Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Med Rep ; 28(3)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37539729

RESUMO

Drug­resistance in hepatitis B virus (HBV), especially due to prolonged treatment with nucleoside analogs, such as lamivudine (LAM), remains a clinical challenge. Alternatively, several plant products and isolated phytochemicals have been used as promising anti­HBV therapeutics with no sign of resistance. Among all known Rhus species, R. coriaria, R. succedanea and R. tripartite have been widely studied for their anti­HBV efficacy, however, the effects of R. retinorrhoea have not been previously investigated. The current study reported the isolation of two flavonoids, namely sakuranetin (SEK) and velutin (VEL), from the dichloromethane fraction of R. retinorrhoea aerial parts using chromatography and spectral analyses. The two flavonoids (6.25­50 µg/ml) were pre­tested for non­hepatocytotoxicity using an MTT assay and their dose­ and time­dependent inhibitory activities against HBV [hepatitis B surface antigen (HBsAg) and hepatitis B 'e' antigen (HBeAg)] in cultured HepG2.2.15 cells were assessed by ELISA. SEK and VEL at the selected doses (12.5 µg/ml) significantly inhibited HBsAg by ~58.8 and ~56.4%, respectively, and HBeAg by ~55.5 and ~52.4%, respectively, on day 5. The reference drugs LAM and quercetin (anti­HBV flavonoids), suppressed the production of HBsAg/HBeAg by ~86.4/~64 and ~84.5/~62%, respectively. Furthermore, molecular docking of the flavonoids with HBV polymerase and capsid proteins revealed the formation of stable complexes with good docking energies, thus supporting their structure­based antiviral mechanism. In conclusion, the present study was the first to demonstrate the anti­HBV therapeutic activities of SEK and VEL isolated from R. retinorrhoea.


Assuntos
Hepatite B Crônica , Herpesvirus Cercopitecino 1 , Rhus , Antígenos de Superfície da Hepatite B/metabolismo , Antígenos E da Hepatite B , Herpesvirus Cercopitecino 1/metabolismo , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/uso terapêutico , Flavonoides/química , Vírus da Hepatite B/genética , Anticorpos/farmacologia , DNA Viral
2.
J Ethnopharmacol ; 302(Pt A): 115896, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36334815

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia miltiorrhiza (the roots of S. miltiorrhiza Bunge, Danshen in Chinese), a traditional Chinese medicine, has been clinically used to prevent and treat various diseases, such as cardiovascular and cerebrovascular diseases, diabetes, and hepatitis B, in China and some other Asian countries. Lithospermic acid (LA), a polyphenol derived from S. miltiorrhiza, has been reported to exhibit multiple pharmacological properties, such as anti-inflammatory, anti-HIV, and anti-carbon tetrachloride-induced liver injury activities. However, little is known about the anti-hepatitis B virus (HBV) activity of LA. AIM OF THE STUDY: The study was projected to investigate the anti-HBV activity of LA in vitro (HepG2.2.15 and pHBV1.3-transfected HepG2 cells) and in vivo (pAAV-HBV1.2 hydrodynamic injection [HBV-HDI] mice) and explore the potential mechanism as well. MATERIALS AND METHODS: Hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) contents were detected by ELISA kits. HBV DNA and hepatitis B core antigen (HBcAg) levels were evaluated by quantitative real-time polymerase chain reaction and immunohistochemistry assay, respectively. The proteins in autophagy process, lysosomal acidic function, and autophagy-related signaling pathways were examined by Western blot. Transmission electron microscopy was used to observe the number of autophagosomes and autolysosomes. Confocal microscopy was applied to analyze the autophagic flux and lysosomal acidification, using mCherry-enhanced green fluorescent protein (EGFP)-microtubule-associated protein light chain (LC)3 and lysosomal probes, respectively. RESULTS: LA exhibited anti-HBV activity by inhibiting HBV DNA replication in HepG2.2.15 and pHBV-transfected HepG2 cells in dose- and time-dependent manners and hampering HBsAg and HBeAg levels in HepG2.2.15 cells to a certain extent. LA reduced HBV DNA, HBsAg/HBeAg, and HBcAg levels in the serum/liver tissues of HBV-HDI C57BL/6 mice during the 3-week treatment and suppressed the withdrawal rebound of HBV DNA and HBsAg in the mice serum. LA increased LC3-II protein expression and the number of autolysosomes/autophagosomes and promoted the degradation of sequestosome 1(p62) protein in vitro and in vivo. LA enhanced the co-localization of LC3 protein with autolysosomes, further confirming the ability of LA to induce a complete autophagy. Knockdown of autophagy-related gene (Atg) 7 or 5 in vitro and administration of 3-methyladenine (an autophagic inhibitor) in vivo disabled the inhibitory efficacy of LA on HBV DNA replication, suggesting that the anti-HBV efficacy of LA depended on its ability of inducing autophagy. LA could enhance lysosomal acidification and improve the function of lysosomes by promoting the protein expression of lysosomal-associated membrane protein (LAMP)-1, LAMP-2, and mature cathepsin D, which may contribute to the autophagic induction of LA. LA inhibited the activation of AKT and mammalian target of rapamycin (mTOR) induced by HBV, which was reversed by IGF-1 (an agonist of the PI3K/AKT/mTOR signaling pathway), indicating that LA elicited autophagy through hampering the PI3K/AKT/mTOR signaling pathway. CONCLUSION: We revealed the anti-HBV activity and mechanism of LA in vitro and in vivo. This study facilitates a new understanding of the anti-HBV potent components of S. miltiorrhiza and sheds light on LA for further development as an active constituent or candidate used in the therapy against HBV infection.


Assuntos
Hepatite B , Herpesvirus Cercopitecino 1 , Salvia miltiorrhiza , Camundongos , Animais , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B/genética , Antígenos do Núcleo do Vírus da Hepatite B/genética , Polifenóis/metabolismo , Herpesvirus Cercopitecino 1/genética , Herpesvirus Cercopitecino 1/metabolismo , Antígenos E da Hepatite B , DNA Viral/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Replicação Viral/fisiologia , Camundongos Endogâmicos C57BL , Autofagia , Serina-Treonina Quinases TOR/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
3.
J Virol ; 90(20): 9420-32, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27512063

RESUMO

UNLABELLED: B virus (Macacine herpesvirus 1) can cause deadly zoonotic disease in humans. Molecular mechanisms of B virus cell entry are poorly understood for both macaques and humans. Here we investigated the abilities of clinical B virus isolates to use entry receptors of herpes simplex viruses (HSV). We showed that resistant B78H1 cells became susceptible to B virus clinical strains upon expression of either human nectin-2 or nectin-1. Antibody against glycoprotein D (gD) protected these nectin-bearing cells from B virus infection, and a gD-negative recombinant B virus failed to enter these cells, indicating that the nectin-mediated B virus entry depends on gD. We observed that the infectivity of B virus isolates with a single amino acid substitution (D122N) in the IgV-core of the gD ectodomain was impaired on nectin-1-bearing cells. Computational homology-based modeling of the B virus gD-nectin-1 complex revealed conformational differences between the structures of the gD-122N and gD-122D variants that affected the gD-nectin-1 protein-protein interface and binding affinity. Unlike HSV, B virus clinical strains were unable to use herpesvirus entry mediator (HVEM) as a receptor, regardless of conservation of the gD amino acid residues essential for HSV-1 entry via HVEM. Based on the model of the B virus gD-HVEM interface, we predict that residues R7, R11, and G15 are largely responsible for the inability of B virus to utilize HVEM for entry. The ability of B virus to enter cells of a human host by using a combination of receptors distinct from those for HSV-1 or HSV-2 suggests a possible mechanism of enhanced neuropathogenicity associated with zoonotic infections. IMPORTANCE: B virus causes brainstem destruction in infected humans in the absence of timely diagnosis and intervention. Nectins are cell adhesion molecules that are widely expressed in human tissues, including neurons and neuronal synapses. Here we report that human nectin-2 is a target receptor for B virus entry, in addition to the reported receptor human nectin-1. Similar to a B virus lab strain, B virus clinical strains can effectively use both nectin-1 and nectin-2 as cellular receptors for entry into human cells, but unlike HSV-1 and HSV-2, none of the clinical strains uses an HVEM-mediated entry pathway. Ultimately, these differences between B virus and HSV-1 and -2 may provide insight into the neuropathogenicity of B virus during zoonotic infections.


Assuntos
Variação Genética/genética , Infecções por Herpesviridae/virologia , Herpesvirus Cercopitecino 1/genética , Proteínas do Envelope Viral/genética , Substituição de Aminoácidos/genética , Animais , Moléculas de Adesão Celular/metabolismo , Chlorocebus aethiops , Infecções por Herpesviridae/metabolismo , Herpesvirus Cercopitecino 1/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/metabolismo , Humanos , Camundongos , Nectinas , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Receptores Virais/metabolismo , Células Vero , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
4.
Theor Biol Med Model ; 11: 27, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24902525

RESUMO

BACKGROUND: The glycoprotein D (gD) is essential for Herpes B virus (BV) entry into mammalian cells. Nectin-1, an HSV-1 gD receptor, is found to be the receptor which mediated BV induced cell-cell fusion, while HVEM does not mediate fusion by BV glycoprotein. However, the specific sequence and structural requirements of the BV gD for the recognition of and binding to Nectin-1 are unknown. Moreover, the 3D structures of BV gD and the BV gD-receptor complex have not been determined. In this study, we propose a reliable model of the interaction of the BV gD with receptor using bioinformatics tools. RESULTS: The three-dimensional structures of two BV gD-receptor complexes were constructed using homology modelling and docking strategy. Based on the models of these complexes, the BV gD receptor interaction patterns were calculated. The results showed that the interface between the BV gD and nectin-1 molecule is not geometrically complementary. The computed molecular interactions indicated that two terminal extensions were the main region of BV gD that binds to nectin-1 and that hydrophobic contacts between the two molecules play key roles in their recognition and binding. The constructed BV gD-HVEM complex model showed that this complex had a lower shape complementarity value and a smaller interface area compared with the HSV-1 gD-HVEM complex, and the number of intermolecular interactions between BV gD-HVEM were fewer than that of HSV-1 gD-HVEM complex. These results could explain why HVEM does not function as a receptor for BV gD. CONCLUSION: In this study, we present structural model for the BV gD in a complex with its receptor. Some features predicted by this model can explain previously reported experimental data. This complex model may lead to a better understanding of the function of BV gD and its interaction with receptor and will improve our understanding of the activation of the BV fusion and entry process.


Assuntos
Moléculas de Adesão Celular/metabolismo , Simulação por Computador , Glicoproteínas/metabolismo , Herpesvirus Cercopitecino 1/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular/química , Glicoproteínas/química , Haplorrinos , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Nectinas , Ligação Proteica , Alinhamento de Sequência , Homologia Estrutural de Proteína , Termodinâmica , Proteínas Virais/química , Internalização do Vírus
5.
In Vitro Cell Dev Biol Anim ; 50(4): 313-20, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24163161

RESUMO

T cell activation is regulated by two distinct signals, signals one and two. Concanavalin A (ConA) is an antigen-independent mitogen and functions as signal one inducer, leading T cells to polyclonal proliferation. CD28 is known to be one of major costimulatory receptors and to provide signal two in the ConA-induced T cell proliferation. Here, we have studied the implication of other costimulatory pathways in the ConA-mediated T cell proliferation by using soluble recombinant proteins consisting of an extracellular domain of costimulatory receptors and Fc portion of human IgG. We found that T cell proliferation induced by ConA, but not PMA plus ionomycin or anti-CD3 mAb, is significantly inhibited by herpes virus entry mediator (HVEM)-Ig, even in the presence of CD28 signaling. Moreover, the high concentration of HVEM-Ig molecules almost completely suppressed ConA-mediated T cell proliferation. These results suggest that HVEM might play more important roles than CD28 in ConA-mediated T cell proliferation.


Assuntos
Antígenos CD28/imunologia , Concanavalina A/administração & dosagem , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Linfócitos T/imunologia , Antígenos CD28/metabolismo , Proliferação de Células/efeitos dos fármacos , Concanavalina A/imunologia , Herpesvirus Cercopitecino 1/imunologia , Herpesvirus Cercopitecino 1/metabolismo , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Ativação Linfocitária/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
6.
J Virol ; 86(23): 12503-11, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22973043

RESUMO

B virus of the family Herpesviridae is endemic to rhesus macaques but results in 80% fatality in untreated humans who are zoonotically infected. Downregulation of major histocompatibility complex (MHC) class I in order to evade CD8(+) T-cell activation is characteristic of most herpesviruses. Here we examined the cell surface presence and total protein expression of MHC class I molecules in B virus-infected human foreskin fibroblast cells and macaque kidney epithelial cells in culture, which are representative of foreign and natural host initial target cells of B virus. Our results show <20% downregulation of surface MHC class I molecules in either type of host cells infected with B virus, which is statistically insignificantly different from that observed in uninfected cells. We also examined the surface expression of MHC class Ib molecules, HLA-E and HLA-G, involved in NK cell inhibition. Our results showed significant upregulation of HLA-E and HLA-G in host cells infected with B virus relative to the amounts observed in other herpesvirus-infected cells. These results suggest that B virus-infected cell surfaces maintain normal levels of MHC class Ia molecules, a finding unique among simplex viruses. This is a unique divergence in immune evasion for B virus, which, unlike human simplex viruses, does not inhibit the transport of peptides for loading onto MHC class Ia molecules because B virus ICP47 lacks a transporter-associated protein binding domain. The fact that MHC class Ib molecules were significantly upregulated has additional implications for host-pathogen interactions.


Assuntos
Regulação da Expressão Gênica/imunologia , Herpesvirus Cercopitecino 1/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Evasão da Resposta Imune/imunologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Animais , Western Blotting , Células Cultivadas , Células Epiteliais/virologia , Fibroblastos/virologia , Citometria de Fluxo , Antígenos HLA-G/metabolismo , Herpesvirus Cercopitecino 1/genética , Herpesvirus Cercopitecino 1/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Interações Hospedeiro-Patógeno , Humanos , Células Matadoras Naturais/imunologia , Antígenos HLA-E
7.
J Virol ; 86(8): 4468-76, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345445

RESUMO

To investigate the requirements of herpesvirus entry and fusion, the four homologous glycoproteins necessary for herpes simplex virus (HSV) fusion were cloned from herpes B virus (BV) (or macacine herpesvirus 1, previously known as cercopithecine herpesvirus 1) and cercopithecine herpesvirus 2 (CeHV-2), both related simian simplexviruses belonging to the alphaherpesvirus subfamily. Western blots and cell-based enzyme-linked immunosorbent assay (ELISA) showed that glycoproteins gB, gD, and gH/gL were expressed in whole-cell lysates and on the cell surface. Cell-cell fusion assays indicated that nectin-1, an HSV-1 gD receptor, mediated fusion of cells expressing glycoproteins from both BV and CeHV-2. However, herpesvirus entry mediator (HVEM), another HSV-1 gD receptor, did not facilitate BV- and CeHV-2-induced cell-cell fusion. Paired immunoglobulin-like type 2 receptor alpha (PILRα), an HSV-1 gB fusion receptor, did not mediate fusion of cells expressing glycoproteins from either simian virus. Productive infection with BV was possible only with nectin-1-expressing cells, indicating that nectin-1 mediated entry while HVEM and PILRα did not function as entry receptors. These results indicate that these alphaherpesviruses have differing preferences for entry receptors. The usage of the HSV-1 gD receptor nectin-1 may explain interspecies transfer of the viruses, and altered receptor usage may result in altered virulence, tropism, or pathogenesis in the new host. A heterotypic cell fusion assay resulting in productive fusion may provide insight into interactions that occur to trigger fusion. These findings may be of therapeutic significance for control of deadly BV infections.


Assuntos
Moléculas de Adesão Celular/metabolismo , Herpesvirus Cercopitecino 1/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Internalização do Vírus , Animais , Fusão Celular , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Expressão Gênica , Herpesvirus Cercopitecino 1/genética , Humanos , Nectinas , Receptores Virais/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
8.
J Biosci ; 35(1): 95-103, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20413914

RESUMO

A mannose-binding lectin (Narcissus tazetta lectin [NTL]) with potent antiviral activity was isolated and purified from the bulbs of the Chinese daffodil Narcissus tazetta var. chinensis, using ion exchange chromatography on diethylaminoethyl (DEAE)-cellulose, affinity chromatography on mannose-agarose and fast protein liquid chromatography (FPLC)-gel filtration on Superose 12. The purified lectin was shown to have an apparent molecular mass of 26 kDa by gel filtration and 13 kDa by SDS-PAGE, indicating that it is probably a dimer with two identical subunits. The cDNA-derived amino acid sequence of NTL as determined by molecular cloning also reveals that NTL protein contains a mature polypeptide consisting of 105 amino acids and a C-terminal peptide extension. Three-dimensional modelling study demonstrated that the NTL primary polypeptide contains three subdomains, each with a conserved mannose-binding site. It shows a high homology of about 60%-80% similarity with the existing monocot mannose-binding lectins. NTL could significantly inhibit plaque formation by the human respiratory syncytial virus (RSV) with an IC50 of 2.30 microg/ml and exhibit strong antiviral properties against influenza A (H1N1, H3N2, H5N1) and influenza B viruses with IC50 values ranging from 0.20 microg/ml to 1.33 microg/ml in a dose-dependent manner. It is worth noting that the modes of antiviral action of NTL against RSV and influenza A virus are significantly different. NTL is effective in the inhibition of RSV during the whole viral infection cycle, but the antiviral activity of NTL is mainly expressed at the early stage of the viral cycle of influenza A (H1N1) virus. NTL with a high selective index (SI=CC50/IC50 > or = 141) resulting from its potent antiviral activity and low cytotoxicity demonstrates a potential for biotechnological development as an antiviral agent.


Assuntos
Antivirais/farmacologia , Herpesvirus Cercopitecino 1/metabolismo , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/metabolismo , Virus da Influenza A Subtipo H5N1/metabolismo , Lectinas/química , Narcissus/metabolismo , Extratos Vegetais/metabolismo , Vírus Sinciciais Respiratórios/metabolismo , Animais , Celulose/química , Cromatografia em Gel/métodos , Dimerização , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Humanos , Concentração Inibidora 50 , Peptídeos/química
9.
Arch Virol ; 141(10): 2009-17, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8920832

RESUMO

The intracellular localization of the glycoprotein B of herpesvirus simian agent 8 expressed with a baculovirus system in insect cells was studied. Cell fractionation and immunoprecipitation revealed that gB is present in microsomal as well as in nuclear membranes. Both fractions contain oligomers, probably dimers, of gB with endoglycosidase-H sensitive, mannose-rich carbohydrates. Nuclear transport of gB was further analysed by immuno electron microscopy of recombinant baculovirus-infected cells. The glycoprotein is present both in the outer and the inner nuclear membrane as well as in cytoplasmic structures and at the cell surface. This study precludes the possibility that glycosylation and/or oligomerisation of SA8 gB are responsible for nuclear targeting.


Assuntos
Herpesvirus Cercopitecino 1/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Baculoviridae/genética , Linhagem Celular , Expressão Gênica , Vetores Genéticos , Microssomos/metabolismo , Microssomos/virologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Spodoptera/citologia , Proteínas do Envelope Viral/genética , Proteínas Virais de Fusão/análise
10.
Arch Virol ; 133(3-4): 335-47, 1993.
Artigo em Inglês | MEDLINE | ID: mdl-8257293

RESUMO

The cloned gene of glycoprotein B (gB) of herpesvirus simian agent 8 (SA 8) was expressed with a baculovirus system in insect cells. Expression of gB was easily detectable over the cellular background by Coomassie staining of electrophoretically separated proteins. Endoglycosidase digestion of immunoprecipitated gB revealed that the gene product is N-glycosylated, but only with unprocessed, endoglycosidase-H sensitive carbohydrates. The lack of terminal glycosylation of gB is consistent with the observation that gB expressed in insect cells has a molecular weight slightly lower than gB synthesized during an SA 8 infection in mammalian cells. The truncated carbohydrates of gB from insect cells have no measurable effect on the tertiary structure of gB. Immunofluorescence studies on mammalian cells expressing gB from a simian virus 40 based vector revealed that the glycoprotein is localized to cytoplasmic membranes, to the plasma membrane and to the nuclear envelope. Cells expressing gB were fused to polykaryons, which shows that gB has cell fusing activity in the absence of any other SA 8 gene product.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Cercopitecino 1/metabolismo , Proteínas do Envelope Viral/fisiologia , Animais , Baculoviridae/genética , Western Blotting , Linhagem Celular , Membrana Celular/química , Chlorocebus aethiops , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Genes Virais , Vetores Genéticos , Glicosilação , Herpesvirus Cercopitecino 1/genética , Membranas Intracelulares/química , Mariposas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Transfecção , Proteínas do Envelope Viral/biossíntese , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA