementar/genética , Suscetibilidade a Doenças/imunologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/patologia , Helicobacter hepaticus/fisiologia , Interleucina-10/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Am J Physiol Gastrointest Liver Physiol ; 305(8): G585-92, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23989006

RESUMO

Enterohepatic helicobacter species (EHS) infect the intestinal tract and biliary tree, triggering intestinal and hepatic disorders. Helicobacter hepaticus, the prototypic murine EHS, is also associated with inflammation. Necrotizing enterocolitis (NEC) is a devastating disease of premature infants. The cause of NEC is not fully understood, but anomalies of bacterial colonization (dysbiosis) are thought to play an important role in disease onset. To evaluate the effect of H. hepaticus infection on the development of NEC, premature formula-fed rats were kept either in H. hepaticus-free conditions or colonized with H. hepaticus; both groups were exposed to asphyxia and cold stress. The incidence of NEC, expression of Toll-like receptors (TLRs), production of cytokines and mucins, and presence of autophagy regulators were evaluated at the site of injury. H. hepaticus infection increased the incidence of NEC from 39 to 71% and significantly increased levels of TLR4 receptor, expression of proinflammatory cytokines CXCL1, IL-1ß, IL-12, and IL-23, and altered activation of autophagy. H. hepaticus induces inflammation and increases the incidence and severity of experimental NEC; this is consistent with observations in neonates of blooms of proinflammatory microbes just before the onset of NEC. Future studies using rodent NEC models should include testing for H. hepaticus infection. Further studies in neonates of early identification and/or diminution of proinflammatory microbes may be beneficial in decreasing the incidence of NEC.


Assuntos
Enterocolite Necrosante/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter hepaticus/fisiologia , Animais , Autofagia , Citocinas/genética , Citocinas/metabolismo , Enterocolite Necrosante/patologia , Feminino , Regulação da Expressão Gênica/fisiologia , Infecções por Helicobacter/patologia , Íleo/metabolismo , Íleo/microbiologia , Íleo/patologia , Inflamação/metabolismo , Inflamação/patologia , Gravidez , RNA Bacteriano/isolamento & purificação , Ratos , Ratos Sprague-Dawley
11.
Cell Microbiol ; 15(6): 992-1011, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23278999

RESUMO

The enterohepatic Epsilonproteobacterium Helicobacter hepaticus persistently colonizes the intestine of mice and causes chronic inflammatory symptoms in susceptible mouse strains. The bacterial factors causing intestinal inflammation are poorly characterized. A large genomic pathogenicity island, HHGI1, which encodes components of a type VI secretion system (T6SS), was previously shown to contribute to the colitogenic potential of H. hepaticus. We have now characterized the T6SS components Hcp, VgrG1, VgrG2 and VgrG3, encoded on HHGI1, including the potential impact of the T6SS on intestinal inflammation in a mouse T-cell transfer model. The H. hepaticus T6SS components were expressed during the infection and secreted in a T6SS-dependent manner, when the bacteria were cultured either in the presence or in the absence of mouse intestinal epithelial cells. Mutants deficient in VgrG1 displayed a significantly lower colitogenic potential in T-cell-transferred C57BL/6 Rag2(-/-) mice, despite an unaltered ability to colonize mice persistently. Intestinal microbiota analyses demonstrated only minor changes in mice infected with wild-typeH. hepaticus as compared with mice infected with VgrG1-deficient isogenic bacteria. In addition, competitive assays between both wild-type and T6SS-deficient H. hepaticus, and between wild-type H. hepaticus and Campylobacter jejuni or Enterobacteriaceae species did not show an effect of the T6SS on interbacterial competitiveness. Therefore, we suggest that microbiota alterations did not play a major role in the changes of pro-inflammatory potential mediated by the T6SS. Cellular innate pro-inflammatory responses were increased by the secreted T6SS proteins VgrG1 and VgrG2. We therefore concluded that the type VI secretion component VgrG1 can modulate and specifically exacerbate the innate pro-inflammatory effect of the chronic H. hepaticus infection.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Colite/microbiologia , Infecções por Helicobacter/fisiopatologia , Helicobacter hepaticus/fisiologia , Helicobacter hepaticus/patogenicidade , Animais , Proteínas de Bactérias/fisiologia , Campylobacter jejuni/fisiologia , Células Cultivadas , Colite/metabolismo , Colite/fisiopatologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Enterobacteriaceae/fisiologia , Infecções por Helicobacter/metabolismo , Helicobacter hepaticus/genética , Técnicas In Vitro , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética
12.
J Exp Med ; 209(7): 1309-24, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22734048

RESUMO

Chronic inflammation of the intestine has been associated with an elevated risk of developing colorectal cancer. Recent association studies have highlighted the role of genetic predisposition in the etiology of colitis and started to unravel its complexity. However, the genetic factors influencing the progression from colon inflammation to tumorigenesis are not known. We report the identification of a genetic interval Hiccs that regulates Helicobacter hepaticus-induced colitis and associated cancer susceptibility in a 129.RAG(-/-) mouse model. The 1.7-Mb congenic interval on chromosome 3, containing eight genes and five microRNAs, renders susceptible mice resistant to colitis and reduces tumor incidence and multiplicity. Bone marrow chimera experiments showed that resistance is conferred by the hematopoietic compartment. Moreover, the Hiccs locus controls the induction of the innate inflammatory response by regulating cytokine expression and granulocyte recruitment by Thy1(+) innate lymphoid cells. Using a tumor-promoting model combining chronic Helicobacter hepaticus infection and the carcinogen azoxymethane, we found that Hiccs also regulates the frequency of colitis-associated neoplasia. Our study highlights the importance of innate immune cells and their genetic configuration in driving progression from inflammation toward cancer and opens the door for analysis of these pathways in human inflammatory disorders and associated cancers.


Assuntos
Colite/genética , Neoplasias Colorretais/genética , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Infecções por Helicobacter/genética , Animais , Azoximetano/toxicidade , Carcinógenos/toxicidade , Mapeamento Cromossômico , Cromossomos de Mamíferos/genética , Colite/imunologia , Colite/microbiologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/microbiologia , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/genética , Resistência à Doença/imunologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Helicobacter hepaticus/imunologia , Helicobacter hepaticus/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Inflamação/genética , Inflamação/imunologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Telômero/genética
13.
World J Gastroenterol ; 16(43): 5395-404, 2010 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21086555

RESUMO

Carcinoma of the gallbladder (CaGB) is the fifth commonest gastrointestinal tract cancer and is endemic in several countries. The interplay of genetic susceptibility, infections, and life style factors has been proposed to be responsible for carcinogenesis of gallbladder. Persistence of infection leading to chronic inflammation, and production of certain toxins and metabolites with carcinogenic potentials, by certain bacteria has been speculated to be involved in the transformation of the gallbladder epithelium. Therefore, any bacteria that have evolved to acquire both of the above carcinogenic mechanisms can cause cancer. Salmonella typhi has been found to be prominently associated with CaGB. Chronic typhoid carriage (persistence) and production of mediators of chronic inflammation and a genotoxic toxin (cytotoxic distending toxin, CdtB) are also known for this bacterium. Furthermore, the natural concentrating function of the gallbladder might amplify the carcinogenic effect of the mediators of carcinogenesis. In addition to S. typhi, certain species of Helicobacter (H. bilis and H. hepaticus) and Escherichia coli have also been implicated in carcinogenesis. As the isolation rate is very poor with the presently available culture techniques, the existence of bacteria in a viable but non-cultivable state is quite likely; therefore, sensitive and specific molecular techniques might reveal the etiological role of bacterial infection in gallbladder carcinogenesis. If bacteria are found to be causing cancers, then eradication of such infections might help in reducing the incidence of some cancers.


Assuntos
Escherichia coli/fisiologia , Neoplasias da Vesícula Biliar/microbiologia , Helicobacter hepaticus/fisiologia , Salmonella typhi/fisiologia , Antibacterianos/uso terapêutico , Toxinas Bacterianas/efeitos adversos , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/prevenção & controle , Infecções por Helicobacter/complicações , Infecções por Helicobacter/prevenção & controle , Humanos , Febre Tifoide/complicações , Febre Tifoide/prevenção & controle
14.
Proc Natl Acad Sci U S A ; 107(33): 14739-44, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20679225

RESUMO

Mutations in the NOD2 gene are strong genetic risk factors for ileal Crohn's disease. However, the mechanism by which these mutations predispose to intestinal inflammation remains a subject of controversy. We report that Nod2-deficient mice inoculated with Helicobacter hepaticus, an opportunistic pathogenic bacterium, developed granulomatous inflammation of the ileum, characterized by an increased expression of Th1-related genes and inflammatory cytokines. The Peyer's patches and mesenteric lymph nodes were markedly enlarged with expansion of IFN-gamma-producing CD4 and CD8 T cells. Rip2-deficient mice exhibited a similar phenotype, suggesting that Nod2 function likely depends on the Rip2 kinase in this model. Transferring wild-type bone marrow cells into irradiated Nod2-deficient mice did not rescue the phenotype. However, restoring crypt antimicrobial function of Nod2-deficient mice by transgenic expression of alpha-defensin in Paneth cells rescued the Th1 inflammatory phenotype. Therefore, through the regulation of intestinal microbes, Nod2 function in nonhematopoietic cells of the small intestinal crypts is critical for protecting mice from a Th1-driven granulomatous inflammation in the ileum. The model may provide insight into Nod2 function relevant to inflammation of ileal Crohn's disease.


Assuntos
Doença de Crohn/imunologia , Infecções por Helicobacter/imunologia , Íleo/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Animais , Doença de Crohn/genética , Doença de Crohn/metabolismo , Feminino , Citometria de Fluxo , Infecções por Helicobacter/microbiologia , Helicobacter hepaticus/imunologia , Helicobacter hepaticus/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Íleo/metabolismo , Íleo/microbiologia , Interferon gama/genética , Interferon gama/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD2/deficiência , Proteína Adaptadora de Sinalização NOD2/genética , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Nódulos Linfáticos Agregados/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Th1/imunologia , Células Th1/metabolismo
15.
Eur J Immunol ; 40(2): 516-24, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19950179

RESUMO

Interactions between the intestinal microflora and host innate immune receptors play a critical role in intestinal homeostasis. Several studies have shown that TLR2 can modulate inflammatory responses in the gut. TLR2 signals enhance tight junction formation and fortify the epithelial barrier, and may play a crucial role in driving acute inflammatory responses towards intestinal bacterial pathogens. In addition, TLR2 agonists can have direct effects on both Th1 cells and Treg. To define the role of TLR2 in the induction and regulation of chronic intestinal inflammation we examined the effects of TLR2 deletion on several complementary models of inflammatory bowel disease. Our results show that TLR2 signals are not required for the induction of chronic intestinal inflammation by either innate or adaptive immune responses. We further show that TLR2(-/-) mice harbor normal numbers of Foxp3(+) Treg that are able to suppress intestinal inflammation as effectively as their WT counterparts. We also did not find any intrinsic role for TLR2 for pathogenic effector T-cell responses in the gut. Thus, in contrast to their role in acute intestinal inflammation and repair, TLR2 signals may have a limited impact on the induction and regulation of chronic intestinal inflammation.


Assuntos
Infecções por Helicobacter/fisiopatologia , Doenças Inflamatórias Intestinais/fisiopatologia , Transdução de Sinais , Receptor 2 Toll-Like/fisiologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Doença Crônica , Feminino , Fatores de Transcrição Forkhead/metabolismo , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Helicobacter hepaticus/fisiologia , Homeostase/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata/imunologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Intestinos/imunologia , Intestinos/microbiologia , Intestinos/patologia , Antígenos Comuns de Leucócito/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Receptor 2 Toll-Like/genética
16.
Eur J Immunol ; 40(2): 318-20, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20039306

RESUMO

There is almost no aspect of the immune response that is not regulated by TLR. Initially described as drivers of the innate immune response to pathogens, it is now clear that the TLR family can also influence most aspects of adaptive immunity, as well as determine how tissue cells interact with microbes in their environment. In particular, the intestine and its immune system must co-exist with an enormous community of commensal bacteria and are also on constant alert against invading pathogens. Unsurprisingly, there is therefore great interest in how TLR might regulate physiological and pathological reactions in the gut. An article in this issue of the European Journal of Immunology addresses this question with some elegant experiments that indicate that TLR2 is not essential for the pathogenesis or T-cell-mediated regulation of different models of inflammatory bowel disease in mice.


Assuntos
Infecções por Helicobacter/fisiopatologia , Doenças Inflamatórias Intestinais/fisiopatologia , Transdução de Sinais , Receptor 2 Toll-Like/fisiologia , Doença Aguda , Animais , Doença Crônica , Fatores de Transcrição Forkhead/metabolismo , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Helicobacter hepaticus/fisiologia , Interações Hospedeiro-Patógeno , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Receptor 2 Toll-Like/genética
17.
J Bacteriol ; 190(19): 6398-408, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18689480

RESUMO

The enterohepatic Helicobacter species Helicobacter hepaticus colonizes the murine intestinal and hepatobiliary tract and is associated with chronic intestinal inflammation, gall stone formation, hepatitis, and hepatocellular carcinoma. Thus far, the role of H. hepaticus motility and flagella in intestinal colonization is unknown. In other, closely related bacteria, late flagellar genes are mainly regulated by the sigma factor FliA (sigma(28)). We investigated the function of the H. hepaticus FliA in gene regulation, flagellar biosynthesis, motility, and murine colonization. Competitive microarray analysis of the wild type versus an isogenic fliA mutant revealed that 11 genes were significantly more highly expressed in wild-type bacteria and 2 genes were significantly more highly expressed in the fliA mutant. Most of these were flagellar genes, but four novel FliA-regulated genes of unknown function were identified. H. hepaticus possesses two identical copies of the gene encoding the FliA-dependent major flagellin subunit FlaA (open reading frames HH1364 and HH1653). We characterized the phenotypes of mutants in which fliA or one or both copies of the flaA gene were knocked out. flaA_1 flaA_2 double mutants and fliA mutants did not synthesize detectable amounts of FlaA and possessed severely truncated flagella. Also, both mutants were nonmotile and unable to colonize mice. Mutants with either flaA gene knocked out produced flagella morphologically similar to those of wild-type bacteria and expressed FlaA and FlaB. flaA_1 mutants which had flagella but displayed reduced motility did not colonize mice, indicating that motility is required for intestinal colonization by H. hepaticus and that the presence of flagella alone is not sufficient.


Assuntos
Proteínas de Bactérias/fisiologia , Infecções por Helicobacter/microbiologia , Helicobacter hepaticus/fisiologia , Fator sigma/fisiologia , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Western Blotting , Flagelina/genética , Helicobacter hepaticus/genética , Helicobacter hepaticus/ultraestrutura , Interações Hospedeiro-Patógeno , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Fator sigma/genética
18.
Cell Host Microbe ; 3(6): 340-1, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18541208

RESUMO

The astonishing density of microbes in the mammalian gut has raised numerous questions, including how such colonization is tolerated in an immunocompetent location. Clearly the organisms perform a beneficial role, but until now the mechanisms have been less than clear. In a recent study in Nature, Mazmanian et al. (2008) reveal the ability of specific moieties on the surface of Bacteroides fragilis to direct the host's immune response.


Assuntos
Infecções por Bacteroides/imunologia , Bacteroides fragilis/imunologia , Interações Hospedeiro-Patógeno , Doenças Inflamatórias Intestinais/imunologia , Polissacarídeos Bacterianos/imunologia , Simbiose , Animais , Infecções por Bacteroides/microbiologia , Bacteroides fragilis/fisiologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Helicobacter hepaticus/imunologia , Helicobacter hepaticus/fisiologia , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Camundongos
19.
Infect Immun ; 76(7): 3037-44, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18458068

RESUMO

Helicobacter hepaticus is a gram-negative, spiral-shaped microaerophilic bacterium associated with chronic intestinal infection leading to hepatitis and colonic and hepatic carcinomas in susceptible strains of mice. In the closely related human pathogen Helicobacter pylori, L-proline is a preferred respiratory substrate and is found at significantly high levels in the gastric juice of infected patients. A previous study of the proline catabolic PutA flavoenzymes from H. pylori and H. hepaticus revealed that Helicobacter PutA generates reactive oxygen species during proline oxidation by transferring electrons from reduced flavin to molecular oxygen. We further explored the preference for proline as a respiratory substrate and the potential impact of proline metabolism on the redox environment in Helicobacter species during host infection by disrupting the putA gene in H. hepaticus. The resulting putA knockout mutant strain was characterized by oxidative stress analysis and mouse infection studies. The putA mutant strain of H. hepaticus exhibited increased proline levels and resistance to oxidative stress relative to that of the wild-type strain, consistent with proline's role as an antioxidant. The significant increase in stress resistance was attributed to higher proline content, as no upregulation of antioxidant genes was observed for the putA mutant strain. The wild-type and putA mutant H. hepaticus strains displayed similar levels of infection in mice, but in mice challenged with the putA mutant strain, significantly reduced inflammation was observed, suggesting a role for proline metabolism in H. hepaticus pathogenicity in vivo.


Assuntos
Proteínas de Bactérias/genética , Helicobacter hepaticus/enzimologia , Helicobacter hepaticus/patogenicidade , Proteínas de Membrana/genética , Estresse Oxidativo/fisiologia , Prolina/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Ceco/microbiologia , Ceco/patologia , Fezes/microbiologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter hepaticus/crescimento & desenvolvimento , Helicobacter hepaticus/fisiologia , Humanos , Fígado/microbiologia , Fígado/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Prolina Oxidase/genética , Virulência
20.
Infect Immun ; 76(5): 1866-76, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18285497

RESUMO

Helicobacter hepaticus causes hepatitis in susceptible strains of mice. Previous studies indicated that A/JCr mice are susceptible and C57BL/6NCr mice are resistant to H. hepaticus-induced hepatitis. We used F1 hybrid mice derived from A/J and C57BL/6 matings to investigate their phenotype and determine their hepatic gene expression profile in response to H. hepaticus infection. F1 hybrid mice, as well as parental A/J and C57BL/6 mice, were divided equally into control and H. hepaticus-infected groups and euthanized at 18 months postinoculation. Hepatic lesions were evaluated histologically and the differential hepatic gene expression in F1 mice was determined by microarray-based global gene expression profiling analysis. H. hepaticus-infected parental strains including A/J and C57BL/6 mice, as well as F1 mice, developed significant hepatitis. Overall, hepatocellular carcinomas or dysplastic liver lesions were observed in 69% of H. hepaticus-infected F1 male mice and H. hepaticus was isolated from hepatic tissues of all F1 mice with liver tumors. Liver tumors, characterized by hepatic steatosis, developed in livers with high hepatitis scores. To identify gene expression specific to H. hepaticus-induced hepatitis and progression to hepatocellular carcinoma in F1 mice, a method using comparative group transcriptome analysis was utilized. The canonical pathway most significantly enriched was immunological disease. Fatty acid synthase and steaoryl-coenzyme A desaturase, the two rate-limiting enzymes in lipogenesis, were upregulated in neoplastic relative to dysplastic livers. This study suggests a synergistic interaction between hepatic steatosis and infectious hepatitis leading to hepatocellular carcinoma. The use of AB6F1 and B6AF1 mice, as well as genetically engineered mice, on a C57BL/6 background will allow studies investigating the role of chronic microbial hepatitis and steatohepatitis in the pathogenesis of liver cancer.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Predisposição Genética para Doença , Infecções por Helicobacter/genética , Hepatite Crônica/genética , Padrões de Herança , Animais , Carcinoma Hepatocelular/microbiologia , Ácido Graxo Sintases/biossíntese , Fígado Gorduroso/patologia , Feminino , Perfilação da Expressão Gênica , Infecções por Helicobacter/complicações , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Helicobacter hepaticus/fisiologia , Hepatite Crônica/complicações , Hepatite Crônica/imunologia , Hepatite Crônica/microbiologia , Fígado/microbiologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Índice de Gravidade de Doença , Estearoil-CoA Dessaturase/biossíntese , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA