Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105704, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309506

RESUMO

Selective gene expression in cells in physiological or pathological conditions is important for the growth and development of organisms. Acetylation of histone H4 at K16 (H4K16ac) catalyzed by histone acetyltransferase 8 (KAT8) is known to promote gene transcription; however, the regulation of KAT8 transcription and the mechanism by which KAT8 acetylates H4K16ac to promote specific gene expression are unclear. Using the lepidopteran insect Helicoverpa armigera as a model, we reveal that the transcription factor FOXO promotes KAT8 expression and recruits KAT8 to the promoter region of autophagy-related gene 8 (Atg8) to increase H4 acetylation at that location, enabling Atg8 transcription under the steroid hormone 20-hydroxyecdysone (20E) regulation. H4K16ac levels are increased in the midgut during metamorphosis, which is consistent with the expression profiles of KAT8 and ATG8. Knockdown of Kat8 using RNA interference results in delayed pupation and repression of midgut autophagy and decreases H4K16ac levels. Overexpression of KAT8-GFP promotes autophagy and increases H4K16ac levels. FOXO, KAT8, and H4K16ac colocalized at the FOXO-binding region to promote Atg8 transcription under 20E regulation. Acetylated FOXO at K180 and K183 catalyzed by KAT8 promotes gene transcription for autophagy. 20E via FOXO promotes Kat8 transcription. Knockdown or overexpression of FOXO appeared to give similar results as knockdown or overexpression of KAT8. Therefore, FOXO upregulates KAT8 expression and recruits KAT8 to the promoter region of Atg8, where the KAT8 induces H4 acetylation to promote Atg8 transcription for autophagy under 20E regulation. This study reveals the mechanism that KAT8 promotes transcription of a specific gene.


Assuntos
Autofagia , Ecdisterona , Helicoverpa armigera , Histona Acetiltransferases , Histonas , Processamento de Proteína Pós-Traducional , Acetilação , Autofagia/genética , Ecdisterona/metabolismo , Regiões Promotoras Genéticas , Helicoverpa armigera/genética , Helicoverpa armigera/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo
2.
Appl Environ Microbiol ; 89(7): e0062523, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37378519

RESUMO

Midgut receptors play a critical role in the specificity of Cry toxins for individual insect species. Cadherin proteins are essential putative receptors of Cry1A toxins in lepidopteran larvae. Cry2A family members share common binding sites in Helicoverpa armigera, and one of them, Cry2Aa, has been widely reported to interact with midgut cadherin. Here, we studied the binding interaction and functional role of H. armigera cadherin in the mechanism of Cry2Ab toxicity. A region spanning from cadherin repeat 6 (CR6) to the membrane-proximal region (MPR) of cadherin protein was produced as six overlapping peptides to identify the specific binding regions of Cry2Ab. Binding assays showed that Cry2Ab binds nonspecifically to peptides containing CR7 and CR11 regions in a denatured state but binds specifically only to CR7-containing peptides in the native state. The peptides CR6-11 and CR6-8 were transiently expressed in Sf9 cells to assess the functional role of cadherin. Cytotoxicity assays showed that Cry2Ab is not toxic to the cells expressing any of the cadherin peptides. However, ABCA2-expressing cells showed high sensitivity to Cry2Ab toxin. Neither increased nor decreased sensitivity to Cry2Ab was observed when the peptide CR6-11 was coexpressed with the ABCA2 gene in Sf9 cells. Instead, treating ABCA2-expressing cells with a mixture of Cry2Ab and CR6-8 peptides resulted in significantly reduced cell death compared with treatment with Cry2Ab alone. Moreover, silencing of the cadherin gene in H. armigera larvae showed no significant effect on Cry2Ab toxicity, in contrast to the reduced mortality in ABCA2-silenced larvae. IMPORTANCE To improve the efficiency of production of a single toxin in crops and to delay the evolution of insect resistance to the toxin, the second generation of Bt cotton, expressing Cry1Ac and Cry2Ab, was introduced. Understanding the mode action of the Cry proteins in the insect midgut and the mechanisms insects use to overcome these toxins plays a crucial role in developing measures to counter them. Extensive studies have been conducted on the receptors of Cry1A toxins, but relatively little has been done about those of Cry2Ab. By showing the nonfunctional binding of cadherin protein with Cry2Ab, we have furthered the understanding of Cry2Ab receptors.


Assuntos
Toxinas de Bacillus thuringiensis , Helicoverpa armigera , Proteínas de Insetos , Receptores de Superfície Celular , Helicoverpa armigera/crescimento & desenvolvimento , Helicoverpa armigera/metabolismo , Helicoverpa armigera/microbiologia , Animais , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Larva/metabolismo , Técnicas de Silenciamento de Genes , Células Sf9
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA