Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.634
Filtrar
1.
Sci Rep ; 14(1): 11632, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773257

RESUMO

In recent years, the utility of polygenic risk scores (PRS) in forecasting disease susceptibility from genome-wide association studies (GWAS) results has been widely recognised. Yet, these models face limitations due to overfitting and the potential overestimation of effect sizes in correlated variants. To surmount these obstacles, we devised the Stacked Neural Network Polygenic Risk Score (SNPRS). This novel approach synthesises outputs from multiple neural network models, each calibrated using genetic variants chosen based on diverse p-value thresholds. By doing so, SNPRS captures a broader array of genetic variants, enabling a more nuanced interpretation of the combined effects of these variants. We assessed the efficacy of SNPRS using the UK Biobank data, focusing on the genetic risks associated with breast and prostate cancers, as well as quantitative traits like height and BMI. We also extended our analysis to the Korea Genome and Epidemiology Study (KoGES) dataset. Impressively, our results indicate that SNPRS surpasses traditional PRS models and an isolated deep neural network in terms of accuracy, highlighting its promise in refining the efficacy and relevance of PRS in genetic studies.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Herança Multifatorial , Redes Neurais de Computação , Polimorfismo de Nucleotídeo Único , Humanos , Herança Multifatorial/genética , Estudo de Associação Genômica Ampla/métodos , Feminino , Masculino , Neoplasias da Próstata/genética , Neoplasias da Mama/genética , Fatores de Risco , Estratificação de Risco Genético
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731822

RESUMO

Our understanding of rare disease genetics has been shaped by a monogenic disease model. While the traditional monogenic disease model has been successful in identifying numerous disease-associated genes and significantly enlarged our knowledge in the field of human genetics, it has limitations in explaining phenomena like phenotypic variability and reduced penetrance. Widening the perspective beyond Mendelian inheritance has the potential to enable a better understanding of disease complexity in rare disorders. Digenic inheritance is the simplest instance of a non-Mendelian disorder, characterized by the functional interplay of variants in two disease-contributing genes. Known digenic disease causes show a range of pathomechanisms underlying digenic interplay, including direct and indirect gene product interactions as well as epigenetic modifications. This review aims to systematically explore the background of digenic inheritance in rare disorders, the approaches and challenges when investigating digenic inheritance, and the current evidence for digenic inheritance in mitochondrial disorders.


Assuntos
Doenças Mitocondriais , Doenças Raras , Humanos , Doenças Mitocondriais/genética , Doenças Raras/genética , Predisposição Genética para Doença , Epigênese Genética , Herança Multifatorial/genética , Animais
3.
Transl Vis Sci Technol ; 13(5): 13, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767906

RESUMO

Purpose: The purpose of this study was to conduct a large-scale genome-wide association study (GWAS) and construct a polygenic risk score (PRS) for risk stratification in patients with dry eye disease (DED) using the Taiwan Biobank (TWB) databases. Methods: This retrospective case-control study involved 40,112 subjects of Han Chinese ancestry, sourced from the publicly available TWB. Cases were patients with DED (n = 14,185), and controls were individuals without DED (n = 25,927). The patients with DED were further divided into 8072 young (<60 years old) and 6113 old participants (≥60 years old). Using PLINK (version 1.9) software, quality control was carried out, followed by logistic regression analysis with adjustments for sex, age, body mass index, depression, and manic episodes as covariates. We also built PRS prediction models using the standard clumping and thresholding method and evaluated their performance (area under the curve [AUC]) through five-fold cross-validation. Results: Eleven independent risk loci were identified for these patients with DED at the genome-wide significance levels, including DNAJB6, MAML3, LINC02267, DCHS1, SIRPB3P, HULC, MUC16, GAS2L3, and ZFPM2. Among these, MUC16 encodes mucin family protein. The PRS model incorporated 932 and 740 genetic loci for young and old populations, respectively. A higher PRS score indicated a greater DED risk, with the top 5% of PRS individuals having a 10-fold higher risk. After integrating these covariates into the PRS model, the area under the receiver operating curve (AUROC) increased from 0.509 and 0.537 to 0.600 and 0.648 for young and old populations, respectively, demonstrating the genetic-environmental interaction. Conclusions: Our study prompts potential candidates for the mechanism of DED and paves the way for more personalized medication in the future. Translational Relevance: Our study identified genes related to DED and constructed a PRS model to improve DED prediction.


Assuntos
Síndromes do Olho Seco , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Herança Multifatorial , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Síndromes do Olho Seco/genética , Síndromes do Olho Seco/epidemiologia , Estudos de Casos e Controles , Predisposição Genética para Doença/genética , Adulto , Herança Multifatorial/genética , Idoso , Fatores de Risco , Medição de Risco/métodos , Polimorfismo de Nucleotídeo Único , Taiwan/epidemiologia , Estratificação de Risco Genético
4.
Nat Genet ; 56(5): 838-845, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38741015

RESUMO

Autoimmune and inflammatory diseases are polygenic disorders of the immune system. Many genomic loci harbor risk alleles for several diseases, but the limited resolution of genetic mapping prevents determining whether the same allele is responsible, indicating a shared underlying mechanism. Here, using a collection of 129,058 cases and controls across 6 diseases, we show that ~40% of overlapping associations are due to the same allele. We improve fine-mapping resolution for shared alleles twofold by combining cases and controls across diseases, allowing us to identify more expression quantitative trait loci driven by the shared alleles. The patterns indicate widespread sharing of pathogenic mechanisms but not a single global autoimmune mechanism. Our approach can be applied to any set of traits and is particularly valuable as sample collections become depleted.


Assuntos
Alelos , Doenças Autoimunes , Mapeamento Cromossômico , Predisposição Genética para Doença , Locos de Características Quantitativas , Humanos , Doenças Autoimunes/genética , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla , Estudos de Casos e Controles , Herança Multifatorial/genética
5.
Nat Genet ; 56(5): 819-826, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38741014

RESUMO

We performed genome-wide association studies of breast cancer including 18,034 cases and 22,104 controls of African ancestry. Genetic variants at 12 loci were associated with breast cancer risk (P < 5 × 10-8), including associations of a low-frequency missense variant rs61751053 in ARHGEF38 with overall breast cancer (odds ratio (OR) = 1.48) and a common variant rs76664032 at chromosome 2q14.2 with triple-negative breast cancer (TNBC) (OR = 1.30). Approximately 15.4% of cases with TNBC carried six risk alleles in three genome-wide association study-identified TNBC risk variants, with an OR of 4.21 (95% confidence interval = 2.66-7.03) compared with those carrying fewer than two risk alleles. A polygenic risk score (PRS) showed an area under the receiver operating characteristic curve of 0.60 for the prediction of breast cancer risk, which outperformed PRS derived using data from females of European ancestry. Our study markedly increases the population diversity in genetic studies for breast cancer and demonstrates the utility of PRS for risk prediction in females of African ancestry.


Assuntos
População Negra , Neoplasias da Mama , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Feminino , Estudo de Associação Genômica Ampla/métodos , Neoplasias da Mama/genética , População Negra/genética , Estudos de Casos e Controles , Fatores de Risco , Neoplasias de Mama Triplo Negativas/genética , Alelos , Herança Multifatorial/genética , Pessoa de Meia-Idade , Loci Gênicos , População Branca/genética
6.
Nat Commun ; 15(1): 4230, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762475

RESUMO

Type 2 diabetes (T2D) presents a formidable global health challenge, highlighted by its escalating prevalence, underscoring the critical need for precision health strategies and early detection initiatives. Leveraging artificial intelligence, particularly eXtreme Gradient Boosting (XGBoost), we devise robust risk assessment models for T2D. Drawing upon comprehensive genetic and medical imaging datasets from 68,911 individuals in the Taiwan Biobank, our models integrate Polygenic Risk Scores (PRS), Multi-image Risk Scores (MRS), and demographic variables, such as age, sex, and T2D family history. Here, we show that our model achieves an Area Under the Receiver Operating Curve (AUC) of 0.94, effectively identifying high-risk T2D subgroups. A streamlined model featuring eight key variables also maintains a high AUC of 0.939. This high accuracy for T2D risk assessment promises to catalyze early detection and preventive strategies. Moreover, we introduce an accessible online risk assessment tool for T2D, facilitating broader applicability and dissemination of our findings.


Assuntos
Inteligência Artificial , Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/genética , Humanos , Medição de Risco/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Taiwan/epidemiologia , Predisposição Genética para Doença , Adulto , Diagnóstico por Imagem/métodos , Idoso , Fatores de Risco , Curva ROC , Herança Multifatorial/genética
7.
Nat Commun ; 15(1): 4260, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769300

RESUMO

Transcriptome-wide association study (TWAS) is a popular approach to dissect the functional consequence of disease associated non-coding variants. Most existing TWAS use bulk tissues and may not have the resolution to reveal cell-type specific target genes. Single-cell expression quantitative trait loci (sc-eQTL) datasets are emerging. The largest bulk- and sc-eQTL datasets are most conveniently available as summary statistics, but have not been broadly utilized in TWAS. Here, we present a new method EXPRESSO (EXpression PREdiction with Summary Statistics Only), to analyze sc-eQTL summary statistics, which also integrates 3D genomic data and epigenomic annotation to prioritize causal variants. EXPRESSO substantially improves existing methods. We apply EXPRESSO to analyze multi-ancestry GWAS datasets for 14 autoimmune diseases. EXPRESSO uniquely identifies 958 novel gene x trait associations, which is 26% more than the second-best method. Among them, 492 are unique to cell type level analysis and missed by TWAS using whole blood. We also develop a cell type aware drug repurposing pipeline, which leverages EXPRESSO results to identify drug compounds that can reverse disease gene expressions in relevant cell types. Our results point to multiple drugs with therapeutic potentials, including metformin for type 1 diabetes, and vitamin K for ulcerative colitis.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença/genética , Transcriptoma/genética , Doenças Autoimunes/genética , Polimorfismo de Nucleotídeo Único , Herança Multifatorial/genética , Perfilação da Expressão Gênica/métodos
8.
Am J Hum Genet ; 111(5): 833-840, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701744

RESUMO

Some commercial firms currently sell polygenic indexes (PGIs) to individual consumers, despite their relatively low predictive power. It might be tempting to assume that because the predictive power of many PGIs is so modest, other sorts of firms-such as those selling insurance and financial services-will not be interested in using PGIs for their own purposes. We argue to the contrary. We build this argument in two ways. First, we offer a very simple model, rooted in economic theory, of a profit-maximizing firm that can gain information about a single consumer's genome. We use the model to show that, depending on the specific economic environment, a firm would be willing to pay for statistically noisy PGIs, even if they allow for only a small reduction in uncertainty. Second, we describe two plausible scenarios in which these different kinds of firms could conceivably use PGIs to maximize profits. Finally, we briefly discuss some of the associated ethics and policy issues. They deserve more attention, which is unlikely to be given until it is first recognized that firms whose services affect a large swath of the public will indeed have incentives to use PGIs.


Assuntos
Herança Multifatorial , Humanos , Herança Multifatorial/genética , Testes Genéticos/ética , Testes Genéticos/economia
9.
Nat Commun ; 15(1): 3346, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693125

RESUMO

Endurance exercise training is known to reduce risk for a range of complex diseases. However, the molecular basis of this effect has been challenging to study and largely restricted to analyses of either few or easily biopsied tissues. Extensive transcriptome data collected across 15 tissues during exercise training in rats as part of the Molecular Transducers of Physical Activity Consortium has provided a unique opportunity to clarify how exercise can affect tissue-specific gene expression and further suggest how exercise adaptation may impact complex disease-associated genes. To build this map, we integrate this multi-tissue atlas of gene expression changes with gene-disease targets, genetic regulation of expression, and trait relationship data in humans. Consensus from multiple approaches prioritizes specific tissues and genes where endurance exercise impacts disease-relevant gene expression. Specifically, we identify a total of 5523 trait-tissue-gene triplets to serve as a valuable starting point for future investigations [Exercise; Transcription; Human Phenotypic Variation].


Assuntos
Regulação da Expressão Gênica , Condicionamento Físico Animal , Animais , Humanos , Ratos , Transcriptoma/genética , Herança Multifatorial/genética , Exercício Físico/fisiologia , Masculino , Fenótipo , Locos de Características Quantitativas , Perfilação da Expressão Gênica
10.
PLoS One ; 19(5): e0303610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758931

RESUMO

We have previously shown that polygenic risk scores (PRS) can improve risk stratification of peripheral artery disease (PAD) in a large, retrospective cohort. Here, we evaluate the potential of PRS in improving the detection of PAD and prediction of major adverse cardiovascular and cerebrovascular events (MACCE) and adverse events (AE) in an institutional patient cohort. We created a cohort of 278 patients (52 cases and 226 controls) and fit a PAD-specific PRS based on the weighted sum of risk alleles. We built traditional clinical risk models and machine learning (ML) models using clinical and genetic variables to detect PAD, MACCE, and AE. The models' performances were measured using the area under the curve (AUC), net reclassification index (NRI), integrated discrimination improvement (IDI), and Brier score. We also evaluated the clinical utility of our PAD model using decision curve analysis (DCA). We found a modest, but not statistically significant improvement in the PAD detection model's performance with the inclusion of PRS from 0.902 (95% CI: 0.846-0.957) (clinical variables only) to 0.909 (95% CI: 0.856-0.961) (clinical variables with PRS). The PRS inclusion significantly improved risk re-classification of PAD with an NRI of 0.07 (95% CI: 0.002-0.137), p = 0.04. For our ML model predicting MACCE, the addition of PRS did not significantly improve the AUC, however, NRI analysis demonstrated significant improvement in risk re-classification (p = 2e-05). Decision curve analysis showed higher net benefit of our combined PRS-clinical model across all thresholds of PAD detection. Including PRS to a clinical PAD-risk model was associated with improvement in risk stratification and clinical utility, although we did not see a significant change in AUC. This result underscores the potential clinical utility of incorporating PRS data into clinical risk models for prevalent PAD and the need for use of evaluation metrics that can discern the clinical impact of using new biomarkers in smaller populations.


Assuntos
Doença Arterial Periférica , Humanos , Doença Arterial Periférica/genética , Doença Arterial Periférica/diagnóstico , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Medição de Risco/métodos , Fatores de Risco , Aprendizado de Máquina , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/diagnóstico , Estudos Retrospectivos , Herança Multifatorial/genética , Estudos de Casos e Controles , Área Sob a Curva , Estratificação de Risco Genético
11.
Mol Ecol ; 33(9): e17344, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38597332

RESUMO

Body size variation is central in the evolution of life-history traits in amphibians, but the underlying genetic architecture of this complex trait is still largely unknown. Herein, we studied the genetic basis of body size and fecundity of the alternative morphotypes in a wild population of the Greek smooth newt (Lissotriton graecus). By combining a genome-wide association approach with linkage disequilibrium network analysis, we were able to identify clusters of highly correlated loci thus maximizing sequence data for downstream analysis. The putatively associated variants explained 12.8% to 44.5% of the total phenotypic variation in body size and were mapped to genes with functional roles in the regulation of gene expression and cell cycle processes. Our study is the first to provide insights into the genetic basis of complex traits in newts and provides a useful tool to identify loci potentially involved in fitness-related traits in small data sets from natural populations in non-model species.


Assuntos
Tamanho Corporal , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Herança Multifatorial , Animais , Herança Multifatorial/genética , Tamanho Corporal/genética , Salamandridae/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Genética Populacional , Fertilidade/genética , Locos de Características Quantitativas
12.
PLoS Biol ; 22(4): e3002511, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603516

RESUMO

A central aim of genome-wide association studies (GWASs) is to estimate direct genetic effects: the causal effects on an individual's phenotype of the alleles that they carry. However, estimates of direct effects can be subject to genetic and environmental confounding and can also absorb the "indirect" genetic effects of relatives' genotypes. Recently, an important development in controlling for these confounds has been the use of within-family GWASs, which, because of the randomness of mendelian segregation within pedigrees, are often interpreted as producing unbiased estimates of direct effects. Here, we present a general theoretical analysis of the influence of confounding in standard population-based and within-family GWASs. We show that, contrary to common interpretation, family-based estimates of direct effects can be biased by genetic confounding. In humans, such biases will often be small per-locus, but can be compounded when effect-size estimates are used in polygenic scores (PGSs). We illustrate the influence of genetic confounding on population- and family-based estimates of direct effects using models of assortative mating, population stratification, and stabilizing selection on GWAS traits. We further show how family-based estimates of indirect genetic effects, based on comparisons of parentally transmitted and untransmitted alleles, can suffer substantial genetic confounding. We conclude that, while family-based studies have placed GWAS estimation on a more rigorous footing, they carry subtle issues of interpretation that arise from confounding.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Humanos , Genótipo , Fenótipo , Herança Multifatorial/genética , Alelos , Polimorfismo de Nucleotídeo Único/genética
13.
Cell Genom ; 4(4): 100539, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604127

RESUMO

Polygenic risk scores (PRSs) are now showing promising predictive performance on a wide variety of complex traits and diseases, but there exists a substantial performance gap across populations. We propose MUSSEL, a method for ancestry-specific polygenic prediction that borrows information in summary statistics from genome-wide association studies (GWASs) across multiple ancestry groups via Bayesian hierarchical modeling and ensemble learning. In our simulation studies and data analyses across four distinct studies, totaling 5.7 million participants with a substantial ancestral diversity, MUSSEL shows promising performance compared to alternatives. For example, MUSSEL has an average gain in prediction R2 across 11 continuous traits of 40.2% and 49.3% compared to PRS-CSx and CT-SLEB, respectively, in the African ancestry population. The best-performing method, however, varies by GWAS sample size, target ancestry, trait architecture, and linkage disequilibrium reference samples; thus, ultimately a combination of methods may be needed to generate the most robust PRSs across diverse populations.


Assuntos
Bivalves , Herança Multifatorial , Humanos , Animais , Herança Multifatorial/genética , Estudo de Associação Genômica Ampla/métodos , Teorema de Bayes , Fenótipo , Estratificação de Risco Genético
15.
PLoS Comput Biol ; 20(4): e1011990, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598551

RESUMO

Prostate cancer is a heritable disease with ancestry-biased incidence and mortality. Polygenic risk scores (PRSs) offer promising advancements in predicting disease risk, including prostate cancer. While their accuracy continues to improve, research aimed at enhancing their effectiveness within African and Asian populations remains key for equitable use. Recent algorithmic developments for PRS derivation have resulted in improved pan-ancestral risk prediction for several diseases. In this study, we benchmark the predictive power of six widely used PRS derivation algorithms, including four of which adjust for ancestry, against prostate cancer cases and controls from the UK Biobank and All of Us cohorts. We find modest improvement in discriminatory ability when compared with a simple method that prioritizes variants, clumping, and published polygenic risk scores. Our findings underscore the importance of improving upon risk prediction algorithms and the sampling of diverse cohorts.


Assuntos
Algoritmos , Benchmarking , Predisposição Genética para Doença , Herança Multifatorial , Neoplasias da Próstata , Humanos , Neoplasias da Próstata/genética , Masculino , Benchmarking/métodos , Predisposição Genética para Doença/genética , Herança Multifatorial/genética , Estudos de Coortes , Fatores de Risco , Polimorfismo de Nucleotídeo Único/genética , Estudo de Associação Genômica Ampla/métodos , Biologia Computacional/métodos , Medição de Risco/métodos , Estudos de Casos e Controles , Estratificação de Risco Genético
16.
PLoS One ; 19(4): e0298906, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625909

RESUMO

Detecting epistatic drivers of human phenotypes is a considerable challenge. Traditional approaches use regression to sequentially test multiplicative interaction terms involving pairs of genetic variants. For higher-order interactions and genome-wide large-scale data, this strategy is computationally intractable. Moreover, multiplicative terms used in regression modeling may not capture the form of biological interactions. Building on the Predictability, Computability, Stability (PCS) framework, we introduce the epiTree pipeline to extract higher-order interactions from genomic data using tree-based models. The epiTree pipeline first selects a set of variants derived from tissue-specific estimates of gene expression. Next, it uses iterative random forests (iRF) to search training data for candidate Boolean interactions (pairwise and higher-order). We derive significance tests for interactions, based on a stabilized likelihood ratio test, by simulating Boolean tree-structured null (no epistasis) and alternative (epistasis) distributions on hold-out test data. Finally, our pipeline computes PCS epistasis p-values that probabilisticly quantify improvement in prediction accuracy via bootstrap sampling on the test set. We validate the epiTree pipeline in two case studies using data from the UK Biobank: predicting red hair and multiple sclerosis (MS). In the case of predicting red hair, epiTree recovers known epistatic interactions surrounding MC1R and novel interactions, representing non-linearities not captured by logistic regression models. In the case of predicting MS, a more complex phenotype than red hair, epiTree rankings prioritize novel interactions surrounding HLA-DRB1, a variant previously associated with MS in several populations. Taken together, these results highlight the potential for epiTree rankings to help reduce the design space for follow up experiments.


Assuntos
Epistasia Genética , Estudo de Associação Genômica Ampla , Humanos , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Herança Multifatorial/genética , Modelos Logísticos , Polimorfismo de Nucleotídeo Único
17.
Nat Commun ; 15(1): 3238, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622117

RESUMO

Great efforts are being made to develop advanced polygenic risk scores (PRS) to improve the prediction of complex traits and diseases. However, most existing PRS are primarily trained on European ancestry populations, limiting their transferability to non-European populations. In this article, we propose a novel method for generating multi-ancestry Polygenic Risk scOres based on enSemble of PEnalized Regression models (PROSPER). PROSPER integrates genome-wide association studies (GWAS) summary statistics from diverse populations to develop ancestry-specific PRS with improved predictive power for minority populations. The method uses a combination of L 1 (lasso) and L 2 (ridge) penalty functions, a parsimonious specification of the penalty parameters across populations, and an ensemble step to combine PRS generated across different penalty parameters. We evaluate the performance of PROSPER and other existing methods on large-scale simulated and real datasets, including those from 23andMe Inc., the Global Lipids Genetics Consortium, and All of Us. Results show that PROSPER can substantially improve multi-ancestry polygenic prediction compared to alternative methods across a wide variety of genetic architectures. In real data analyses, for example, PROSPER increased out-of-sample prediction R2 for continuous traits by an average of 70% compared to a state-of-the-art Bayesian method (PRS-CSx) in the African ancestry population. Further, PROSPER is computationally highly scalable for the analysis of large SNP contents and many diverse populations.


Assuntos
Estudo de Associação Genômica Ampla , Saúde da População , Humanos , Teorema de Bayes , Herança Multifatorial/genética , População Negra/genética , Estratificação de Risco Genético , Fatores de Risco
18.
Genes (Basel) ; 15(4)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38674396

RESUMO

BACKGROUND: Familial hypercholesterolemia (FH) comprises high LDL-cholesterol (LDL-c) levels and high cardiovascular disease risk. In the absence of pathogenic variants in causative genes, a polygenic basis was hypothesized. METHODS: In a population of 418 patients (excluding homozygotes) with clinical suspicion of FH, the FH-causative genes and the regions of single nucleotide polymorphisms (SNPs) included in 12-SNP and 6-SNP scores were sequenced by next-generation sequencing, allowing for the detection of pathogenic variants (V+) in 220 patients. To make a comparison, only patients without uncertain significance variants (V-/USV-) were considered (n = 162). RESULTS: Higher values of both scores were observed in V+ than in V-. Considering a cut-off leading to 80% of V-/USV- as score-positive, a lower prevalence of patients positive for both 12-SNP and 6-SNP scores was observed in V+ (p = 0.010 and 0.033, respectively). Mainly for the 12-SNP score, among V+ patients, higher LDL-c levels were observed in score-positive (223 mg/dL -IQR 187-279) than in negative patients (212 mg/dL -IQR 162-240; p = 0.006). Multivariate analysis confirmed the association of scores and LDL-c levels independently of age, sex, and presence of pathogenic variants and revealed a greater association in children. CONCLUSIONS: The 12-SNP and 6-SNP polygenic scores could explain hypercholesterolemia in patients without pathogenic variants as well as the variability of LDL-c levels among patients with FH-causative variants.


Assuntos
LDL-Colesterol , Predisposição Genética para Doença , Hiperlipoproteinemia Tipo II , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Humanos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/sangue , Masculino , Feminino , LDL-Colesterol/sangue , LDL-Colesterol/genética , Pessoa de Meia-Idade , Adulto , Herança Multifatorial/genética , Idoso
19.
Trends Genet ; 40(5): 379-380, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643035

RESUMO

Lennon et al. recently proposed a clinical polygenic score (PGS) pipeline as part of the Electronic Medical Records and Genomics (eMERGE) network initiative. In this spotlight article we discuss the broader context for the use of PGS in preventive medicine and highlight key limitations and challenges facing their inclusion in prediction models.


Assuntos
Herança Multifatorial , Herança Multifatorial/genética , Humanos , Genômica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Registros Eletrônicos de Saúde , Medicina Preventiva
20.
Nat Commun ; 15(1): 3385, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649715

RESUMO

There is a long-standing debate about the magnitude of the contribution of gene-environment interactions to phenotypic variations of complex traits owing to the low statistical power and few reported interactions to date. To address this issue, the Gene-Lifestyle Interactions Working Group within the Cohorts for Heart and Aging Research in Genetic Epidemiology Consortium has been spearheading efforts to investigate G × E in large and diverse samples through meta-analysis. Here, we present a powerful new approach to screen for interactions across the genome, an approach that shares substantial similarity to the Mendelian randomization framework. We identify and confirm 5 loci (6 independent signals) interacted with either cigarette smoking or alcohol consumption for serum lipids, and empirically demonstrate that interaction and mediation are the major contributors to genetic effect size heterogeneity across populations. The estimated lower bound of the interaction and environmentally mediated heritability is significant (P < 0.02) for low-density lipoprotein cholesterol and triglycerides in Cross-Population data. Our study improves the understanding of the genetic architecture and environmental contributions to complex traits.


Assuntos
Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Herança Multifatorial , Humanos , Herança Multifatorial/genética , Masculino , Triglicerídeos/sangue , Feminino , Consumo de Bebidas Alcoólicas/genética , Polimorfismo de Nucleotídeo Único , Fenótipo , LDL-Colesterol/sangue , LDL-Colesterol/metabolismo , Fumar Cigarros/genética , Locos de Características Quantitativas , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA