Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.828
Filtrar
1.
PLoS One ; 19(5): e0303556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753858

RESUMO

Echinatin is an active ingredient in licorice, a traditional Chinese medicine used in the treatment of inflammatory disorders. However, the protective effect and underlying mechanism of echinatin against acute lung injury (ALI) is still unclear. Herein, we aimed to explore echinatin-mediated anti-inflammatory effects on lipopolysaccharide (LPS)-stimulated ALI and its molecular mechanisms in macrophages. In vitro, echinatin markedly decreased the levels of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated murine MH-S alveolar macrophages and RAW264.7 macrophages by suppressing inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) expression. Furthermore, echinatin reduced LPS-induced mRNA expression and release of interleukin-1ß (IL-1ß) and IL-6 in RAW264.7 cells. Western blotting and CETSA showed that echinatin repressed LPS-induced activation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) pathways through targeting transforming growth factor-beta-activated kinase 1 (TAK1). Furthermore, echinatin directly interacted with Kelch-like ECH-associated protein 1 (Keap1) and activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway to enhance heme oxygenase-1 (HO-1) expression. In vivo, echinatin ameliorated LPS-induced lung inflammatory injury, and reduced production of IL-1ß and IL-6. These findings demonstrated that echinatin exerted anti-inflammatory effects in vitro and in vivo, via blocking the TAK1-MAPK/NF-κB pathway and activating the Keap1-Nrf2-HO-1 pathway.


Assuntos
Lesão Pulmonar Aguda , Heme Oxigenase-1 , Proteína 1 Associada a ECH Semelhante a Kelch , Lipopolissacarídeos , MAP Quinase Quinase Quinases , Fator 2 Relacionado a NF-E2 , NF-kappa B , Transdução de Sinais , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Anti-Inflamatórios/farmacologia
2.
Front Cell Infect Microbiol ; 14: 1386462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725448

RESUMO

Introduction: The Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway has been extensively studied for its role in regulating antioxidant and antiviral responses. The Equid herpesvirus type 8 (EqHV-8) poses a significant threat to the equine industry, primarily manifesting as respiratory disease, abortions, and neurological disorders in horses and donkeys. Oxidative stress is considered a key factor associated with pathogenesis of EqHV-8 infection. Unfortunately, there is currently a dearth of therapeutic interventions available for the effective control of EqHV-8. Rutin has been well documented for its antioxidant and antiviral potential. In current study we focused on the evaluation of Rutin as a potential therapeutic agent against EqHV-8 infection. Methods: For this purpose, we encompassed both in-vitro and in-vivo investigations to assess the effectiveness of Rutin in combatting EqHV-8 infection. Results and Discussion: The results obtained from in vitro experiments demonstrated that Rutin exerted a pronounced inhibitory effect on EqHV-8 at multiple stages of the viral life cycle. Through meticulous experimentation, we elucidated that Rutin's antiviral action against EqHV-8 is intricately linked to the Nrf2/HO-1 signaling pathway-mediated antioxidant response. Activation of this pathway by Rutin was found to significantly impede EqHV-8 replication, thereby diminishing the viral load. This mechanistic insight not only enhances our understanding of the antiviral potential of Rutin but also highlights the significance of antioxidant stress responses in combating EqHV-8 infection. To complement our in vitro findings, we conducted in vivo studies employing a mouse model. These experiments revealed that Rutin administration resulted in a substantial reduction in EqHV-8 infection within the lungs of the mice, underscoring the compound's therapeutic promise in vivo. Conclusion: In summation, our finding showed that Rutin holds promise as a novel and effective therapeutic agent for the prevention and control of EqHV-8 infections.


Assuntos
Antivirais , Heme Oxigenase-1 , Infecções por Herpesviridae , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Rutina , Transdução de Sinais , Rutina/farmacologia , Rutina/uso terapêutico , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Camundongos , Infecções por Herpesviridae/tratamento farmacológico , Antivirais/farmacologia , Replicação Viral/efeitos dos fármacos , Modelos Animais de Doenças , Antioxidantes/farmacologia , Linhagem Celular , Carga Viral/efeitos dos fármacos , Cavalos , Feminino , Proteínas de Membrana
3.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 296-302, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38710513

RESUMO

Objective To evaluate the effects of heme oxygenase-1 (HO-1) gene deletion on immune cell composition and inflammatory injury in lung tissues of mice with lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods C57BL/6 wild-type (WT) mice and HO-1 conditional-knockout (HO-1-/-) mice on the same background were randomly divided into four groups (n=5 in every group): WT control group, LPS-treated WT group, HO-1-/- control group and LPS-treated HO-1-/- group. LPS-treated WT and HO-1-/- groups were injected with LPS (15 mg/kg) through the tail vein to establish ALI model, while WT control group and HO-1-/- control group were injected with an equivalent volume of normal saline through the tail vein, respectively. Twelve hours later, the mice were sacrificed and lung tissues from each group were collected for analysis. Histopathological alterations of lung tissues were assessed by HE staining. The levels of mRNA expression of tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), and IL-6 were determined by PCR. The percentages of neutrophils (CD45+CD11b+Ly6G+Ly6C-), total monocytes (CD45+CD11b+Ly6Chi), pro-inflammatory monocyte subsets (CD45+CD11b+Ly6ChiCCR2hi) and total macrophages (CD45+CD11b+F4/80+), M1 macrophage (CD45+CD11b+F4/80+CD86+), M2 macrophage (CD45+CD11b+F4/80+CD206+), total T cells (CD45+CD3+), CD3+CD4+ T cells, CD3+CD8+ T cells and myeloid suppressor cells (MDSCs, CD45+CD11b+Gr1+) were detected by flow cytometry. Results Compared with the corresponding control groups, HE staining exhibited increased inflammation in the lung tissues of both LPS-treated WT and HO-1-/- model mice; mRNA expression levels of TNF-α, IL-1ß and IL-6 were up-regulated; the proportions of neutrophils, total monocytes, pro-inflammatory monocyte subsets, MDSCs and total macrophages increased significantly. The percentage of CD3+, CD3+CD4+ and CD3+CD8+ T cells decreased significantly. Under resting-state, compared with WT control mice, the proportion of neutrophils, monocytes and pro-inflammatory monocyte subset increased in lung tissues of HO-1-/- control mice, while the proportion of CD3+ and CD3+CD8+ T cells decreased. Compared with LPS-treated WT mice, the mRNA expression levels of TNF-α and IL-1ß were up-regulated in lung tissues of LPS-treated HO-1-/- mice; the proportion of total monocytes, pro-inflammatory monocyte subsets, M1 macrophages and M1/M2 ratio increased greatly; the percentage of CD3+CD8+ T cells decreased significantly. Conclusion The deletion of HO-1 affects the function of the lung immune system and aggravates the inflammatory injury after LPS stimulation in ALI mice.


Assuntos
Lesão Pulmonar Aguda , Heme Oxigenase-1 , Lipopolissacarídeos , Pulmão , Camundongos Endogâmicos C57BL , Camundongos Knockout , Animais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Lipopolissacarídeos/efeitos adversos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Masculino , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Inflamação/genética , Inflamação/induzido quimicamente , Inflamação/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo
4.
J Ovarian Res ; 17(1): 107, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762721

RESUMO

Abnormal granulosa cell (GC) death contributes to cyclophosphamide (CTX) induced primary ovarian insufficiency (POI). To investigate the contribution of GCs to POI, gene profiles of GCs exposed to CTX were assessed using RNA-Seq and bioinformatics analysis. The results showed the differentially expressed genes (DEGs) were enriched in the ferroptosis-related pathway, which is correlated with upregulated heme oxygenase 1 (HO-1) and downregulated glutathione peroxidase-4 (GPX4). Using CTX-induced cell culture (COV434 and KGN cells), the levels of iron, reactive oxygen species (ROS), lipid peroxide, mitochondrial superoxide, mitochondrial morphology and mitochondrial membrane potential (MMP) were detected by DCFDA, MitoSOX, C11-BODIPY, MitoTracker, Nonylacridine Orange (NAO), JC-1 and transmission electron microscopy respectively. The results showed iron overload and disrupted ROS, including cytoROS, mtROS and lipROS homeostasis, were associated with upregulation of HO-1 and could induce ferroptosis via mitochondrial dysfunction in CTX-induced GCs. Moreover, HO-1 inhibition could suppress ferroptosis induced GPX4 depletion. This implies a role for ROS in CTX-induced ferroptosis and highlights the effect of HO-1 modulators in improving CTX-induced ovarian damage, which may provide a theoretical basis for preventing or restoring GC and ovarian function in patients with POI.


Assuntos
Ciclofosfamida , Ferroptose , Células da Granulosa , Heme Oxigenase-1 , Mitocôndrias , Espécies Reativas de Oxigênio , Ferroptose/efeitos dos fármacos , Feminino , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Ciclofosfamida/farmacologia , Ciclofosfamida/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos
5.
Bull Exp Biol Med ; 176(5): 562-566, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38724811

RESUMO

We studied the effect of an NO donor, nitrosyl iron complex with N-ethylthiourea, on Nrf2-dependent antioxidant system activation of tumor cells in vitro. The complex increased intracellular accumulation of Nrf2 transcription factor and induced its nuclear translocation. It was shown that both heme oxygenase-1 gene and protein expression increased significantly under the influence of the complex. Nrf2 activation was accompanied by a decrease in the intracellular accumulation of proinflammatory transcription factor NF-κB p65 subunit and expression of its target genes. The cytotoxic effect of N-ethylthiourea leads to induction of Nrf2/HO-1 antioxidant response and suppression of NF-κB-dependent processes in tumor cells.


Assuntos
Heme Oxigenase-1 , Ferro , Fator 2 Relacionado a NF-E2 , Tioureia , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Tioureia/análogos & derivados , Tioureia/farmacologia , Células HeLa , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Ferro/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética , Óxidos de Nitrogênio/metabolismo , Óxidos de Nitrogênio/farmacologia , Antioxidantes/farmacologia
6.
Am J Reprod Immunol ; 91(5): e13855, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38745499

RESUMO

Endometriosis (EM) is one of the diseases related to retrograded menstruation and hemoglobin. Heme, released from hemoglobin, is degraded by heme oxygenase-1 (HO-1). In EM lesions, heme metabolites regulate processes such as inflammation, redox balance, autophagy, dysmenorrhea, malignancy, and invasion, where macrophages (Mø) play a fundamental role in their interactions. Regulation occurs at molecular, cellular, and pathological levels. Numerous studies suggest that heme is an indispensable component in EM and may contribute to its pathogenesis. The regulatory role of heme in EM encompasses cytokines, signaling pathways, and kinases that mediate cellular responses to external stimuli. HO-1, a catalytic enzyme in the catabolic phase of heme, mitigates heme's cytotoxicity in EM due to its antioxidant, anti-inflammatory, and anti-proliferative properties. Certain compounds may intervene in EM by targeting heme metabolism, guiding the development of appropriate treatments for all stages of endometriosis.


Assuntos
Endometriose , Heme Oxigenase-1 , Heme , Endometriose/metabolismo , Endometriose/tratamento farmacológico , Feminino , Humanos , Heme/metabolismo , Heme Oxigenase-1/metabolismo , Animais , Transdução de Sinais , Macrófagos/metabolismo , Macrófagos/imunologia , Autofagia , Citocinas/metabolismo
7.
BMC Complement Med Ther ; 24(1): 189, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750475

RESUMO

BACKGROUND: Cuscutae Semen (CS) has been prescribed in traditional Chinese medicine (TCM) for millennia as an aging inhibitor, an anti-inflammatory agent, a pain reliever, and an aphrodisiac. Its three main forms include crude Cuscutae Semen (CCS), wine-processed CS (WCS), and stir-frying-processed CS (SFCS). Premature ovarian insufficiency (POI) is a globally occurring medical condition. The present work sought a highly efficacious multi-target therapeutic approach against POI with minimal side effects. Finally, it analyzed the relative differences among CCS, WCS and SFCS in terms of their therapeutic efficacy and modes of action against H2O2-challenged KGN human granulosa cell line. METHODS: In this study, ultrahigh-performance liquid chromatography (UPLC)-Q-ExactiveTM Orbitrap-mass spectrometry (MS), oxidative stress indices, reactive oxygen species (ROS), Mitochondrial membrane potential (MMP), real-time PCR, Western blotting, and molecular docking were used to investigate the protective effect of CCS, WCS and SFCS on KGN cells oxidative stress and apoptosis mechanisms. RESULTS: The results confirmed that pretreatment with CCS, WCS and SFCS reduced H2O2-induced oxidative damage, accompanied by declining ROS levels and malondialdehyde (MDA) accumulation in the KGN cells. CCS, WCS and SFCS upregulated the expression of antioxidative levels (GSH, GSH/GSSG ratio, SOD, T-AOC),mitochondrial membrane potential (MMP) and the relative mRNA(Nrf2, Keap1, NQO-1, HO-1, SOD-1, CAT). They inhibited apoptosis by upregulating Bcl-2, downregulating Bax, cleaved caspase-9, and cleaved caspase-3, and lowering the Bax/Bcl-2 ratio. They also exerted antioxidant efficacy by partially activating the PI3K/Akt and Keap1-Nrf2/HO-1 signaling pathways. CONCLUSIONS: The results of the present work demonstrated the inhibitory efficacy of CCS, WCS and SFCS against H2O2-induced oxidative stress and apoptosis in KGN cells and showed that the associated mechanisms included Keap1-Nrf2/HO-1 activation, P-PI3K upregulation, and P-Akt-mediated PI3K-Akt pathway induction.


Assuntos
Apoptose , Células da Granulosa , Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Linhagem Celular , Fosfatidilinositol 3-Quinases/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Heme Oxigenase-1/metabolismo
8.
J Nanobiotechnology ; 22(1): 261, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760744

RESUMO

Delayed repair of fractures seriously impacts patients' health and significantly increases financial burdens. Consequently, there is a growing clinical demand for effective fracture treatment. While current materials used for fracture repair have partially addressed bone integrity issues, they still possess limitations. These challenges include issues associated with autologous material donor sites, intricate preparation procedures for artificial biomaterials, suboptimal biocompatibility, and extended degradation cycles, all of which are detrimental to bone regeneration. Hence, there is an urgent need to design a novel material with a straightforward preparation method that can substantially enhance bone regeneration. In this context, we developed a novel nanoparticle, mPPTMP195, to enhance the bioavailability of TMP195 for fracture treatment. Our results demonstrate that mPPTMP195 effectively promotes the differentiation of bone marrow mesenchymal stem cells into osteoblasts while inhibiting the differentiation of bone marrow mononuclear macrophages into osteoclasts. Moreover, in a mouse femur fracture model, mPPTMP195 nanoparticles exhibited superior therapeutic effects compared to free TMP195. Ultimately, our study highlights that mPPTMP195 accelerates fracture repair by preventing HDAC4 translocation from the cytoplasm to the nucleus, thereby activating the NRF2/HO-1 signaling pathway. In conclusion, our study not only proposes a new strategy for fracture treatment but also provides an efficient nano-delivery system for the widespread application of TMP195 in various other diseases.


Assuntos
Diferenciação Celular , Histona Desacetilases , Células-Tronco Mesenquimais , Nanopartículas , Animais , Camundongos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Diferenciação Celular/efeitos dos fármacos , Histona Desacetilases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos Endogâmicos C57BL , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoblastos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Masculino , Regeneração Óssea/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Núcleo Celular/metabolismo , Consolidação da Fratura/efeitos dos fármacos , Humanos , Proteínas de Membrana
9.
Sci Rep ; 14(1): 11240, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755191

RESUMO

Nao-an Dropping Pill (NADP) is a Chinese patent medicine which commonly used in clinic for ischemic stroke (IS). However, the material basis and mechanism of its prevention or treatment of IS are unclear, then we carried out this study. 52 incoming blood components were resolved by UHPLC-MS/MS from rat serum, including 45 prototype components. The potential active prototype components hydroxysafflor yellow A, ginsenoside F1, quercetin, ferulic acid and caffeic acid screened by network pharmacology showed strongly binding ability with PIK3CA, AKT1, NOS3, NFE2L2 and HMOX1 by molecular docking. In vitro oxygen-glucose deprivation/reperfusion (OGD/R) experimental results showed that NADP protected HA1800 cells from OGD/R-induced apoptosis by affecting the release of LDH, production of NO, and content of SOD and MDA. Meanwhile, NADP could improve behavioral of middle cerebral artery occlusion/reperfusion (MCAO/R) rats, reduce ischemic area of cerebral cortex, decrease brain water and glutamate (Glu) content, and improve oxidative stress response. Immunohistochemical results showed that NADP significantly regulated the expression of PI3K, Akt, p-Akt, eNOS, p-eNOS, Nrf2 and HO-1 in cerebral ischemic tissues. The results suggested that NADP protects brain tissues and ameliorates oxidative stress damage to brain tissues from IS by regulating PI3K/Akt/eNOS and Nrf2/HO-1 signaling pathways.


Assuntos
AVC Isquêmico , Fator 2 Relacionado a NF-E2 , Óxido Nítrico Sintase Tipo III , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , AVC Isquêmico/prevenção & controle , Ratos , Fosfatidilinositol 3-Quinases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Ratos Sprague-Dawley , Estresse Oxidativo/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Apoptose/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular
10.
J Am Heart Assoc ; 13(9): e032067, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38700010

RESUMO

BACKGROUND: Doxorubicin and other anthracyclines are crucial cancer treatment drugs. However, they are associated with significant cardiotoxicity, severely affecting patient care and limiting dosage and usage. Previous studies have shown that low carbon monoxide (CO) concentrations protect against doxorubicin toxicity. However, traditional methods of CO delivery pose complex challenges for daily administration, such as dosing and toxicity. To address these challenges, we developed a novel oral liquid drug product containing CO (HBI-002) that can be easily self-administered by patients with cancer undergoing doxorubicin treatment, resulting in CO being delivered through the upper gastrointestinal tract. METHODS AND RESULTS: HBI-002 was tested in a murine model of doxorubicin cardiotoxicity in the presence and absence of lung or breast cancer. The mice received HBI-002 twice daily before doxorubicin administration and experienced increased carboxyhemoglobin levels from a baseline of ≈1% to 7%. Heart tissue from mice treated with HBI-002 had a 6.3-fold increase in CO concentrations and higher expression of the cytoprotective enzyme heme oxygenase-1 compared with placebo control. In both acute and chronic doxorubicin toxicity scenarios, HBI-002 protected the heart from cardiotoxic effects, including limiting tissue damage and cardiac dysfunction and improving survival. In addition, HBI-002 did not compromise the efficacy of doxorubicin in reducing tumor volume, but rather enhanced the sensitivity of breast 4T1 cancer cells to doxorubicin while simultaneously protecting cardiac function. CONCLUSIONS: These findings strongly support using HBI-002 as a cardioprotective agent that maintains the therapeutic benefits of doxorubicin cancer treatment while mitigating cardiac damage.


Assuntos
Antibióticos Antineoplásicos , Monóxido de Carbono , Cardiotoxicidade , Doxorrubicina , Proteínas de Membrana , Animais , Doxorrubicina/toxicidade , Monóxido de Carbono/metabolismo , Antibióticos Antineoplásicos/toxicidade , Feminino , Administração Oral , Camundongos , Heme Oxigenase-1/metabolismo , Cardiopatias/induzido quimicamente , Cardiopatias/prevenção & controle , Cardiopatias/metabolismo , Cardiopatias/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Carboxihemoglobina/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Humanos
11.
Toxicol Ind Health ; 40(6): 312-322, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38590048

RESUMO

Previous epidemiologic research has shown that phthalate exposure in pregnant women is related to adverse birth outcomes in a sex-specific manner. However, the biological mechanism of phthalate exposure that causes these birth outcomes remains poorly defined. In this research, we investigated the association between phthalate exposure and placental oxidative stress in a large population-based cohort study, aiming to initially explore the relationship between phthalate exposure and gene expression in placental oxidative stress in a sex-specific manner. Quantitative PCR was performed to measure the expression of placental inflammatory mRNAs (HO-1, HIF1α, and GRP78) in 2469 placentae. The multiple linear regression models were used to investigate the associations between mRNA and urinary phthalate monoesters. Phthalate metabolites monomethyl phthalate (MMP) and mono-n-butyl phthalate (MBP) were positively correlated with higher HIF1α expression in placentae of male fetuses (p < .05). Mono-benzyl phthalate (MBzP) increased the expression of HO-1, HIF1α, and GRP78 in placentae of male fetuses, and mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) up-regulated the expression of HIF1α and GRP78. Additionally, mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) was negatively correlated with HO-1, HIF1α, and GRP78 in placentae of female fetuses. Maternal phthalate exposure was associated with oxidative stress variations in placental tissues. The associations were closer in the placentas of male fetuses than in that of female ones. The placenta oxidative stress is worth further investigation as a potential mediator of maternal exposure-induced disease risk in children.


Assuntos
Biomarcadores , Chaperona BiP do Retículo Endoplasmático , Exposição Materna , Estresse Oxidativo , Ácidos Ftálicos , Placenta , Humanos , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/urina , Feminino , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Masculino , Placenta/efeitos dos fármacos , Placenta/metabolismo , Biomarcadores/urina , Estudos Prospectivos , Adulto , Exposição Materna/efeitos adversos , Fatores Sexuais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Estudos de Coortes
12.
Redox Rep ; 29(1): 2332038, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38563333

RESUMO

OBJECTIVES: Gentamicin is one of the most common ototoxic drugs that can lower patients' quality of life. Oxidative stress is a key factors inducing sensory hair cell death during gentamicin administration. So far, there are no effective drugs to prevent or treat gentamicin- induced hearing loss. A recent study found cystic fibrosis transmembrane conductance regulator (CFTR) as a new target to modulate cellular oxidative balance. The objective of this study was to estimate the effect of the CFTR activator ivacaftor on gentamicin-induced ototoxicity and determine its mechanism. METHODS: The hair cell count was analyzed by Myosin 7a staining. Apoptosis was analyzed by TUNEL Apoptosis Kit. Cellular reactive oxygen species (ROS) level was detected by DCFH-DA probes. The Nrf2 related proteins expression levels were analyzed by western blot. RESULTS: An in vitro cochlear explant model showed that gentamicin caused ROS accumulation in sensory hair cells and induced apoptosis, and this effect was alleviated by pretreatment with ivacaftor. Western blotting showed that ivacaftor administration markedly increased the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO1), and NAD(P)H:quinone oxidoreductase 1 (NQO1). The protective effect of ivacaftor was abolished by the Nrf2 inhibitor ML385. DISCUSSION: Our results indicate the protective role of the CFTR-Nrf2-HO1/NQO1 pathway in gentamicin-induced ototoxicity. Ivacaftor may be repositioned or repurposed towards aminoglycosides-induced hearing loss.


Assuntos
Aminofenóis , Perda Auditiva , Ototoxicidade , Quinolonas , Humanos , Gentamicinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/farmacologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/farmacologia , Qualidade de Vida , Estresse Oxidativo , Apoptose , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/farmacologia
13.
Chem Biol Drug Des ; 103(4): e14518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570329

RESUMO

Icariin has shown the potential to treat osteoarthritis (OA), but the specific mechanism still needs further exploration. Therefore, this study attempted to reveal the effect and mechanism of icariin on OA based on in vitro and in vivo experiments. In vivo, a mouse model of OA was established by cutting the anterior cruciate ligament, and 10 mg/kg icariin was given to mice orally. Then, the OA injury and pathological changes of cartilage tissue in mice were identified by OA index and hematoxylin and eosin staining. In vitro, the viability of C28/I2 cells incubated with different concentrations of icariin was detected by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide assay. Subsequently, C28/I2 cells induced by IL-1ß were used as the cell model of OA, the expression of Sirtuin (SIRT)-1 in cells was knocked down, and icariin was added for intervention. Next, western blot was used to observe the expression level of sirtuin 1 (SIRT-1)-Nrf2-heme oxygenase 1 (HO-1) signaling pathway-related proteins in cells of each group. Besides, cell viability and apoptosis were detected by MTT and apoptosis assay, and DNA damage was observed by comet assay. In vivo experiments, intragastric administration of icariin could effectively reduce the OA index of mice, improve the pathological changes of cartilage tissue, and obviously activated the SIRT-1-Nrf2-HO-1 signaling pathway. In vitro experiments, icariin did not exhibit toxic effect on C28/I2 cells, but could activate the SIRT-1-Nrf2-HO-1 signaling pathway, improve the viability, reduce the level of apoptosis and relieve the DNA damage in OA cells; however, these effects were inhibited by si- SIRT-1. Icariin can improve the symptoms of OA by activating the SIRT-1-Nrf2-HO-1 signaling pathway.


Assuntos
Condrócitos , Flavonoides , Osteoartrite , Camundongos , Animais , Condrócitos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuína 1/metabolismo , Heme Oxigenase-1/metabolismo , Transdução de Sinais , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Apoptose
14.
Biochem Pharmacol ; 223: 116193, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582268

RESUMO

Ovarian aging leads to infertility and birth defects. We aimed to clarify the role of Indole-3-carbinol (I3C) in resistance to oxidative stress, apoptosis, and fibrosis in ovarian aging. I3C was administered via intraperitoneal injection for 3 weeks in young or old mice. Immunohistochemistry; Masson, Sirius red, and TUNEL staining; follicle counting; estrous cycle analysis; and Western blotting were used for validating the protective effect of I3C against ovarian senescence. Human granulosa-like tumor cell line and primary granulosa cells were used for in vitro assay. The results indicated that I3C inhibited ovarian fibrosis and apoptosis while increasing the number of primordial follicles. Mechanistic studies have shown that I3C promoted the nuclear translocation of nuclear factor-erythroid 2-related factor (Nrf2) and upregulated the expression of heme oxygenase 1 (HO-1). Additionally, I3C increased cell viability and decreased lactate dehydrogenase, malondialdehyde, reactive oxygen species and JC-1 levels. Furthermore, the antioxidant effect of I3C was found to be dependent on the activation of Nrf2 and HO-1, as demonstrated by the disappearance of the effect upon inhibition of Nrf2 expression. In conclusion, I3C can alleviate the ovarian damage caused by aging and may be a protective agent to delay ovarian aging.


Assuntos
Heme Oxigenase-1 , Indóis , Fator 2 Relacionado a NF-E2 , Camundongos , Feminino , Humanos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Heme Oxigenase-1/metabolismo , Estresse Oxidativo , Fibrose , Apoptose
15.
Drug Des Devel Ther ; 18: 1265-1275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651136

RESUMO

Background: Treating inflammatory pain (IP) continues to pose clinical challenge, because of the lack of effective pharmacological interventions. Microglial polarization serves as pivotal determinant in IP progress. Obacunone (OB), a low-molecular-weight compound with a diverse array of biological functions, having reported as an activator of nuclear factor E2-related factor 2 (Nrf2), exhibits anti-inflammatory property. However, it remains uncertain whether OB can alleviate IP by facilitating the transition of microglial polarization from the M1 to M2 state through modulating Nrf2/ heme oxygenase-1 (HO-1) pathway. Methods: We induced an mice IP model by subcutaneously administering Complete Freund's Adjuvant (CFA) into the hind paw. Paw withdrawal latency (PWL) in seconds (s) and paw withdrawal frequency (PWF) were employed to evaluate the establishment of the IP model, while a caliper was used to measure the maximal dorsoventral thickness of the mice paw. Nerve injury was assessed by Hematoxylin-Eosin (HE) Staining. Western blot and got conducted for detection of M1/M2 microglial polarization markers, Nrf2 and HO-1 in spinal cord tissues respectively. Results: In comparison to the control cohort, PWF, M1 phenotype marker iNOS, CD86, paw thickness increased significantly within CFA cohort, while PWL, M2 phenotype marker Arg-1, interleukin-10 (IL-10) decreased in the CFA group. In comparison to model cohort, OB treatment decreased PWF, paw thickness, M1 phenotype marker iNOS, CD86 significantly, while PWL, M2 phenotype marker Arg-1, IL-10, Nrf2, HO-1 increased significantly. The morphological injuries of sciatic nerve in CFA mice were obviously improved by OB treatment. OB inhibited the release of M1-related IL-1ß, CXCL1 but promoted M2-related TGF-ß, IL-10 in serum in CFA mice. The intervention of the Nrf2 inhibitor ML385 mitigated analgesic effect of OB. Conclusion: We demonstrate that OB is able to attenuate inflammatory pain via promoting microglia polarization from M1 to M2 and enhancing Nrf2/HO-1 signal. OB treatment may be a potential alternative agent in the treatment of IP.


Assuntos
Inflamação , Proteínas de Membrana , Microglia , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Heme Oxigenase-1/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Adjuvante de Freund , Modelos Animais de Doenças , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
16.
BMC Complement Med Ther ; 24(1): 175, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664646

RESUMO

BACKGROUND: Excessive oxidative stress in the brain is an important pathological factor in neurological diseases. Acetoxypachydiol (APHD) is a lipophilic germacrane-type diterpene extracted as a major component from different species of brown algae within the genus Dictyota. There have been no previous reports on the pharmacological activity of APHD. The present research aims to explore the potential neuroprotective properties of APHD and its underlying mechanisms. METHODS: The possible mechanism of APHD was predicted using a combination of molecular docking and network pharmacological analysis. PC12 cells were induced by H2O2 and oxygen-glucose deprivation/reoxygenation (OGD/R), respectively. Western blot, flow cytometry, immunofluorescence staining, and qRT-PCR were used to investigate the antioxidant activity of APHD. The HO-1 inhibitor ZnPP and Nrf2 gene silencing were employed to confirm the influence of APHD on the signaling cascade involving HO-1, Nrf2, and Keap1 in vitro. RESULTS: APHD exhibited antioxidant activity in both PC12 cells subjected to H2O2 and OGD/R conditions by downregulating the release of LDH, the concentrations of MDA, and ROS, and upregulating SOD, GSH-Px, and GSH concentrations. APHD could potentially initiate the Keap1-Nrf2/HO-1 signaling cascade, according to the findings from network pharmacology evaluation and molecular docking. Furthermore, APHD was observed to increase Nrf2 and HO-1 expression at both mRNA and protein levels, while downregulating the protein concentrations of Keap1. Both Nrf2 silencing and treatment with ZnPP reversed the neuroprotective effects of APHD. CONCLUSIONS: APHD activated antioxidant enzymes and downregulated the levels of LDH, MDA, and ROS in two cell models. The neuroprotective effect is presumably reliant on upregulation of the Keap1-Nrf2/HO-1 pathway. Taken together, APHD from brown algae of the genus Dictyota shows potential as a candidate for novel neuroprotective agents.


Assuntos
Diterpenos , Heme Oxigenase (Desciclizante) , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Fármacos Neuroprotetores , Estresse Oxidativo , Transdução de Sinais , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos , Células PC12 , Estresse Oxidativo/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Diterpenos/farmacologia , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Heme Oxigenase-1/metabolismo
17.
Biomolecules ; 14(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38672467

RESUMO

Inflammation is a pivotal factor in the development and advancement of conditions like NAFLD and asthma. Diet can affect several phases of inflammation and significantly influence multiple inflammatory disorders. Siraitia grosvenorii, a traditional Chinese edible and medicinal plant, is considered beneficial to health. Flavonoids can suppress inflammatory cytokines, which play a crucial role in regulating inflammation. In the present experiments, kaempferol 3-O-α-L-rhamnoside-7-O-ß-D-xylosyl(1→2)-O-α-L-rhamnoside (SGPF) is a flavonoid glycoside that was first isolated from S. grosvenorii. A series of experimental investigations were carried out to investigate whether the flavonoid component has anti-inflammatory and hepatoprotective effects in this plant. The researchers showed that SGPF has a stronger modulation of protein expression in LPS-induced macrophages (MH-S) and OA-induced HepG2 cells. The drug was dose-dependent on cells, and in the TLR4/NF-κB/MyD88 pathway and Nrf2/HO-1 pathway, SGPF regulated all protein expression. SGPF has a clear anti-inflammatory and hepatoprotective function in inflammatory conditions.


Assuntos
Anti-Inflamatórios , Flavonoides , Glicosídeos , NF-kappa B , Receptor 4 Toll-Like , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Glicosídeos/farmacologia , Glicosídeos/química , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/isolamento & purificação , Células Hep G2 , Animais , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Cucurbitaceae/química , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Lipopolissacarídeos/farmacologia , Heme Oxigenase-1/metabolismo
18.
Int Immunopharmacol ; 132: 111994, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581992

RESUMO

Acute liver failure (ALF) is a potentially fatal disorder characterized by extensive hepatocyte necrosis and rapid decline in liver function. Numerous factors, including oxidative stress, cell death, and inflammatory responses, are associated with its pathogenesis. Endotoxin tolerance (ET) refers to the phenomenon in which the body or cells exhibit low or no response to high-dose lipopolysaccharide (LPS) stimulation after pre-stimulation with low-dose LPS. However, the specific mechanism through which ET regulates LPS/D-galactosamine (D-GalN)-induced ALF remains unclear. An ALF mouse model was established by intraperitoneal injection of D-GalN (400 mg/kg) and LPS (10 mg/kg). A low dose of LPS (0.1 mg/kg/d) was continuously administered to mice for 5 d before modeling to assess the protective effect of ET. The data from this study showed that ET alleviated the inflammatory response in mice with LPS/D-GalN-induced ALF. ET inhibited LPS-induced oxidative damage and pyroptosis in macrophages in vitro. RNA sequencing analysis showed that the NF-κB/NLRP3 pathway was linked to the anti-inflammatory and antioxidative effects of ET. Furthermore, using western blot, RT-qPCR, and immunofluorescence, we verified that ET inhibited the NF-κB/NLRP3 pathway and triggered the Nrf2/HO-1 signaling pathway to attenuate oxidative stress and cell pyroptosis. Sirt1 knockdown reversed this protective effect. In summary, our research elucidates that ET prevents ALF advancement by upregulating Sirt1 levels, triggering the Nrf2/HO-1 signaling axis, and suppressing the NF-κB/NLRP3 signaling cascade to inhibit oxidative stress and cell pyroptosis. Our results provide a mechanistic explanation for the protective effect of ET against ALF.


Assuntos
Galactosamina , Lipopolissacarídeos , Falência Hepática Aguda , Fator 2 Relacionado a NF-E2 , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/imunologia , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/tratamento farmacológico , Camundongos , NF-kappa B/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Modelos Animais de Doenças , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase (Desciclizante)/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Endotoxinas/toxicidade , Tolerância Imunológica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Fígado/imunologia , Sirtuína 1/metabolismo , Sirtuína 1/genética , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia
19.
Ecotoxicol Environ Saf ; 277: 116314, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642409

RESUMO

Fine particulate matter (PM2.5) has been extensively implicated in the pathogenesis of neurodevelopmental disorders, but the underlying mechanism remains unclear. Recent studies have revealed that PM2.5 plays a role in regulating iron metabolism and redox homeostasis in the brain, which is closely associated with ferroptosis. In this study, the role and underlying mechanism of ferroptosis in PM2.5-induced neurotoxicity were investigated in mice, primary hippocampal neurons, and HT22 cells. Our findings demonstrated that exposure to PM2.5 could induce abnormal behaviors, neuroinflammation, and neuronal loss in the hippocampus of mice. These effects may be attributed to ferroptosis induced by PM2.5 exposure in hippocampal neurons. RNA-seq analysis revealed that the upregulation of iron metabolism-related protein Heme Oxygenase 1 (HO-1) and the activation of mitophagy might play key roles in PM2.5-induced ferroptosis in HT22 cells. Subsequent in vitro experiments showed that PM2.5 exposure significantly upregulated HO-1 in primary hippocampal neurons and HT22 cells. Moreover, PM2.5 exposure activated mitophagy in HT22 cells, leading to the loss of mitochondrial membrane potential, alterations in the expression of autophagy-related proteins LC3, P62, and mTOR, as well as an increase in mitophagy-related protein PINK1 and PARKIN. As a heme-degradation enzyme, the upregulation of HO-1 promotes the release of excess iron, genetically inhibiting the upregulation of HO-1 in HT22 cells could prevent both PM2.5-induced mitophagy and ferroptosis. Furthermore, pharmacological inhibition of mitophagy in HT22 cells reduced levels of ferrous ions and lipid peroxides, thereby preventing ferroptosis. Collectively, this study demonstrates that HO-1 mediates PM2.5-induced mitophagy-dependent ferroptosis in hippocampal neurons, and inhibiting mitophagy or ferroptosis may be a key therapeutic target to ameliorate neurotoxicity following PM2.5 exposure.


Assuntos
Ferroptose , Heme Oxigenase-1 , Hipocampo , Mitofagia , Neurônios , Material Particulado , Regulação para Cima , Animais , Material Particulado/toxicidade , Ferroptose/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Camundongos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Regulação para Cima/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Poluentes Atmosféricos/toxicidade , Proteínas de Membrana
20.
Cancer Lett ; 590: 216826, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38574881

RESUMO

Ferroptosis, an iron-dependent regulated cell death caused by excessive lipid peroxide accumulation, has emerged as a promising therapeutic target in various cancers, including non-small cell lung cancer (NSCLC). In this study, we identified the long non-coding RNA RGMB-AS1 as a key regulator of ferroptosis in NSCLC. Mechanistically, RGMB-AS1 interacted with heme oxygenase 1 (HMOX1) and prevented its ubiquitination by the E3 ligase TRC8, leading to increased HMOX1 stability and enhanced ferroptosis. Additionally, RGMB-AS1 bound to the 82-87 amino acid region of N-alpha-acetyltransferase 10 (NAA10), stimulating its acetyltransferase activity and promoting the conversion of acetyl-CoA to HMG-CoA, further contributing to ferroptosis. The RGMB-AS1-HMOX1 and RGMB-AS1-NAA10 axes synergistically inhibited NSCLC growth both in vitro and in vivo. Clinically, low RGMB-AS1 expression was associated with advanced tumor stage and poor overall survival in NSCLC patients. Furthermore, adeno-associated virus-mediated RGMB-AS1 overexpression significantly suppressed tumor growth in mouse xenograft models. Our findings uncover a novel lncRNA-mediated regulatory mechanism of ferroptosis and highlight the potential of RGMB-AS1 as a prognostic biomarker and therapeutic target in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Heme Oxigenase-1 , Neoplasias Pulmonares , RNA Longo não Codificante , Ubiquitinação , Ferroptose/genética , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Animais , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Feminino , Masculino , Camundongos Nus , Células A549 , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA