Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
1.
Biochem Biophys Res Commun ; 704: 149690, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38387326

RESUMO

Alcohol-related liver disease (ALD) is a global healthcare concern which caused by excessive alcohol consumption with limited treatment options. The pathogenesis of ALD is complex and involves in hepatocyte damage, hepatic inflammation, increased gut permeability and microbiome dysbiosis. FOXO3 is a well-recognized transcription factor which associated with longevity via promoting antioxidant stress response, preventing senescence and cell death, and inhibiting inflammation. We and many others have reported that FOXO3-/- mice develop more severe liver injury in response to alcohol. In the present study, we aimed to develop compounds that activate FOXO3 and further investigate their effects in alcohol induced liver injury. Through virtual screening, we discovered series of small molecular compounds that showed high affinity to FOXO3. We confirmed effects of compounds on FOXO3 target gene expression, as well as antioxidant and anti-apoptotic effects in vitro. Subsequently we evaluated the protective efficacy of compounds in alcohol induced liver injury in vivo. As a result, the leading compound we identified, 214991, activated downstream target genes expression of FOXO3, inhibited intracellular ROS accumulation and cell apoptosis induced by H2O2 and sorafenib. By using Lieber-DeCarli alcohol feeding mouse model, 214991 showed protective effects against alcohol-induced liver inflammation, macrophage and neutrophil infiltration, and steatosis. These findings not only reinforce the potential of FOXO3 as a valuable target for therapeutic intervention of ALD, but also suggested that compound 214991 as a promising candidate for the development of innovative therapeutic strategies of ALD.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Proteína Forkhead Box O3 , Hepatopatias Alcoólicas , Animais , Camundongos , Antioxidantes/farmacologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Etanol/toxicidade , Etanol/metabolismo , Peróxido de Hidrogênio/farmacologia , Inflamação/patologia , Fígado/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Camundongos Endogâmicos C57BL , Proteína Forkhead Box O3/agonistas
2.
Int J Med Mushrooms ; 26(1): 55-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305262

RESUMO

The liver was regarded as the most important metabolic and detoxification organ in vivo, and Morchella esculenta had been reported as the admittedly rare edible fungus belonging to Ascomycetes contributing to the abundant bioactivities. The objective of this study aimed to confirm the potential antioxidant activities of selenium mycelium polysaccharides (Se-MIP) from M. esculenta against alcoholic liver diseases (ALD) in mice. The results indicated that a selenium concentration of 25 µg/mL exhibited potential in vitro antioxidant capacities of Se-MIP. The in vivo mice results demonstrated that Se-MIP showed potential anti-ALD effects by improving the antioxidant activities and alleviating the hepatic dysfunctions. The present conclusions suggested that Se-MIP could be used as a candidate on improving ALD and its complications for further clinical investigations.


Assuntos
Agaricales , Ascomicetos , Hepatopatias Alcoólicas , Selênio , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Selênio/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Ascomicetos/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Agaricales/metabolismo , Micélio/metabolismo
3.
Hepatol Int ; 18(1): 188-205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183609

RESUMO

BACKGROUND AND PURPOSE: Alcoholic liver disease (ALD), a metabolic liver disease caused by excessive alcohol consumption, has attracted increasing attention due to its high prevalence and mortality. Up to date, there is no effective and feasible treatment method for ALD. This study was to investigate whether Farnesoid X receptor (FXR, NR1H4) can alleviate ALD and whether this effect is mediated by inhibiting absent in melanoma 2 (AIM2) inflammasome activation. METHODS: The difference in FXR expression between normal subjects and ALD patients was analyzed using the Gene Expression Omnibus (GEO) database. Lieber-DeCarli liquid diet with 5% ethanol (v/v) (EtOH) was adopted to establish the mouse ALD model. Liver histopathological changes and the accumulation of lipid droplets were assessed by H&E and Oil Red O staining. Quantitative real-time PCR, Western blotting analysis and immunofluorescence staining were utilized to evaluate the expression levels of related genes and proteins. DCFH-DA staining was adopted to visualize reactive oxidative species (ROS). RESULTS: FXR was distinctly downregulated in liver tissues of patients with steatosis compared to normal livers using the GEO database, and in ethanol-induced AML-12 cellular steatosis model. FXR overexpression ameliorated hepatic lipid metabolism disorder and steatosis induced by ethanol by inhibiting the expression of genes involved in lipid synthesis and inducing the expression of genes responsible for lipid metabolism. Besides, FXR overexpression inhibited ethanol-induced AIM2 inflammasome activation and alleviated oxidative stress and ROS production during ethanol-induced hepatic steatosis. However, when FXR was knocked down, the results were completely opposite. CONCLUSIONS: FXR attenuated lipid metabolism disorders and lipid degeneration in alcohol-caused liver injury and alleviated oxidative stress and inflammation by inhibiting AIM2 inflammasome activation.


Assuntos
Fígado Gorduroso , Hepatopatias Alcoólicas , Melanoma , Animais , Humanos , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Etanol/efeitos adversos , Etanol/metabolismo , Fígado Gorduroso/etiologia , Inflamassomos/efeitos adversos , Inflamassomos/metabolismo , Lipídeos , Fígado/patologia , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/genética , Espécies Reativas de Oxigênio/metabolismo
4.
J Ethnopharmacol ; 321: 117552, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072293

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: According to the theory of traditional Chinese medicine, the main factors related to alcoholic liver disease (ALD) are qi stagnation and blood stasis of the five viscera. Previously, we showed that the bioactive components of Alhagi honey have various pharmacological effects in treating liver diseases, but the influence of Alhagi honey on ALD (and its mechanism of action) is not known. AIM OF THE STUDY: To determine the efficacy of the main active component of Alhagi honey, the polysaccharide AHPN80, in ALD and to explore the potential mechanism of action. MATERIALS AND METHODS: AHPN80 was isolated from dried Alhagi honey and identified by transmission electron microscopy, Fourier-transform infrared spectroscopy, and gas chromatography. Venous blood, liver tissue, and colon tissue were collected in a mouse model of alcohol-induced acute liver injury. Histology, staining (Oil Red O, Alcian Blue-Periodic Acid Schiff) and measurement of reactive oxygen species (ROS) levels were used to detect histopathologic and lipid-accumulation changes in the liver and colon. Lipopolysaccharide (LPS) levels and the content of proinflammatory cytokines in serum were measured by enzyme-linked immunosorbent assays. Commercial kits were employed to detect biochemistry parameters in serum and the liver. A terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining kit was used to identify hepatocyte apoptosis. Expression of tight junction-associated proteins in colon tissues and nuclear factor erythroid 2-related factor 2/heme oxygenase-1/toll-like receptor-4/mitogen-activated protein kinase (Nrf2/HO-1/TLR4/MAPK) pathway-related proteins in liver tissues and HepG2 cells were analyzed by immunofluorescence or western blotting. RESULTS: In a mouse model of alcohol-induced acute liver injury, AHPN80 therapy: significantly improved liver parameters (cytochrome P450 2E1, alcohol dehydrogenase, aldehyde dehydrogenase, superoxide dismutase, malondialdehyde, glutathione peroxidase, catalase, total cholesterol, triglycerides, alanine transaminase, aspartate transaminase); reduced serum levels of LPS, interleukin (IL)-1ß, IL-6, and tumor necrosis faction-α; increased levels of IL-10 and interferon-gamma. AHPN80 reduced ALD-induced lipid accumulation and ROS production, improved alcohol-induced inflammatory damage to hepatocytes, and inhibited hepatocyte apoptosis. Immunofluorescence staining and western blotting suggested that AHPN80 might eliminate hepatic oxidative stress by activating the Nrf2/HO-1 signaling pathway, repair the intestinal barrier, inhibit the LPS/TLR4/MAPK signaling pathway, and reduce liver inflammation. CONCLUSIONS: AHPN80 may activate the Nrf2/HO-1 pathway to eliminate oxidative stress, protect the intestinal barrier, and regulate the TLR4/MAPK pathway to treat ALD in mice. AHPN80 could be a functional food and natural medicine to prevent ALD and its complications.


Assuntos
Mel , Hepatopatias Alcoólicas , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Fígado , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Estresse Oxidativo , Etanol/farmacologia , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
5.
Microbes Infect ; 26(3): 105250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37967609

RESUMO

Alcoholic liver disease (ALD) is a liver disease caused by heavy drinking. Porphyromonas gingivalis (P.g), a major cause of periodontitis, whose antibodies are elevated in severe ALD patients in the plasma. The purpose of this study is to further study the role and the molecular mechanism of P.g in the progress of ALD. In this study, saliva of patients with ALD was collected. Then, an animal model of ALD with oral P.g administration was established, pathology of liver and spleen, intestinal microorganisms and metabolites were analyzed. The molecular mechanism of P.g on ALD was analyzed in vitro. ALD and intestinal microflora and metabolite changes were observed more serious in the alcohol and P.g groups than the alcohol group. Moreover, ferroptosis was aggravated by P.g in the liver. Meanwhile, P.g promoted ferroptosis accomplication with alcohol in vitro, which can be reversed by ferroptosis inhibitors. In conclusion, P.g aggravates ALD through exacerbation gut microbial metabolic disorder in mice with alcohol, which maybe depend on ferroptosis activation in hepatocytes. The study provides a new strategy for prevention and treatment of ALD by improving the oral micro-environment.


Assuntos
Ferroptose , Hepatopatias Alcoólicas , Humanos , Camundongos , Animais , Porphyromonas gingivalis , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/prevenção & controle , Fígado/metabolismo , Etanol/metabolismo
6.
Front Biosci (Landmark Ed) ; 28(11): 309, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38062827

RESUMO

BACKGROUND: Alcohol abuse leads to alcoholic liver disease (ALD), for which no effective treatment is yet known. Gentiana Scabra Bge is a traditional Chinese medicine; its extract has a significant liver protection effect, but its effects on the mechanism of improving alcohol-induced toxicity remain unclear. Therefore, this study used cell and mouse models to investigate how Gentiana Scabra Bge extract (GSE) might affect the TLT4/NF-κB inflammation pathway in ALD. METHODS: In mice, we induced the alcoholic liver injury model by applying alcohol and induced the inflammatory cell model by lipopolysaccharide (LPS)-induced macrophages. Using an enzyme-linked immunosorbent assay (ELISA) kit, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and interleukin 1ß (IL-1ß), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) levels were measured in liver tissue; we also performed histological analysis of liver tissue sections to assess the hepatoprotective effect of GSE on alcohol. Using real-time fluorescence quantification, we determined the expression of toll-like receptor 4 (TLR4) and nuclear factor κB (NF-κB) mRNA levels; we used Western blotting to detect the expression of TLR4/NF-κB signaling pathway-related proteins. RESULTS: We demonstrate that GSE decreased AST and ALT activity, ameliorated liver dysfunction, decreased cytokine levels, and reduced LPS-induced cellular inflammation. In addition, GSE protected mouse liver cells from the inflammatory response by reducing alcohol-induced liver pathological damage and downregulating genes and proteins such as nuclear factors. CONCLUSIONS: GSE can attenuate liver injury in mice through the TLR4/NF-κB pathway by inhibiting the activation of nuclear factors.


Assuntos
Gentiana , Hepatopatias Alcoólicas , Animais , Camundongos , Gentiana/química , Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , NF-kappa B/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
7.
J Agric Food Chem ; 71(49): 19531-19550, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038704

RESUMO

Increasing evidence points to the critical role of calcium overload triggered by mitochondrial dysfunction in the development of alcoholic liver disease (ALD). As an important organelle for aerobic respiration with a double-layered membrane, mitochondria are pivotal targets of alcohol metabolism-mediated lipid peroxidation, wherein mitochondria-specific phospholipid cardiolipin oxidation to 4-hydroxynonenal (4-HNE) ultimately leads to mitochondrial integrity and function impairment. Therefore, it is absolutely essential to identify effective nutritional intervention targeting mitochondrial redox function for an alternative therapy of ALD, in order to compensate for the difficulty in achieving alcohol withdrawal due to addiction. In this study, we confirmed the significant advantages of astaxanthin (AX) against alcohol toxicity among various carotenoids via cell experiments and identified the potential in mitochondrion morphogenesis and calcium signaling pathway by bioinformatics analysis. The ALD model of Sprague-Dawley (SD) rats was also generated to investigate the effectiveness of AX on alcohol-induced liver injury, and the underlying mechanisms were further explored. AX intervention attenuated alcohol-induced oxidative stress and lipid peroxidation as well as mitochondrial dysfunction characterized by degenerative morphology changes and collapsed membrane potential. Also, AX reduced the production of 4-HNE by activating the Nrf2-ARE signaling pathway, which is closely associated with the redox balance of mitochondria. In addition, relieved mitochondrial Ca2+ accumulation caused by AX was observed both in vivo and in vitro. Furthermore, we revealed the structure-activity relationship of AX and mitochondrial membrane channel proteins MCU and VDAC1, implying potential acting targets. Altogether, our data indicated a new mechanism of AX intervention which protects against alcohol-induced liver injury through restoring redox balance and Ca2+ homeostasis in mitochondria, as well as provided novel insights into the development of AX as a therapeutic option for the management of ALD.


Assuntos
Alcoolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatopatias Alcoólicas , Doenças Mitocondriais , Síndrome de Abstinência a Substâncias , Ratos , Animais , Cálcio/metabolismo , Alcoolismo/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Ratos Sprague-Dawley , Síndrome de Abstinência a Substâncias/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Fígado/metabolismo , Estresse Oxidativo , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/metabolismo , Etanol/metabolismo , Proteínas de Membrana/metabolismo , Doenças Mitocondriais/metabolismo , Homeostase
8.
Molecules ; 28(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38138493

RESUMO

This study's objective was to examine the protective effect and mechanism of a novel polysaccharide (AYP) from Auricularia cornea var. Li. on alcoholic liver disease in mice. AYP was extracted from the fruiting bodies of Auricularia cornea var. Li. by enzymatic extraction and purified by DEAE-52 and Sephacryl S-400. Structural features were determined using high-performance liquid chromatography, ion exchange chromatography and Fourier-transform infrared analysis. Additionally, alcoholic liver disease (ALD) mice were established to explore the hepatoprotective activity of AYP (50, 100 and 200 mg/kg/d). Here, our results showed that AYP presented high purity with a molecular weight of 4.64 × 105 Da. AYP was composed of galacturonic acid, galactose, glucose, arabinose, mannose, xylose, rhamnose, ribos, glucuronic acid and fucose (molar ratio: 39.5:32.9:23.6:18.3:6.5:5.8:5.8:3.3:2:1.1). Notably, AYP remarkably reduced liver function impairment (alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC)), nitric oxide (NO) and malondialdehyde (MDA) of the liver and enhanced the activity of antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione (gGSH)) in mice with ALD. Meanwhile, the serum level of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) were reduced in ALD mice treated by AYP. Furthermore, the AYPH group was the most effective and was therefore chosen to further investigate its effect on the intestinal microbiota (bacteria and fungi) of ALD mice. Based on 16s rRNA and ITS-1 sequencing data, AYP influenced the homeostasis of intestinal microbiota to mitigate the damage of ALD mice, possibly by raising the abundance of favorable microbiota (Muribaculaceae, Lachnospiraceae and Kazachstania) and diminishing the abundance of detrimental microbiota (Lactobacillus, Mortierella and Candida). This discovery opens new possibilities for investigating physiological activity in A. cornea var. Li. and provides theoretical references for natural liver-protecting medication research.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Camundongos , Animais , RNA Ribossômico 16S , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/patologia , Fígado , Polissacarídeos/química
9.
Aging (Albany NY) ; 16(3): 2077-2089, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38126998

RESUMO

The beneficial effects of probiotics have been studied in inflammatory bowel disease, nonalcoholic steatohepatitis, and alcoholic liver disease (ALD). Probiotic supplements are safer and more effective; however, their potential mechanisms are unclear. An objective of the current study was to examine the effects of extracellular products of Lactobacillus plantarum on acute alcoholic liver injury. Mice on a standard chow diet were supplemented with Lactobacillus plantarum ST-III culture supernatant (LP-cs) for two weeks and administered alcohol at 6 g/kg body weight by gavage. Alcohol-induced liver injury was assessed by measuring plasma alanine aminotransferase activity levels and triglyceride content determined liver steatosis. Intestinal damage and tight junctions were assessed using histochemical staining. LP-cs significantly inhibited alcohol-induced fat accumulation, inflammation, and apoptosis by inhibiting oxidative stress and endoplasmic reticulum stress. LP-cs significantly inhibited alcohol-induced intestinal injury and endotoxemia. These findings suggest that LP-cs alleviates acute alcohol-induced liver damage by inhibiting oxidative stress and endoplasmic reticulum stress via one mechanism and suppressing alcohol-induced increased intestinal permeability and endotoxemia via another mechanism. LP-cs supplements are a novel strategy for ALD prevention and treatment.


Assuntos
Endotoxemia , Lactobacillus plantarum , Hepatopatias Alcoólicas , Camundongos , Animais , Fígado , Etanol/toxicidade , Hepatopatias Alcoólicas/prevenção & controle
10.
Front Immunol ; 14: 1289356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908362

RESUMO

Background: The hepatoprotective effect of interleukin 22 (IL-22) has been reported in several models of liver injuries, including alcohol-associated liver disease (ALD). However, the intestinal role of IL-22 in alcoholic hepatitis remains to be elucidated. Methods: Intestinal IL-22 levels were measured in mice fed with alcohol for 8 weeks. IL-22 was then administered to alcohol-fed mice to test its protective effects on alleviating alcoholic hepatitis, focusing on intestinal protection. Acute IL-22 treatment was conducted in mice to further explore the link between IL-22 and the induction of antimicrobial peptide (AMP). Intestinal epithelial cell-specific knockout of signal transducer and activator of transcription 3 (STAT3) mice were generated and used for organoid study to explore its role in IL-22-mediated AMP expression and gut barrier integrity. Results: After alcohol feeding for 8 weeks, the intestinal levels of IL-22 were significantly reduced in mice. IL-22 treatment to alcohol-fed mice mitigated liver injury as indicated by normalized serum transaminase levels, improved liver histology, reduced lipid accumulation, and attenuated inflammation. In the intestine, alcohol-reduced Reg3γ and α-defensins levels were reversed by IL-22 treatment. IL-22 also improved gut barrier integrity and decreased endotoxemia in alcohol-fed mice. While alcohol feeding significantly reduced Akkermansia, IL-22 administration dramatically expanded this commensal bacterium in mice. Regardless of alcohol, acute IL-22 treatment induced a fast and robust induction of intestinal AMPs and STAT3 activation. By using in vitro cultured intestinal organoids isolated from WT mice and mice deficient in intestinal epithelial-STAT3, we further demonstrated that STAT3 is required for IL-22-mediated AMP expression. In addition, IL-22 also regulates intestinal epithelium differentiation as indicated by direct regulation of sodium-hydrogen exchanger 3 via STAT3. Conclusion: Our study suggests that IL-22 not only targets the liver but also benefits the intestine in many aspects. The intestinal effects of IL-22 include regulating AMP expression, microbiota, and gut barrier function that is pivotal in ameliorating alcohol induced translocation of gut-derived bacterial pathogens and liver inflammation.


Assuntos
Anti-Infecciosos , Hepatite Alcoólica , Hepatopatias Alcoólicas , Microbiota , Camundongos , Animais , Hepatite Alcoólica/prevenção & controle , Simbiose , Interleucinas , Hepatopatias Alcoólicas/prevenção & controle , Etanol , Inflamação , Bactérias , Interleucina 22
11.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003718

RESUMO

Alcohol use accounts for a large variety of diseases, among which alcoholic liver injury (ALI) poses a serious threat to human health. In order to overcome the limitations of chemotherapeutic agents, some natural constituents, especially polysaccharides from edible medicinal plants (PEMPs), have been applied for the prevention and treatment of ALI. In this review, the protective effects of PEMPs on acute, subacute, subchronic, and chronic ALI are summarized. The pathogenesis of alcoholic liver injury is analyzed. The structure-activity relationship (SAR) and safety of PEMPs are discussed. In addition, the mechanism underlying the hepatoprotective activity of polysaccharides from edible medicinal plants is explored. PEMPs with hepatoprotective activities mainly belong to the families Orchidaceae, Solanaceae, and Liliaceae. The possible mechanisms of PEMPs include activating enzymes related to alcohol metabolism, attenuating damage from oxidative stress, regulating cytokines, inhibiting the apoptosis of hepatocytes, improving mitochondrial function, and regulating the gut microbiota. Strategies for further research into the practical application of PEMPs for ALI are proposed. Future studies on the mechanism of action of PEMPs will need to focus more on the utilization of multi-omics approaches, such as proteomics, epigenomics, and lipidomics.


Assuntos
Hepatopatias Alcoólicas , Plantas Medicinais , Humanos , Plantas Comestíveis , Fígado/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/metabolismo
12.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37930723

RESUMO

BACKGROUND: Alcoholic liver disease (ALD) is a chronic liver injury caused by excessive alcohol consumption, could be impacted by gut-liver axis dysfunction. The gut microbiota plays a crucial role in the development and progression of ALD. Given the role of gut-liver axis dysfunction in ALD, strategies targeting gut microbiota modulation have gained interest for therapeutic interventions. Bifidobacterium longum subsp. longum BL21 has shown promise in alleviating gut microbiota disturbances and metabolic regulation in high-fat diet-induced obesity and type 2 diabetes mellitus models. Thus, this study aimed to evaluate the therapeutic effect of BL21 on ALD mice and explore the potential mechanism by which the gut microbiota mediates the amelioration of ALD by BL21. METHODS: A total of 30 mice were randomly assigned to three groups (n = 10 mice/group): a healthy control (CTL) group, an ALD group, and a BL21 group. Each group was fed a Lieber-DeCarli liquid diet with (ALD and BL21) or without alcohol (CTL). The intervention period lasted 6 weeks, after which the effects of BL21 intervention (intragastric administration of 1 billion CFU of BL21 daily) on serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, hepatic oxidative stress, serum inflammatory cytokine levels, and gut microbiota composition in ALD mice were investigated. RESULTS: Dietary BL21 reduced the ethanol-induced abnormal elevation of serum AST and ALT levels in ALD mice (P < 0.001 for both). BL21 treatment significantly attenuated alcohol-induced hepatic oxidative stress by decreasing malondialdehyde concentration and increasing superoxide dismutase, catalase, and glutathione concentrations in the livers of ALD mice. In addition, the serum levels of tumor necrosis factor-alpha, interleukin-1 beta (IL-1ß), and IL-6 were significantly lower (P < 0.001 for both), while that of IL-10 was significantly higher (P < 0.05), in the BL21 group than in the ALD group. Intestinal microbiota analysis showed an increased relative abundance of Escherichia/Shigella, Enterococcus, and Alistipes in the ALD group compared with the CTL group. BL21 intervention increased the relative abundance of Bifidobacterium and Akkermansia compared with the ALD group. CONCLUSION: Dietary BL21 ameliorates ALD via enhancement of the hepatic antioxidant capacity and modulation of the gut microbiota and may therefore be a promising strategy to prevent or treat ALD.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Camundongos , Animais , Antioxidantes/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/microbiologia , Fígado , Bifidobacterium , Etanol/metabolismo , Camundongos Endogâmicos C57BL
13.
Nutrients ; 15(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836459

RESUMO

Alcoholic liver disease (ALD), leading to the most common chronic liver diseases, is increasingly emerging as a global health problem, which is intensifying the need to develop novel treatments. Herein, our work aimed to estimate the therapeutic efficacy of red rice (Oryza sativa L.) seed coat on ALD and further uncover the underlying mechanisms. Red rice seed coat extract (RRA) was obtained with citric acid-ethanol and analyzed via a widely targeted components approach. The potential targets of RRA to ALD were predicted by bioinformatics analysis. Drunken behavior, histopathological examination, liver function, gut microbiota composition and intestinal barrier integrity were used to assess the effects of RRA (RRAH, 600 mg/kg·body weight; RRAL, 200 mg/kg·body weight) on ALD. Oxidative stress, inflammation, apoptosis associated factors and signaling pathways were measured by corresponding kits, Western blot and immunofluorescence staining. In ALD model mice, RRA treatment increased sphingosine kinase 2 (SPHK2) and sphingosine-1-phosphate (S1P) levels, improved gut microbiota composition, restored intestinal barrier, decreased lipopolysaccharide (LPS) levels in plasma and the liver, cut down Toll-like receptor 4 (TLR4)/Nuclear factor kappa B (NF-κB) pathways, alleviated liver pathological injury and oxidative stress, attenuated inflammation and apoptosis and enhanced liver function. To sum up, RRA targeting SPHK2 can ameliorate ALD by repairing intestinal barrier damage and reducing liver LPS level via the TLR4/NF-κB pathway and intestinal microbiota, revealing that red rice seed coat holds potential as a functional food for the prevention and treatment of ALD.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Oryza , Camundongos , Animais , Oryza/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Fígado/metabolismo , Inflamação/metabolismo , Peso Corporal , Camundongos Endogâmicos C57BL
14.
Food Funct ; 14(21): 9920-9935, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37853829

RESUMO

The aim of this study was to evaluate the intervention effect of the potential probiotic Kluyveromyces marxianus YG-4 isolated from Tibetan kefir grains on alcoholic liver disease (ALD). Eight-week-old male C57BL/6J mice were fed with a Lieber-DeCarli (LDC) diet containing ethanol with a progressively increasing concentration from 1% to 4% (vol/vol) to establish an ALD mouse model. Our results suggested that K. marxianus treatment improved ALD, as demonstrated by the reduction of serum ALT and AST levels and the suppression of TLR4/NF-κB-mediated inflammatory response in the liver. K. marxianus administration significantly elevated antioxidant activities of SOD, CAT and GSH-Px, and reduced the MDA level in mice. K. marxianus supplementation repaired the gut barrier by increasing tight junction proteins and the number of goblet cells in the colon of ALD mice. In addition, treatment with K. marxianus restored alcohol-induced gut dysbiosis. Specifically, K. marxianus administration depleted the abundance of Lactobacillus, Coriobacteriaceae_UCG-002 and Candida, while increased that of Allobaculum, Dubosiella and Epicoccum in mice. Our findings open new possibilities for K. marxianus application in ALD treatment.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Probióticos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/metabolismo , Etanol/efeitos adversos
15.
Front Endocrinol (Lausanne) ; 14: 1229777, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795374

RESUMO

Introduction: Ganshu Nuodan is a liver-protecting dietary supplement composed of Ganoderma lucidum (G. lucidum) spore powder, Pueraria montana (Lour.) Merr. (P. montana), Salvia miltiorrhiza Bunge (S. miltiorrhiza) and Astragalus membranaceus (Fisch.) Bunge. (A. membranaceus). However, its pharmacodynamic material basis and mechanism of action remain unknown. Methods: A mouse model of acute alcohol liver disease (ALD) induced by intragastric administration of 50% alcohol was used to evaluate the hepatoprotective effect of Ganshu Nuodan. The chemical constituents of Ganshu Nuodan were comprehensively identified by UPLC-QTOF/MS, and then its pharmacodynamic material basis and potential mechanism of action were explored by proteomics and network pharmacology. Results: Ganshu Nuodan could ameliorate acute ALD, which is mainly manifested in the significant reduction of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum and malondialdehyde (MDA) content in liver and the remarkably increase of glutathione (GSH) content and superoxide dismutase (SOD) activity in liver. Totally 76 chemical constituents were identified from Ganshu Nuodan by UPLC-QTOF/MS, including 21 quinones, 18 flavonoids, 11 organic acids, 7 terpenoids, 5 ketones, 4 sterols, 3 coumarins and 7 others. Three key signaling pathways were identified via proteomics studies, namely Arachidonic acid metabolism, Retinol metabolism, and HIF-1 signaling pathway respectively. Combined with network pharmacology and molecular docking, six key targets were subsequently obtained, including Ephx2, Lta4h, Map2k1, Stat3, Mtor and Dgat1. Finally, these six key targets and their related components were verified by molecular docking, which could explain the material basis of the hepatoprotective effect of Ganshu Nuodan. Conclusion: Ganshu Nuodan can protect acute alcohol-induced liver injury in mice by inhibiting oxidative stress, lipid accumulation and apoptosis. Our study provides a scientific basis for the hepatoprotective effect of Ganshu Nuodan in acute ALD mice and supports its traditional application.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias Alcoólicas , Camundongos , Animais , Simulação de Acoplamento Molecular , Farmacologia em Rede , Proteômica , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Etanol/metabolismo , Etanol/uso terapêutico , Glutationa/metabolismo
16.
J Gastroenterol Hepatol ; 38(12): 2185-2194, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37731216

RESUMO

BACKGROUND: In recent years, the incidence of alcoholic liver disease (ALD) has gradually increased, the development of ALD is attached great attentions. Nostoc commune Vauch. polysaccharide (NCVP) is beneficial to maintain the gut health, but the protective effect of NCVP on the liver has not been reported yet. PURPOSE: To study the protective effect and the underlying mechanisms of NCVP on ALD, a mouse model of acute ALD was established. STUDY DESIGN AND METHODS: We built an acute ALD mouse model and explored the protective effect of NCVP through the detection of cytokines, histological examination, determination of short chain fatty acids, and 16S rRNA analysis of gut microbiota. RESULTS: NCVP had hepatoprotective effects on acute alcohol-induced mice by improving antioxidant capacity, reducing oxidative stress and the serum cytokine levels (IL-1ß, IL-6, and TNF-α). Simultaneously, histopathological changes in liver indicated that NCVP could inhibit local hepatocyte necrosis, cytoplasmic vacuolation and inflammatory cell infiltration induced by alcohol. NCVP also increased the level of total short-chain fatty acids of acute ALD mice. In addition, NCVP could significantly decrease the Firmicutes/Bacteroidetes ratio and the abundance of Patescibacteria, Helicobacter, and Actinomycetes and increase the abundance of Lachospiraceae, Prevotellaceae-UCG-003, Lactobacillaceae, and Desulfovibrio. CONCLUSION: Our study proved that NCVP had in vivo hepatoprotective effect on acute ALD mice and provided scientific evidences that NCVP might be a promising drug candidate for the prevention and treatment of ALD.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Nostoc commune , Animais , Camundongos , RNA Ribossômico 16S , Hepatopatias Alcoólicas/prevenção & controle , Polissacarídeos/farmacologia , Fígado/patologia , Etanol/efeitos adversos , Citocinas , Camundongos Endogâmicos C57BL
17.
Nutrients ; 15(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37630721

RESUMO

Alcoholic liver disease (ALD) can be induced by excessive alcohol consumption, and has a worldwide age-standardized incidence rate (ASIR) of approximately 5.243%. Inonotus hispidus (Bull.) P. Karst. (IH) is a mushroom with pharmacological effects. In ALD mice, the hepatoprotective effects of IH were investigated. IH strongly ameliorated alcohol-induced pathological changes in the liver, including liver structures and its function-related indices. Intestinal microbiota and serum metabolomics analysis showed that IH altered the associated anti-inflammatory microbiota and metabolites. According to results obtained from Western blot, immunohistochemistry (IHC), and enzyme-linked immunosorbent assay (ELISA), IH downregulated the levels of pro-inflammation factors interleukin (IL)-1ß, IL-6 and tumor necrosis factor-α (TNF-α), enhanced the expressions of peroxisome proliferator-activated receptor alpha (PPARα) and 15-hydroxprostaglandin dehydrogenase (15-PGDH), and inhibited the phosphorylated activation of Janus kinase (JAK) 1 and signal transducer and activator of transcription (STAT) 3, confirming the hepatoprotection of IH against alcohol damage via anti-inflammation. This study provides the experimental evidence for the hepatoprotective effects of IH in chronic ALD.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatopatias Alcoólicas , Animais , Camundongos , Etanol/efeitos adversos , Inonotus , Hepatopatias Alcoólicas/prevenção & controle
18.
Biomed Pharmacother ; 166: 115350, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633055

RESUMO

BACKGROUND: Alcohol-associated liver disease (ALD) encompasses a range of hepatic abnormalities, including isolated alcoholic steatosis, steatohepatitis, and cirrhosis. The flavanone-7-O-glycoside narirutin (NRT), the primary flavonoid in citrus peel, has antioxidant, anti-inflammatory, and lipid-lowering activity. We investigated the effects of NRT on liver injury induced by alcohol and explored the underlying mechanisms. METHODS: Zebrafish larvae were used to investigate the effects of NRT on acute exposure to ethanol (EtOH). Liver phenotypic, morphological, and biochemical assessments were performed to evaluate the hepatoprotective effects of NRT. Network pharmacology and molecular docking analyses were conducted to identify candidate targets of NRT in EtOH-induced liver injury. A drug affinity responsive target stability (DARTS) assay was conducted to evaluate the binding of NRT to mitogen-activated protein kinase 14 (MAPK14). The mechanism of action of NRT was validated by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and Western blot analysis. RESULTS: The liver phenotypic, morphological, and biochemical assessments revealed that NRT has potential therapeutic effects against acute EtOH-induced liver injury. RT-qPCR confirmed that NRT reversed the change in the expression of genes related to oxidative stress, lipogenesis, and the endoplasmic reticulum (ER)/unfolded protein response pathway. Network pharmacology and molecular docking analyses identified potential targets of NRT's protective effects and confirmed that NRT regulates the p38 MAPK signaling pathway by targeting mitogen-activated protein kinase 14 (MAPK14). CONCLUSIONS: NRT mitigates alcohol-induced liver injury by preventing lipid formation, protecting the antioxidant system, and suppressing ER stress-induced apoptosis through MAPK14 modulation.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Fígado Gorduroso , Flavanonas , Hepatopatias Alcoólicas , Proteína Quinase 14 Ativada por Mitógeno , Animais , Peixe-Zebra , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Etanol/toxicidade , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Lipídeos
19.
J Ethnopharmacol ; 317: 116785, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37321425

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Panax japonicus (T. Nees) C.A. Mey. (PJ) has been used as a tonic traditional Chinese medicine (TCM) for years. Based on its meridian tropism in liver, spleen, and lung, PJ was popularly used to enhance the function of these organs. It is originally recorded with detoxicant effect on binge drink in Ben Cao Gang Mu Shi Yi, a persuasive Chinese materia medica. And binge dink has a close relationship with alcoholic liver disease (ALD). Hence, it's meaningful to investigate whether PJ exerts liver protection against binge drink toxicity. AIM OF THE STUDY: This investigation was carried out not only to emphasize the right recognition of total saponins from PJ (SPJ), but also to study on its sober-up effectiveness and defensive mechanism against acute alcoholic liver injury in vivo and in vitro. MATERIALS AND METHODS: SPJ constituents were verified by HPLC-UV analysis. In vivo, acute alcoholic liver oxidative stress and hepatosteatosis were established by continuous ethanol gavage to C57BL/6 mice for 3 days. SPJ was pre-administered for 7 days to investigate its protective efficacy. Loss of righting reflex (LORR) assay was employed to assess anti-inebriation effect of SPJ. Transaminases levels and hematoxylin and eosin (H&E) staining were measured to indicate the alcoholic liver injury. Antioxidant enzymes were measured to evaluate the oxidative stress degree in liver. Measurement of hepatic lipid accumulation was based on Oil Red O staining. Levels of inflammatory cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA). In vitro, HepG2 cells were treated with ethanol for 24 h, and SPJ was pre-administered for 2 h. 2,7-dichlorofluorescein diacetate (DCFH-DA) was used as a probe to indicate reactive oxygen species (ROS) generation. Nrf2 activation was verified by the favor of specific inhibitor, ML385. The nuclear translocation of Nrf2 was indicated with immunofluorescence analysis. Proteins expressions of related pathways were determined by Western blotting. RESULTS: Oleanane-type saponins are the most abundant constituents of SPJ. In this acute model, SPJ released inebriation of mice in a dose dependent manner. It decreased levels of serum ALT and AST, and hepatic TG. Besides, SPJ inhibited CYP2E1 expression and reduced MDA level in liver, with upregulations of antioxidant enzymes GSH, SOD and CAT. p62-related Nrf2 pathway was activated by SPJ with downstream upregulations of GCLC and NQO1 in liver. AMPK-ACC/PPARα axis was upregulated by SPJ to alleviate hepatic lipidosis. Hepatic IL-6 and TNF-α levels were downregulated by SPJ, which indicated a regressive lipid peroxidation in liver. In HepG2 cells, SPJ reduced ethanol-exposed ROS generation. Activated p62-related Nrf2 pathway was verified to contribute to the alleviation of alcohol-induced oxidative stress in hepatic cells. CONCLUSION: This attenuation of hepatic oxidative stress and steatosis suggested the therapeutic value of SPJ for ALD.


Assuntos
Fígado Gorduroso , Hepatopatias Alcoólicas , Panax , Saponinas , Camundongos , Animais , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , PPAR alfa/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Saponinas/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fígado , Fígado Gorduroso/tratamento farmacológico , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Etanol/farmacologia
20.
Mol Nutr Food Res ; 67(14): e2200562, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37162033

RESUMO

SCOPE: Alcoholic liver disease (ALD) is a common disease with a high incidence. Because traditional drugs have obvious side effects, it is desired to find more effective drugs. METHODS AND RESULTS: This study investigates the effects of melanin from Inonotus hispidus fruiting bodies (IHFM) on acute alcoholic injury mice and detects the protective mechanisms via the gut-microbiota-liver axis. The results show that IHFM alleviates mouse liver injury by enhancing alcohol metabolism capacity, reducing inflammation response level and strengthening antioxidant activities. IHFM also improves mouse liver injury by activating Nrf2 signaling pathway and inhibiting toll-like receptor4 (TLR4)/nuclear factor-κß (NF-κß) signaling pathway. Furthermore, 16S amplification sequencing shows that IHFM can significantly increase the relative abundance of Lactobacillus reuteri and Lactobacillus johnsonii. The relative abundance of L. reuteri positively correlates with an antioxidant index, while negatively correlates with inflammatory factors. CONCLUSION: IHFM can protect mice from acute alcoholic liver injury by upregulating the Nrf2 signaling pathway, downregulating the TLR4/NF-κß signaling pathway, and upregulating the relative abundance of L. reuteri and L. johnsonii, representing a step forward in the development of IHFM.


Assuntos
Hepatopatias Alcoólicas , Melaninas , Camundongos , Animais , Melaninas/metabolismo , Melaninas/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/metabolismo , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA