Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 278(Pt 2): 134756, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147340

RESUMO

An attractive strategy for efficiently forming CS bonds is through the use of diazo compounds SH insertion. However, achieving good enantioselective control in this reaction within a biocatalytic system has proven to be challenging. This study aimed to enhance the activity and enantioselectivity of to enable asymmetric SH insertion. The researchers conducted site-saturation mutagenesis (SSM) on 5 amino acid residues located around the iron carbenoid intermediate within a distance of 5 Å, followed by iterative saturation mutagenesis (ISM) of beneficial mutants. Through this process, the beneficial variant VHbSH(P54R/V98W) was identified through screening with 4-(methylmercapto) phenol as the substrate. This variant exhibited up to 4-fold higher catalytic efficiency and 6-fold higher enantioselectivity compared to the wild-type VHb. Computational studies were also conducted to elucidate the detailed mechanism of this asymmetric SH insertion, explaining how active-site residues accelerate this transformation and provide stereocontrol.


Assuntos
Proteínas de Bactérias , Engenharia de Proteínas , Hemoglobinas Truncadas , Hemoglobinas Truncadas/genética , Hemoglobinas Truncadas/química , Hemoglobinas Truncadas/metabolismo , Engenharia de Proteínas/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Estereoisomerismo , Especificidade por Substrato , Metano/química , Metano/análogos & derivados , Metano/metabolismo , Mutagênese Sítio-Dirigida , Modelos Moleculares , Domínio Catalítico , Biocatálise
2.
J Inorg Biochem ; 259: 112654, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38959524

RESUMO

In our continued investigations of microbial globins, we solved the structure of a truncated hemoglobin from Shewanella benthica, an obligate psychropiezophilic bacterium. The distal side of the heme active site is lined mostly with hydrophobic residues, with the exception of a tyrosine, Tyr34 (CD1) and a histidine, His24 (B13). We found that purified SbHbN, when crystallized in the ferric form with polyethylene glycol as precipitant, turned into a green color over weeks. The electron density obtained from the green crystals accommodated a trans heme d, a chlorin-type derivative featuring a γ-spirolactone and a vicinal hydroxyl group on a pyrroline ring. In solution, exposure of the protein to one equivalent of hydrogen peroxide resulted in a similar green color change, but caused by the formation of multiple products. These were oxidation species released on protein denaturation, likely including heme d, and a species with heme covalently attached to the polypeptide. The Tyr34Phe replacement prevented the formation of both heme d and the covalent linkage. The ready modification of heme b by SbHbN expands the range of chemistries supported by the globin fold and offers a route to a novel heme cofactor.


Assuntos
Heme , Shewanella , Shewanella/metabolismo , Shewanella/química , Heme/química , Heme/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Cristalografia por Raios X , Hemoglobinas Truncadas/química , Hemoglobinas Truncadas/metabolismo
3.
Protein Sci ; 33(7): e5064, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38864722

RESUMO

Due to the low temperature, the Antarctic marine environment is challenging for protein functioning. Cold-adapted organisms have evolved proteins endowed with higher flexibility and lower stability in comparison to their thermophilic homologs, resulting in enhanced reaction rates at low temperatures. The Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) genome is one of the few examples of coexistence of multiple hemoglobin genes encoding, among others, two constitutively transcribed 2/2 hemoglobins (2/2Hbs), also named truncated Hbs (TrHbs), belonging to the Group II (or O), annotated as PSHAa0030 and PSHAa2217. In this work, we describe the ligand binding kinetics and their interrelationship with the dynamical properties of globin Ph-2/2HbO-2217 by combining experimental and computational approaches and implementing a new computational method to retrieve information from molecular dynamic trajectories. We show that our approach allows us to identify docking sites within the protein matrix that are potentially able to transiently accommodate ligands and migration pathways connecting them. Consistently with ligand rebinding studies, our modeling suggests that the distal heme pocket is connected to the solvent through a low energy barrier, while inner cavities play only a minor role in modulating rebinding kinetics.


Assuntos
Proteínas de Bactérias , Pseudoalteromonas , Hemoglobinas Truncadas , Pseudoalteromonas/metabolismo , Pseudoalteromonas/genética , Pseudoalteromonas/química , Cinética , Hemoglobinas Truncadas/química , Hemoglobinas Truncadas/metabolismo , Hemoglobinas Truncadas/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Simulação de Dinâmica Molecular , Regiões Antárticas , Ligantes
4.
Int J Biol Macromol ; 254(Pt 3): 128112, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972845

RESUMO

Bacterial hemoglobins play important roles inside the cell. Phylogenetically, they belong to three different families: the single domain hemoglobin, flavohemoglobin and truncated hemoglobin. Vitreoscilla hemoglobin (VHb) is the first characterized bacterial hemoglobin, and belongs to the single domain hemoglobin family. Heterologous expression of VHb promotes the growth of host cells under microaerobic conditions, and enhances the yield of products during fermentation. Although VHb has been widely applied in the biotechnology field, other bacterial hemoglobins have not demonstrated similar applications. In this study, we identified four bacterial hemoglobins from the microaerobic growing bacterium Sphaerotilus natans, including one flavohemoglobins (FHB) and three truncated hemoglobins (THB1, THB2 and THB3). Absorption spectrum studies validate the existent of the Soret peak and Q-band characteristic to heme and suggest heme groups in FHB and THB1 are hexa- or penta-coordinated, respectively. Our studies demonstrate that FHB and all three truncated hemoglobins have NADH oxidation and radical production activities, which is surprising since truncated hemoglobins do not have a reductase domain that could bind NADH. However, the M. tuberculosis HbN does not show these activities, indicating they are not universal among truncated hemoglobins. Docking studies suggest the nicotinamide ring of NADH may bind to the distal heme pocket of THB1, suggesting the direct electron transfer from NADH to heme might be possible. Our truncated hemoglobins also show peroxidase activities that in THB2 and THB3 could be inhibited by FdR, indicating possible interactions between FdR and truncate hemoglobins. Expression of FHB and THB1 in E. coli could promote cell growth. THB1 also enhances the production of limonene in an engineered E. coli strain, while VHb does not have this effect, which suggests that studies on truncated hemoglobins may lead to the discovery of new and more powerful tools that could have profound impact on biotechnology.


Assuntos
Escherichia coli , Hemoglobinas Truncadas , Humanos , Hemoglobinas Truncadas/genética , Hemoglobinas Truncadas/metabolismo , Escherichia coli/metabolismo , Limoneno , NAD/metabolismo , Hemoglobinas/genética , Hemoglobinas/metabolismo , Proteínas de Bactérias/metabolismo , Heme/metabolismo
5.
Elife ; 112022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36125244

RESUMO

Oxidative stress-mediated formation of protein hydroperoxides can induce irreversible fragmentation of the peptide backbone and accumulation of cross-linked protein aggregates, leading to cellular toxicity, dysfunction, and death. However, how bacteria protect themselves from damages caused by protein hydroperoxidation is unknown. Here, we show that YjbI, a group II truncated haemoglobin from Bacillus subtilis, prevents oxidative aggregation of cell-surface proteins by its protein hydroperoxide peroxidase-like activity, which removes hydroperoxide groups from oxidised proteins. Disruption of the yjbI gene in B. subtilis lowered biofilm water repellence, which associated with the cross-linked aggregation of the biofilm matrix protein TasA. YjbI was localised to the cell surface or the biofilm matrix, and the sensitivity of planktonically grown cells to generators of reactive oxygen species was significantly increased upon yjbI disruption, suggesting that YjbI pleiotropically protects labile cell-surface proteins from oxidative damage. YjbI removed hydroperoxide residues from the model oxidised protein substrate bovine serum albumin and biofilm component TasA, preventing oxidative aggregation in vitro. Furthermore, the replacement of Tyr63 near the haem of YjbI with phenylalanine resulted in the loss of its protein peroxidase-like activity, and the mutant gene failed to rescue biofilm water repellency and resistance to oxidative stress induced by hypochlorous acid in the yjbI-deficient strain. These findings provide new insights into the role of truncated haemoglobin and the importance of hydroperoxide removal from proteins in the survival of aerobic bacteria.


Assuntos
Bacillus subtilis , Hemoglobinas Truncadas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes , Heme/metabolismo , Peróxido de Hidrogênio/metabolismo , Ácido Hipocloroso/metabolismo , Proteínas de Membrana/metabolismo , Oxirredutases/metabolismo , Peroxidases/metabolismo , Fenilalanina/metabolismo , Agregados Proteicos , Soroalbumina Bovina/metabolismo , Hemoglobinas Truncadas/metabolismo , Água/metabolismo
6.
Gene ; 841: 146759, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35933051

RESUMO

Although truncated hemoglobin O, (trHbO), is ubiquitous among mycobacteria, its physiological function is not very obvious and may be diverse. In an attempt to understand role of trHbO in cellular metabolism of a non-pathogenic mycobacterium, we analysed expression profile of the glbO gene, encoding trHbO, in M. smegmatis and studied implications of its overexpression on physiology of its host under different environmental conditions. Quantitative RT-PCR indicated that transcript level of the glbO gene remains low at a basal level under aerobic growth cycle of M. smegmatis but its level gets induced significantly during low oxygen, oxidative stress and macrophage infection. Overexpression of the glbO gene enhanced growth of M. smegmatis under hypoxia, promoted pellicle biofilm formation and provided resistance towards oxidative stress. Additionally, glbO gene overexpressing M. smegmatis exhibited enhanced cell survival over isogenic control cells and altered the level of pro- and anti- inflammatory cytokines during intracellular infection. These results suggested important role of trHbO, in supporting the cellular metabolism and survival of M, smegmatis both under low oxygen and oxidative stress.


Assuntos
Mycobacterium , Hemoglobinas Truncadas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hipóxia , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Estresse Oxidativo/genética , Oxigênio , Hemoglobinas Truncadas/genética , Hemoglobinas Truncadas/metabolismo
7.
Appl Microbiol Biotechnol ; 106(9-10): 3657-3667, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35579683

RESUMO

Oxidases are a group of oxidoreductases and need molecular oxygen in the catalytic process. Vitreoscilla hemoglobin (VHb) can improve the growth and productivity of host cells under hypoxic conditions, rendering it attractive for industrial application. In this work, we demonstrated the addition of immobilized VHb increased the catalytic activity of immobilized D-amino acid oxidase of Trigonopsis variabilis by two-fold when catalyzing cephalosporin C under oxygen-limited conditions. A similar increase of activities was observed in glucose oxidase, alcohol oxidase, and p-hydroxymandelate synthase by adding free VHb or immobilized VHb under hypoxic conditions. When L-glutamate oxidase was used to catalyze L-glutamate to produce α-ketoglutarate, the yield increased from 80.6 to 96.9% by fusing VHb with L-glutamate oxidase. Results demonstrated that the addition of free VHb, immobilized VHb, or fused VHb could increase the catalytic efficiency of oxidases, which was considered by increasing the concentration of the microenvironmental oxygen. Thus, VHb may become a potential additive agent to promote the efficiency of oxidases on industrial scale . KEY POINTS: • First time confirmation of facilitation of VHb on several industrial oxidases in vitro • VHb functions under hypoxic conditions rather than oxygen-enriched conditions • VHb functions in vitro in the form of free, immobilized protein and fusion enzyme.


Assuntos
Oxirredutases , Vitreoscilla , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Hemoglobinas Truncadas/genética , Hemoglobinas Truncadas/metabolismo , Vitreoscilla/genética
8.
Biotechnol Lett ; 44(4): 595-604, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35288781

RESUMO

Oxygen availability is a limiting factor for lipid biosynthesis in eukaryotic microorganisms. Two bacterial hemoglobins from Vitreoscilla sp. (VHb) and Shinorhizobium meliloti (SHb), which deliver oxygen to the respiratory chain to produce more ATP, were introduced into Mucor circinelloides to alleviate oxygen limitation, thereby improving cell growth and fatty acid production. The VHb and SHb genes were integrated into the M. circinelloides MU402 genome by homologous recombination. VHb and SHb protein expression was verified by carbon monoxide difference spectrum analysis. The biomass was increased by ~ 50% in the strain expressing SHb compared with VHb. The total fatty acid (TFA) content of the strain expressing SHb reached 15.7% of the dry cell weight (~ 40% higher than that of the control strain) during flask cultivation. The biomass and TFA content were markedly increased (12.1 g/L and 21.1% dry cell weight, respectively) in strains expressing SHb than strains expressing VHb during fermenter cultivation. VHb and SHb expression also increased the proportion of polyunsaturated fatty acids. Overexpressed bacterial hemoglobins, especially SHb, increased cell growth and TFA content in M. circinelloides at low and high aeration, suggesting that SHb improves fatty acid production more effectively than VHb in oleaginous microorganisms.


Assuntos
Metabolismo dos Lipídeos , Mucor , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Hemoglobinas/metabolismo , Mucor/genética , Mucor/metabolismo , Oxigênio/metabolismo , Hemoglobinas Truncadas/genética , Hemoglobinas Truncadas/metabolismo
9.
Mol Aspects Med ; 84: 101049, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34776271

RESUMO

Truncated hemoglobins (trHbs) build a sub-class of the globin family, found in eubacteria, cyanobacteria, unicellular eukaryotes, and in higher plants; among these, selected human pathogens are found. The trHb fold is based on a 2/2 α-helical sandwich, consisting of a simplified and reduced-size version of the classical 3/3 α-helical sandwich of vertebrate and invertebrate globins. Phylogenetic analysis indicates that trHbs further branch into three groups: group I (or trHbN), group II (or trHbO), and group III (or trHbP), each group being characterized by specific structural features. Among these, a protein matrix tunnel, or a cavity system implicated in diatomic ligand diffusion through the protein matrix, is typical of group I and group II, respectively. In general, a highly intertwined network of hydrogen bonds stabilizes the heme bound ligand, despite variability of the heme distal residues in the different trHb groups. Notably, some organisms display genes from more than one trHb group, suggesting that trHbN, trHbO, and trHbP may support different functions in vivo, such as detoxification of reactive nitrogen and oxygen species, respiration, oxygen storage/sensoring, thus aiding survival of an invading microorganism. Here, structural features and proposed functions of trHbs from human pathogens are reviewed.


Assuntos
Heme , Hemoglobinas Truncadas , Heme/química , Humanos , Ligantes , Filogenia , Proteínas , Hemoglobinas Truncadas/química , Hemoglobinas Truncadas/metabolismo
10.
Bioresour Technol ; 342: 125965, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34563820

RESUMO

Androstenone production is limited by low-efficiency substrate transport and dissolved oxygen levels during fermentation. In this study, the coexpression of the optimized Vitreoscilla hemoglobin (VHb) and sterol transporter ATPase (MceG) genes in Mycobacterium sp. LZ2 (Msp) was investigated to alleviate dissolved oxygen and mass transfer limitations. Results revealed that Msp-vgb/mceG effectively improved the growth, production, and adaptation to dissolved oxygen compared with those of Msp. The increased catalase activity and reduced intracellular ROS levels enhanced cell viability and promoted transcription of genes critical for phytosterol metabolism. Bagasse as an immobilization carrier increased the productivity of Msp-vgb/mceG by 56%. Immobilized repeat batch fermentation reduced the biotransformation period from 60 days to 37 days and improved the productivity from 0.039 g/L/h to 0.069 g/L/h. To the best of our knowledge, this work is the first study on the immobilization of recombinant mycobacteria on bagasse for androstenone production.


Assuntos
Mycobacterium , Hemoglobinas Truncadas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fermentação , Mycobacterium/genética , Mycobacterium/metabolismo , Hemoglobinas Truncadas/genética , Hemoglobinas Truncadas/metabolismo
11.
J Photochem Photobiol B ; 221: 112237, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34116318

RESUMO

Nannochloropsis oceanica is widely used as a model photosynthetic chassis to produce fatty acids and carotenoid pigments. However, intense light typically causes excessive generation of reactive oxygen species (ROS) and photorespiration in microalgal cells, which results in decreased cell growth rate and unsaturated fatty acid content. In this study, the Vitreoscilla hemoglobin gene (vgb) was introduced into N. oceanica cells and expressed by using the light-harvesting complex promoter and its signal peptide. Compared with wild type (WT), the growth rate of transformants increased by 7.4%-18.5%, and the eicosapentaenoic acid content in an optimal transformant increased by 21.0%. Correspondingly, the intracellular ROS levels decreased by 56.9%-70.0%, and the catalase content in transformants was about 1.8 times that of WT. The photorespiration level of transformants was reduced by the measurement and calculation of the dissolved oxygen concentration under the condition of light-dark transition. The expression level of the key genes related to the photorespiration pathway in transformants was more than 80% lower than that in WT. These results indicated that Vitreoscilla hemoglobin could improve microalgal growth by reducing ROS damage and modulating photorespiration under stress conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Luz , Estramenópilas/metabolismo , Hemoglobinas Truncadas/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/genética , Catalase/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Fotossíntese/efeitos da radiação , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Sinais Direcionadores de Proteínas/genética , Espécies Reativas de Oxigênio/metabolismo , Estramenópilas/efeitos da radiação , Hemoglobinas Truncadas/genética
12.
J Inorg Biochem ; 220: 111455, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33882423

RESUMO

THB1 is a monomeric truncated hemoglobin from the green alga Chlamydomonas reinhardtii. In the absence of exogenous ligands and at neutral pH, the heme group of THB1 is coordinated by two protein residues, Lys53 and His77. THB1 is thought to function as a nitric oxide dioxygenase, and the distal binding of O2 requires the cleavage of the Fe-Lys53 bond accompanied by protonation and expulsion of the lysine from the heme cavity into the solvent. Nuclear magnetic resonance spectroscopy and crystallographic data have provided dynamic and structural insights of the process, but the details of the mechanism have not been fully elucidated. We applied a combination of computer simulations and site-directed mutagenesis experiments to shed light on this issue. Molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics restrained optimizations were performed to explore the nature of the transition between the decoordinated and lysine-bound states of the ferrous heme in THB1. Lys49 and Arg52, which form ionic interactions with the heme propionates in the X-ray structure of lysine-bound THB1, were observed to assist in maintaining Lys53 inside the protein cavity and play a key role in the transition. Lys49Ala, Arg52Ala and Lys49Ala/Arg52Ala THB1 variants were prepared, and the consequences of the replacements on the Lys (de)coordination equilibrium were characterized experimentally for comparison with computational prediction. The results reinforced the dynamic role of protein-propionate interactions and strongly suggested that cleavage of the Fe-Lys53 bond and ensuing conformational rearrangement is facilitated by protonation of the amino group inside the distal cavity.


Assuntos
Proteínas de Algas/metabolismo , Lisina/metabolismo , Hemoglobinas Truncadas/metabolismo , Proteínas de Algas/química , Proteínas de Algas/genética , Chlamydomonas reinhardtii/química , Teoria da Densidade Funcional , Ferro/química , Ferro/metabolismo , Lisina/química , Modelos Químicos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Conformação Proteica , Hemoglobinas Truncadas/química , Hemoglobinas Truncadas/genética
13.
Int J Biol Macromol ; 171: 465-479, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33428952

RESUMO

The ubiquitous nature of hemoglobins, their presence in multiple forms and low cellular expression in organisms suggests alternative physiological functions of hemoglobins in addition to oxygen transport and storage. Previous research has proposed enzymatic function of hemoglobins such as nitric oxide dioxygenase, nitrite reductase and hydroxylamine reductase. In all these enzymatic functions, active ferrous form of hemoglobin is converted to ferric form and reconversion of ferric to ferrous through reduction partners is under active investigation. The model alga C. reinhardtii contains multiple globins and is thus expected to have multiple putative methemoglobin reductases to augment the physiological functions of the novel hemoglobins. In this regard, three putative methemoglobin reductases and three algal hemoglobins were characterized. Our results signify that the identified putative methemoglobin reductases can reduce algal methemoglobins in a nonspecific manner under in vitro conditions. Enzyme kinetics of two putative methemoglobin reductases with methemoglobins as substrates and in silico analysis support interaction between the hemoglobins and the two reduction partners as also observed in vitro. Our investigation on algal methemoglobin reductases underpins the valuable chemistry of nitric oxide with the newly discovered hemoglobins to ensure their physiological relevance, with multiple hemoglobins probably necessitating the presence of multiple reductases.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Citocromo-B(5) Redutase/fisiologia , Oxigenases/metabolismo , Proteínas de Plantas/fisiologia , Hemoglobinas Truncadas/metabolismo , Técnicas de Química Analítica , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Sequência Conservada , Citocromo-B(5) Redutase/química , Citocromo-B(5) Redutase/genética , Citocromo-B(5) Redutase/isolamento & purificação , Humanos , Cinética , Metemoglobina/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Oxirredução , Proteínas de Plantas/isolamento & purificação , Conformação Proteica , Domínios Proteicos , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Especificidade por Substrato , Hemoglobinas Truncadas/genética , Hemoglobinas Truncadas/isolamento & purificação
14.
Lett Appl Microbiol ; 72(4): 484-494, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33305461

RESUMO

Enhancement of the desulfurization activities of Paenibacillus strains 32O-W and 32O-Y were investigated using dibenzothiophene (DBT) and DBT sulfone (DBTS) as sources of sulphur in growth experiments. Strains 32O-W, 32O-Y and their co-culture (32O-W plus 32O-Y), and Vitreoscilla hemoglobin (VHb) expressing recombinant strain 32O-Yvgb and its co-culture with strain 32O-W were grown at varying concentrations (0·1-2 mmol l-1 ) of DBT or DBTS for 96 h, and desulfurization measured by production of 2-hydroxybiphenyl (2-HBP) and disappearance of DBT or DBTS. Of the four cultures grown with DBT as sulphur source, the best growth occurred for the 32O-Yvgb plus 32O-W co-culture at 0·1 and 0·5 mmol l-1 DBT. Although the presence of vgb provided no consistent advantage regarding growth on DBTS, strain 32O-W, as predicted by previous work, was shown to contain a partial 4S desulfurization pathway allowing it to metabolize this 4S pathway intermediate.


Assuntos
Biodegradação Ambiental , Paenibacillus/metabolismo , Tiofenos/metabolismo , Vitreoscilla/metabolismo , Proteínas de Bactérias/metabolismo , Técnicas de Cocultura , Paenibacillus/crescimento & desenvolvimento , Enxofre/metabolismo , Hemoglobinas Truncadas/metabolismo , Vitreoscilla/crescimento & desenvolvimento
15.
Biotechnol Lett ; 42(11): 2169-2178, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32691185

RESUMO

OBJECTIVE: To enhance the glucaric acid (GA) production in Saccharomyces cerevisiae, the Vitreoscilla hemoglobin was employed to reinforce cellular oxygen supplement. Additionally, the pH-free fermentation strategy was engaged to lower the cost brought by base feeding during the acid-accumulated and long-period glucaric acid production. RESULTS: Recombinant yeast Bga-4 was constructed harboring Vitreoscilla hemoglobin on the basis of previous Bga-3. Higher glucose uptake rate, growth rate, and ethanol reuse rate were achieved in Bga-4 in shake-flask fermentation than those in Bga-3. Furthermore, the fed-batch fermentation in a 5-L bioreactor was performed without pH control, resulting in a final glucaric acid titer of 6.38 g/L. CONCLUSIONS: Both the GA titer and biomass were enhanced along with the efficiency of ethanol re-utilization in the presence of VHb. Moreover, the absence of base feeding for long-period fermentation reduced production cost, which is meaningful for industrial applications.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácido Glucárico/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Hemoglobinas Truncadas/genética , Hemoglobinas Truncadas/metabolismo , Técnicas de Cultura Celular por Lotes , Biomassa , Reatores Biológicos/microbiologia , Clonagem Molecular , Fermentação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética
16.
J Microbiol Biotechnol ; 30(10): 1592-1596, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32699196

RESUMO

The aerobic growth and metabolic performance of Escherichia coli strains BL21 and W3110 were studied when the Vitreoscilla hemoglobin (VHb) was constitutively expressed in the chromosome. When VHb was expressed, acetate production decreased in both strains and was nearly eliminated in BL21. Transcriptional levels of the glyoxylate shunt genes decreased in both strains when VHb was expressed. However, higher transcription of the α-ketoglutarate dehydrogenase genes were observed for W3110, while for BL21 transcription levels decreased. VHb expression reduced the transcription of the cytochrome bo3 genes only in BL21. These results are useful for better selecting a production host.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Hemoglobinas Truncadas/genética , Hemoglobinas Truncadas/metabolismo , Proteínas de Ligação a DNA , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hemeproteínas , Recombinases Rec A , Transcriptoma
17.
Antioxid Redox Signal ; 32(6): 351-362, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31218881

RESUMO

Aims: Although the human pathogen, Mycobacterium tuberculosis (Mtb), is strictly aerobic and requires efficient supply of oxygen, it can survive long stretches of severe hypoxia. The mechanism responsible for this metabolic flexibility is unknown. We have investigated a novel mechanism by which hemoglobin O (HbO), operates and supports its host under oxygen stress. Results: We discovered that the HbO exists in a phospho-bound state in Mtb and remains associated with the cell membrane under hypoxia. Deoxy-HbO carries an autokinase activity that disrupts its dimeric assembly into monomer and facilitates its association with the cell membrane, supporting survival and adaptation of Mtb under low oxygen conditions. Consistent with these observations, deletion of the glbO gene in Mycobacterium bovis bacillus Calmette-Guerin, which is identical to the glbO gene of Mtb, attenuated its survival under hypoxia and complementation of the glbO gene of Mtb rescued this inhibition, but phosphorylation-deficient mutant did not. These results demonstrated that autokinase activity of the HbO modulates its physiological function and plays a vital role in supporting the survival of its host under hypoxia. Innovation and Conclusion: Our study demonstrates that the redox-dependent autokinase activity regulates oligomeric state and membrane association of HbO that generates a reservoir of oxygen in the proximity of respiratory membranes to sustain viability of Mtb under hypoxia. These results thus provide a novel insight into the physiological function of the HbO and demonstrate its pivotal role in supporting the survival and adaptation of Mtb under hypoxia.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas Quinases/metabolismo , Hemoglobinas Truncadas/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Oxirredução , Fosforilação
18.
Cells ; 8(9)2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438612

RESUMO

Truncated hemoglobins (trHbs) form a widely distributed family of proteins found in archaea, bacteria, and eukaryotes. Accumulating evidence suggests that trHbs may be implicated in functions other than oxygen delivery, but these roles are largely unknown. Characterization of the conditions that affect trHb expression and investigation of their regulatory mechanisms will provide a framework for elucidating the functions of these globins. Here, the transcription of Chlamydomonas trHb genes (THB1-12) under conditions of phosphorus (P) deprivation was analyzed. Three THB genes, THB1, THB2, and THB12 were expressed at the highest level. For the first time, we demonstrate the synthesis of nitric oxide (NO) under P-limiting conditions and the production of NO by cells via a nitrate reductase-independent pathway. To clarify the functions of THB1 and THB2, we generated and analyzed strains in which these THBs were strongly under-expressed by using an artificial microRNA approach. Similar to THB1 knockdown, the depletion of THB2 led to a decrease in cell size and chlorophyll levels. We provide evidence that the knockdown of THB1 or THB2 enhanced NO production under P deprivation. Overall, these results demonstrate that THB1 and THB2 are likely to contribute, at least in part, to acclimation responses in P-deprived Chlamydomonas.


Assuntos
Chlamydomonas/metabolismo , Óxido Nítrico/metabolismo , Fósforo/deficiência , Hemoglobinas Truncadas/metabolismo , Células Cultivadas , Chlamydomonas/citologia , Microscopia Confocal , Fósforo/metabolismo , Hemoglobinas Truncadas/genética
19.
Microb Biotechnol ; 12(6): 1180-1187, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30821132

RESUMO

Ganoderic acids produced by Ganoderma exhibit anticancer and antimetastatic activities. A novel approach by combining Vitreoscilla haemoglobin (VHb) expression and calcium ion induction was developed to enhance ganoderic acid (GA) production in liquid static cultures of G. lingzhi. The maximum contents of GA-O, GA-S and GA-Me were 1451.33 ± 67.50, 1431.23 ± 79.74 and 1283.81 ± 85.13 µg per 100 mg cell weight, respectively under the integrated approach, which are the highest contents as ever reported in Ganoderma. The contents of squalene and lanosterol were increased by 2.0- and 3.0-fold in this case compared with those in the control. The transcription levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase, farnesyl-diphosphate synthase, squalene synthase and cytochrome P450 CYP5150L8 were upregulated by 2.56-, 3.31-, 2.59- and 6.12-fold respectively. Additionally, the expression of VHb improved the ratio of type I to type II GA in liquid static cultivation of G. lingzhi. The transcription levels of cyp512a2, cyp512v2 and cyp512a13, candidate cytochrome P450 genes involved in oxidative modification of the lanostane skeleton in GA biosynthesis, were also increased by 2.28-, 2.65- and 3.54-fold in the VHb-expressing strain respectively. Our results illustrated that the approach described here efficiently improved GA production in G. lingzhi fermentation.


Assuntos
Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Ganoderma/metabolismo , Expressão Gênica , Triterpenos/metabolismo , Hemoglobinas Truncadas/metabolismo , Proteínas de Bactérias/genética , Cátions Bivalentes/metabolismo , Enzimas/análise , Ganoderma/genética , Perfilação da Expressão Gênica , Lanosterol/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esqualeno/metabolismo , Ativação Transcricional , Hemoglobinas Truncadas/genética
20.
Mol Biol Rep ; 46(2): 2101-2110, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30729391

RESUMO

Truncated globins are 20-40 amino acids shorter than full length globins. Till date, globins have been characterized predominantly from bacteria involved in pathogenicity, nitrogen fixation and photosynthesis, where they are implicated in bacterial virulence within the host, protection of nitrogenase from oxygen inactivation and prevention of oxidative damage to the photosynthetic machinery respectively. Myxococcus xanthus, the model myxobacterium, is an obligate aerobe with a multicellular stage in its life cycle where cells encounter oxygen limitation. This work was undertaken to investigate the potential role of the truncated globin in M. xanthus. To examine the role of globins in this unique group of bacteria, the gene coding for a putative truncated globin (HbO) was identified in the genome of M. xanthus DK 1622. The sequence analysis by bioinformatics approaches revealed that HbO from M. xanthus (Mx-HbO) likely adopts a 2-on-2 alpha helical fold of the truncated globins. The gene coding for Mx-HbO was cloned and its expression in E. coli imparted reddish tinge to the cells. The spectral analysis confirmed it to be a functional globin. The expression of Mx-HbO in the heterologous host improved its growth, resulting in the attainment of higher cell density in culture. The transcript of Mx-hbO was induced threefold in the host cells when grown under low aeration condition as compared to the cells grown under high aeration condition. In M. xanthus, an obligate aerobe, where cell growth accompanies swarming, there is a higher density of cells in the middle of the swarm. Our results suggest that Mx-HbO is a functional globin and could facilitate the growth of cells facing oxygen deprivation, the condition prevailing in the middle of the swarm.


Assuntos
Globinas/genética , Myxococcus xanthus/genética , Hemoglobinas Truncadas/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Simulação por Computador , Escherichia coli/genética , Globinas/metabolismo , Myxococcus xanthus/metabolismo , Transcrição Gênica/genética , Hemoglobinas Truncadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA