Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Viruses ; 15(10)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896880

RESUMO

Infectious laryngotracheitis (ILT) is an economically important disease in chickens. We previously showed that an in ovo adjuvantation of recombinant herpesvirus of the turkey-Laryngotracheitis (rHVT-LT) vaccine with CpG-oligonucleotides (ODN) can boost vaccine-induced responses in one-day-old broiler chickens. Here, we evaluated the protective efficacy of in ovo administered rHVT-LT + CpG-ODN vaccination against a wild-type ILT virus (ILTV) challenge at 28 days of age and assessed splenic immune gene expression as well as cellular responses. A chicken-embryo-origin (CEO)-ILT vaccine administered in water at 14 days of age was also used as a comparative control for the protection assessment. The results showed that the rHVT-LT + CpG-ODN or the CEO vaccinations provided significant protection against the ILTV challenge and that the level of protection induced by both the vaccines was statistically similar. The protected birds had a significantly upregulated expression of interferon (IFN)γ or interleukin (IL)-12 cytokine genes. Furthermore, the chickens vaccinated with the rHVT-LT + CpG-ODN or CEO vaccine had a significantly higher frequency of γδ T cells and activated CD4+ or CD8+ T cells, compared to the unvaccinated-ILTV challenge control. Collectively, our findings suggest that CpG-ODN can be used as an effective adjuvant for rHVT-LT in ovo vaccination to induce protective immunity against ILT in broiler chickens.


Assuntos
Infecções por Herpesviridae , Herpesvirus Galináceo 1 , Doenças das Aves Domésticas , Vacinas Virais , Animais , Galinhas , Adjuvantes de Vacinas , Herpesvirus Galináceo 1/fisiologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Vacinação/veterinária , Vacinas Sintéticas , Herpesvirus Meleagrídeo 1/genética , Perus
2.
Avian Dis ; 65(1): 30-39, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-34339119

RESUMO

Infectious laryngotracheitis virus (ILTV) is thought to exit the host in respiratory aerosols and enter by inhalation of these. High levels of ILTV DNA have been detected in excreta, raising the possibility of alternative routes of shedding from the host. However, it is not known whether or not the ILTV DNA in excreta represents infective virus. This study investigated transmission of wild type and vaccinal ILTV from infected to susceptible commercial meat chickens. Airborne- and excreta-mediated transmission of two field isolates of ILTV (Classes 9 and 10) and three vaccine strains (SA2, A20, and Serva) were tested. To test airborne transmission, air from isolators containing infected birds was ducted through a paired isolator containing uninfected chickens. To test excreta transmission, aliquots were prepared from excreta containing a high level of ILTV DNA within the first week after infection. Chicks were infected bilaterally by eye drop. Clinical signs were monitored daily and choanal cleft swab samples for ILTV detection by quantitative PCR were collected at 4, 8, 15, 22, and 28 days postinfection (DPI) in the airborne transmission study and at 7 and 14 DPI from the excreta transmission studies. There was no transmission of ILTV from excreta, suggesting that ILTV is inactivated during passage through the gut. All strains of ILTV were transmitted by the airborne route but only to a limited extent for the vaccine viruses. The field viruses induced clinical signs, pathology, and greatly elevated ILTV genome copies in swabs. In summary, these findings confirm the suspected airborne transmission of ILTV, demonstrate differential transmission potential between wild type and vaccine strains by this route, and indicate that excreta is unlikely to be important in the transmission of ILTV and the epidemiology of ILT.


Artículo regular­Transmisión aérea del virus de la laringotraqueítis infecciosa de tipo vacunal y silvestre y ausencia de infecciosidad de los extractos de excrementos de pollos infectados. Se cree que el virus de la laringotraqueítis infecciosa (ILTV) se elimina del huésped en forma de aerosoles respiratorios y entra por la inhalación de los mismos. Se han detectado altos niveles de ADN del virus de la laringotraqueítis en las excretas, lo que aumenta la posibilidad de rutas alternas de eliminación por el hospedador. Sin embargo, no se sabe si el ADN del virus de la laringotraqueítis presente en las excretas representa virus infeccioso. Este estudio investigó la transmisión del virus de la laringotraqueítis de tipo silvestre y vacunal de pollos de carne comerciales infectados a pollos susceptibles. Se evaluó la transmisión por vía aérea y mediada por excretas de dos cepas de campo del virus de la laringotraqueítis (clases 9 y 10) y tres cepas vacunales (SA2, A20 y Serva). Para evaluar la transmisión aérea, el aire de los aisladores que contienen aves infectadas se canalizó a través de un aislador emparejado que contenía pollos no infectados. Para probar la transmisión de excretas, se prepararon alícuotas a partir de excretas que contenían un alto nivel de ADN del virus de la laringotraqueítis durante la primera semana después de la infección. Los pollos se infectaron mediante aplicación de gota ocular de forma bilateral. Los signos clínicos se monitorearon diariamente y se recolectaron muestras de hisopado de la hendidura coanal para la detección del virus de la laringotraqueítis mediante PCR cuantitativa a los 4, 8, 15, 22 y 28 días después de la infección (DPI) en el estudio de transmisión aérea y a los 7 y 14 después de la inoculación en los estudios de transmisión de excretas. No se observó transmisión del virus de la laringotraqueítis de las excretas, lo que sugiere que este virus se inactiva durante el paso a través del intestino. Todas las cepas del virus de la laringotraqueítis se transmitieron por vía aérea, pero sólo de forma limitada con los virus vacunales. Los virus de campo indujeron signos clínicos, patología y números muy altos de copias del genoma del virus de la laringotraqueítis en muestras hisopos. En resumen, estos hallazgos confirman la sospecha de transmisión aérea del virus de laringotraqueítis, demuestran el diferente potencial de transmisión entre las cepas de tipo silvestre y vacunales por esta vía, e indican que es poco probable que las excretas sean importantes en la transmisión del virus de la laringotraqueítis y en la epidemiología del virus de la laringotraqueítis infecciosa.Key words: infectious laryngotracheitis virus, airborne transmission, meat chicken, excreta, epidemiology.


Assuntos
Galinhas , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/fisiologia , Doenças das Aves Domésticas/transmissão , Vacinas Virais/química , Animais , Infecções por Herpesviridae/transmissão , Infecções por Herpesviridae/virologia , Doenças das Aves Domésticas/virologia , Vacinas Atenuadas/química
3.
Viruses ; 13(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207926

RESUMO

Gallid alpha-herpesvirus 1, also known as avian infectious laryngotracheitis virus (ILTV), continues to cause huge economic losses to the poultry industry worldwide. Similar to that of other herpesvirus-encoded proteins, the expression of viral genes encoded by ILTV is regulated by a cascade, and the underlying regulatory mechanism remains largely unclear. The viral immediate-early (IE) gene ICP4 plays a prominent role in the initiation of the transcription of early and late genes during ILTV replication. In this study, we identified AP-1 as the key regulator of the transcription of ILTV genes by bioinformatics analysis of genome-wide transcriptome data. Subsequent functional studies of the key members of the AP-1 family revealed that Fos, but not Jun, regulates ILTV infection through AP-1 since knockdown of Fos, but not Jun, by gene silencing significantly reduced ICP4 transcription and subsequent viral genome replication and virion production. Using several approaches, we identified ICP4 as a bona fide target gene of Fos that regulated Fos and has Fos response elements within its promoter. Neither the physical binding of Jun to the promoter of ICP4 nor the transcriptional activity of Jun was observed. In addition, knockdown of Fos reduced the transcription of MDH1 and ATP5A1, genes encoding two host rate-limiting enzymes essential for the production of the TCA intermediates OAA and ATP. The biological significance of the transcriptional regulation of MDH1 and ATP5A1 by Fos in ILTV infection was supported by the fact that anaplerosis of OAA and ATP rescued both ICP4 transcription and virion production in infected cells under when Fos was silenced. Our study identified the transcription factor Fos as a key regulator of ILTV infection through its transcription factor function on both the virus and host sides, improving the current understanding of both avian herpesvirus-host interactions and the roles of AP-1 in viral infection.


Assuntos
Regulação da Expressão Gênica , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Linhagem Celular , Galinhas , Biologia Computacional , Metabolismo Energético , Perfilação da Expressão Gênica , Genes Precoces , Interações Hospedeiro-Patógeno/genética , Modelos Biológicos , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/metabolismo , Replicação Viral
4.
Vet Res ; 52(1): 91, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158102

RESUMO

Understanding the mechanisms of transmission of infectious laryngotracheitis virus (ILTV) is critical to proper control as both vaccine and wild-type strains circulate within chicken flocks with potential adverse consequences. The relative efficiency of transmission by direct contact between chickens and airborne transmission has not been investigated. Furthermore, relatively high levels of ILTV DNA have been detected in poultry dust and blood but the infectivity of these is unknown. In this study, comparison of in-contact and airborne transmission of two vaccine and one field strain of ILTV revealed that all transmitted to 100% of in-contact birds by 6 days post-exposure (dpe). Airborne transmission without contact resulted in 100% transmission by 14 and 17 dpe for the wild-type and Serva vaccine virus but only 27% transmission by 21 dpe for the A20 vaccine virus. The infectivity of dust or extracts of dust and blood or plasma from infected chickens at various stages of infection was assessed by inoculation into susceptible chickens. There was no transmission by any of these materials. In conclusion, direct contact facilitated efficient ILTV transmission but the virus was unable to be transmitted by dust from infected chickens suggestive of a limited role in the epidemiology of ILTV.


Assuntos
Poeira , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/fisiologia , Vacinas contra Herpesvirus/efeitos adversos , Doenças das Aves Domésticas/transmissão , Animais , Sangue/virologia , Galinhas , Infecções por Herpesviridae/transmissão , Infecções por Herpesviridae/virologia , Abrigo para Animais , Plasma/virologia , Doenças das Aves Domésticas/virologia , Replicação Viral
5.
Viruses ; 12(11)2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198373

RESUMO

Infectious laryngotracheitis virus (ILTV) is a herpes virus that causes an acute respiratory disease of poultry known as infectious laryngotracheitis (ILT). Chicken embryo origin (CEO) and tissue culture origin (TCO) live attenuated vaccines are routinely used for the control of ILT. However, vaccine virus is known to revert to virulence, and it has been recently shown that ILT field viral strains can undergo recombination with vaccinal ILTV and such recombinant ILT viruses possess greater transmission and pathogenicity potential. Based on complete or partial genes of the ILTV genome, few studies genotyped ILTV strains circulating in Canada, and so far, information is scarce on whole-genome sequencing or the presence of recombination in Canadian ILTV isolates. The objective of this study was to genetically characterize the 14 ILTV isolates that originated from three provinces in Canada (Alberta, British Columbia and Quebec). To this end, a phylogenetic analysis of 50 ILTV complete genome sequences, including 14 sequences of Canadian origin, was carried out. Additional phylogenetic analysis of the unique long, unique short and inverted repeat regions of the ILTV genome was also performed. We observed that 71%, 21% and 7% of the ILTV isolates were categorized as CEO revertant, wild-type and TCO vaccine-related, respectively. The sequences were also analyzed for potential recombination events, which included evidence in the British Columbia ILTV isolate. This event involved two ILTV vaccine (CEO) strains as parental strains. Recombination analysis also identified that one ILTV isolate from Alberta as a potential parental strain for a United States origin ILTV isolate. The positions of the possible recombination breakpoints were identified. These results indicate that the ILTV wild-type strains can recombine with vaccinal strains complicating vaccine-mediated control of ILT. Further studies on the pathogenicity of these ILTV strains, including the recombinant ILTV isolate are currently ongoing.


Assuntos
Genoma Viral , Genômica , Herpesvirus Galináceo 1/fisiologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Animais , Canadá/epidemiologia , DNA Viral , Genômica/métodos , Herpesvirus Galináceo 1/isolamento & purificação , Humanos , Lactente , Mutação , Filogenia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/transmissão , Recombinação Genética , Vacinas Virais/imunologia , Sequenciamento Completo do Genoma
6.
J Immunol Res ; 2020: 9630452, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32537474

RESUMO

Duck enteritis virus (DEV) can successfully evade the host innate immune responses and establish a lifelong latent infection in the infected host. However, the study about how DEV escapes host innate immunity is still deficient up to now. In this study, for the first time, we identified a viral protein VP16 by which DEV can obviously downregulate the production of IFN-ß in duck embryo fibroblast (DEF). Our results showed that ectopic expression of VP16 decreased duck IFN-ß (duIFN-ß) promoter activation and significantly inhibited the mRNA transcription of IFN-ß. Further study showed that VP16 can also obviously inhibit the mRNA transcription of interferon-stimulated genes (ISGs), such as myxovirus resistance protein (Mx) and interferon-induced oligoadenylate synthetase-like (OASL). Furthermore, we found that this anti-interferon activity of VP16 depended on its N-terminus (aa1-200). Coexpression analysis revealed that VP16 selectively blocked duIFN-ß promoter activity at the duIRF7 level rather than duIRF1. Based on the results of coimmunoprecipitation analysis (co-IP) and indirect immunofluorescence assay (IFA), VP16 was able to bind to duck IRF7 (duIRF7) directly, but did not interact with duck IRF1 (duIRF1) in vitro.


Assuntos
Patos/imunologia , Fibroblastos/fisiologia , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Infecções por Herpesviridae/imunologia , Herpesvirus Galináceo 1/fisiologia , Interferon beta/metabolismo , Mardivirus/fisiologia , 2',5'-Oligoadenilato Sintetase/genética , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Células Cultivadas , Patos/virologia , Fibroblastos/virologia , Regulação da Expressão Gênica , Infecções por Herpesviridae/virologia , Evasão da Resposta Imune , Imunidade Inata , Fator Regulador 1 de Interferon/genética , Fator Regulador 7 de Interferon/genética , Interferon beta/genética , Proteínas de Resistência a Myxovirus/genética , Regiões Promotoras Genéticas/genética
7.
Avian Pathol ; 49(4): 369-379, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32352307

RESUMO

Latency is an important feature of infectious laryngotracheitis virus (ILTV) yet is poorly understood. This study aimed to compare latency characteristics of vaccine (SA2) and field (CL9) strains of ILTV, establish an in vitro reactivation system and examine ILTV infection in peripheral blood mononuclear cells (PBMC) in specific pathogen-free chickens. Birds were inoculated with SA2 or CL9 ILTV and then bled and culled at 21 or 35 days post-inoculation (dpi). Swabs (conjunctiva, palatine cleft, trachea) and trigeminal ganglia (TG) were examined for ILTV DNA using PCR. Half of the TG, trachea and PBMC were co-cultivated with cell monolayers to assess in vitro reactivation of ILTV infection. ILTV DNA was detected in the trachea of approximately 50% of ILTV-inoculated birds at both timepoints. At 21 dpi, ILTV was detected in the TG only in 29% and 17% of CL9- and SA2-infected birds, respectively. At 35 dpi, ILTV was detected in the TG only in 30% and 10% of CL9- and SA2-infected birds, respectively. Tracheal organ co-cultures from 30% and 70% of CL9- and SA2-infected birds, respectively, were negative for ILTV DNA at cull but yielded quantifiable DNA within 6 days post-explant (dpe). TG co-cultivation from 30% and 40% of CL9-and SA2-infected birds, respectively, had detectable ILTV DNA within 6 dpe. Latency characteristics did not substantially vary based on the strain of virus inoculated or between sampling timepoints. These results advance our understanding of ILTV latency and reactivation. RESEARCH HIGHLIGHTS Following inoculation, latent ILTV infection was detected in a large proportion of chickens, irrespective of whether a field or vaccine strain was inoculated. In vitro reactivation of latent ILTV was readily detected in tracheal and trigeminal ganglia co-cultures using PCR. ILTV latency observed in SPF chickens at 21 days post-infection was not substantially different to 35 days post-infection.


Assuntos
Galinhas/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/imunologia , Doenças das Aves Domésticas/virologia , Animais , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/fisiologia , Leucócitos Mononucleares/imunologia , Masculino , Reação em Cadeia da Polimerase/veterinária , Organismos Livres de Patógenos Específicos , Traqueia/virologia , Gânglio Trigeminal/virologia , Latência Viral
8.
PLoS One ; 14(8): e0219475, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31433806

RESUMO

Glycoprotein G (gG) is a conserved protein, and it has been described as a chemokine-binding protein in most members of the alphaherpesviruses. In case of the infectious laryngotracheitis virus (ILTV), an alphaherpesvirus that infects chickens, this protein is a virulence factor that plays an immunomodulatory role in the chicken immune response. Nevertheless, the gG production profile during ILTV infection has not yet been studied. In this study, we developed monoclonal antibodies in order to determine the gG production profile during ILTV infection in chicken hepatocellular carcinoma (LMH) cell cultures as well as embryonated specific-pathogen-free (SPF) chicken eggs and SPF chickens using a sandwich enzyme-linked immunosorbent assay (ELISA). Despite the fact that inoculated LMH cell cultures showed an increase in both gG production and viral genome copy number up to 96 h after inoculation, we observed that gG production started earlier than the increase in viral genome copy number in ILTV infected embryonated SPF chicken eggs. Likewise, a gG production peak and an increase of viral genome copy number was observed prior to the appearance of clinical signs in infected SPF chickens. According to the production profiles, gG was also produced quite early in eggs and chickens inoculated with ILTV. These findings contribute to the knowledge of the gG role during the ILTV infection as a virulence factor.


Assuntos
Infecções por Herpesviridae/metabolismo , Herpesvirus Galináceo 1/fisiologia , Proteínas do Envelope Viral/biossíntese , Animais , Anticorpos Monoclonais/imunologia , Baculoviridae/genética , Galinhas/virologia , Genoma Viral/genética , Herpesvirus Galináceo 1/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Células Sf9 , Spodoptera , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
9.
Avian Pathol ; 48(6): 573-581, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31304770

RESUMO

The chicken embryo origin (CEO) infectious laryngotracheitis (ILT) live attenuated vaccines, although capable of protecting against disease and reducing challenge virus replication, can regain virulence. Recombinant ILT vaccines do not regain virulence but are partially successful at blocking challenge virus replication. The objective of this study was to evaluate the effect of rHVT-LT vaccination on CEO replication and how this vaccination strategy enhances protection and limits challenge virus transmission to naïve contact chickens. The rHVT-LT vaccine was administered at 1 day of age subcutaneously and the CEO vaccine was administered at 6 weeks of age via eye-drop or drinking water. CEO vaccine replication post vaccination, challenge virus replication and transmission post challenge were evaluated. After vaccination, only the group that received the CEO via eye-drop developed transient conjunctivitis. A significant decrease in CEO replication was detected for the rHVT-LT + CEO groups as compared to groups that received CEO alone. After challenge, reduction in clinical signs and challenge virus replication were observed in all vaccinated groups. However, among the vaccinated groups, the rHVT-LT group presented higher clinical signs and challenge virus replication. Transmission of the challenge virus to naïve contact chickens was only observed in the rHVT-LT vaccinated group of chickens. Overall, this study found that priming with rHVT-LT reduced CEO virus replication and the addition of a CEO vaccination provided a more robust protection than rHVT alone. Therefore, rHVT-LT + CEO vaccination strategy constitutes an alternative approach to gain better control of the disease.


Assuntos
Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/imunologia , Doenças das Aves Domésticas/prevenção & controle , Traqueíte/veterinária , Vacinação/veterinária , Vacinas Virais/imunologia , Animais , Embrião de Galinha , Galinhas , Feminino , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/transmissão , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/fisiologia , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia , Traqueíte/prevenção & controle , Traqueíte/virologia , Perus , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/imunologia , Replicação Viral
10.
Arch Virol ; 164(2): 427-438, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30421085

RESUMO

Live attenuated vaccines against infectious laryngotracheitis virus (ILTV) are widely used in the poultry industry to control disease and help prevent economic losses. Molecular epidemiological studies of currently circulating strains of ILTV within poultry flocks in Australia have demonstrated the presence of highly virulent viruses generated by genomic recombination events between vaccine strains. In this study, high-resolution melting (HRM) analysis was used to develop a tool to classify ILTV isolates and to investigate ILTV recombination. The assay was applied to plaque-purified progeny viruses generated after co-infection of chicken embryo kidney (CEK) monolayers with the A20 and Serva ILT vaccine strains and also to viruses isolated from field samples. The results showed that the HRM analysis is a suitable tool for the classification of ILTV isolates and can be used to detect recombination between ILTV vaccine strains in vitro. This method can be used to classify a broad range of ILTV strains to facilitate the classification and genotyping of ILTV and help to further understand recombination in these viruses.


Assuntos
Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/genética , Doenças das Aves Domésticas/virologia , Recombinação Genética , Animais , Austrália/epidemiologia , Galinhas , Genoma Viral , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/classificação , Herpesvirus Galináceo 1/isolamento & purificação , Herpesvirus Galináceo 1/fisiologia , Doenças das Aves Domésticas/epidemiologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/isolamento & purificação , Vacinas Virais/genética , Vacinas Virais/isolamento & purificação , Replicação Viral
11.
Avian Pathol ; 47(5): 497-508, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29963906

RESUMO

The objective of this study was to determine how cytokine transcription profiles correlate with patterns of infectious laryngotracheitis virus (ILTV) replication in the trachea, Harderian gland, and trigeminal ganglia during the early and late stages of infection after intratracheal inoculation. Viral genomes and transcripts were detected in the trachea and Harderian gland but not in trigeminal ganglia. The onset of viral replication in the trachea was detected at day one post-infection and peaked by day three post-infection. The peak of pro-inflammatory (CXCLi2, IL-1ß, IFN-γ) and anti-inflammatory (IL-13, IL-10) cytokine gene transcription, 5 days post-infection, coincided with the increased recruitment of inflammatory cells, extensive tissue damage, and limiting of virus replication in the trachea. In contrast, transcription of the IFN-ß gene in the trachea remained unaffected suggesting that ILTV infection blocks type I interferon responses. In the Harderian gland, the most evident transcription change was the early and transient upregulation of the IFN-γ gene at 1 day post-infection, which suggests that the Harderian gland is prepared to rapidly respond to ILTV infection. Overall, results from this study suggest that regulation of Th1 effector cells and macrophage activity by Th1/2 cytokines was pertinent to maintain a balanced immune response capable of providing an adequate Th1-mediated protective immunity, while sustaining some immune homeostasis in preparation for the regeneration of the tracheal mucosa.


Assuntos
Citocinas/metabolismo , Glândula de Harder/metabolismo , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/patogenicidade , Traqueia/metabolismo , Gânglio Trigeminal/metabolismo , Animais , Galinhas , Citocinas/genética , DNA , Regulação da Expressão Gênica/imunologia , Genoma Viral , Glândula de Harder/virologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/fisiologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/virologia , RNA , Organismos Livres de Patógenos Específicos , Traqueia/virologia , Transcrição Gênica , Gânglio Trigeminal/virologia , Carga Viral , Virulência , Replicação Viral
12.
J Virol ; 92(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29950417

RESUMO

Apoptosis is a common innate defense mechanism of host cells against viral infection and is therefore suppressed by many viruses, including herpes simplex virus (HSV), via various strategies. A recent in vivo study reported the apoptosis of remote uninfected cells during Gallid herpesvirus 1 (GaHV-1) infection, yet little is known about this previously unknown aspect of herpesvirus-host interactions. The aim of the present study was to investigate the apoptosis of uninfected host cells during GaHV-1 infection. The present study used in vitro and in ovo models, which avoided potential interference by host antiviral immunity, and demonstrated that this GaHV-1-host interaction is independent of host immune responses and important for both the pathological effect of viral infection and early viral dissemination from the primary infection site to distant tissues. Further, we revealed that GaHV-1 infection triggers this process in a paracrine-regulated manner. Using genome-wide transcriptome analyses in combination with a set of functional studies, we found that this paracrine-regulated effect requires the repression of p53 activity in uninfected cells. In contrast, the activation of p53 not only prevented the apoptosis of remote uninfected cells and subsequent pathological damage induced by GaHV-1 infection but also delayed viral dissemination significantly. Moreover, p53 activation repressed viral replication both in vitro and in ovo, suggesting that dual cell-intrinsic mechanisms underlie the suppression of GaHV-1 infection by p53 activation. This study uncovers the mechanism underlying the herpesvirus-triggered apoptosis of remote host cells and extends our understanding of both herpesvirus-host interactions and the roles of p53 in viral infection.IMPORTANCE It is well accepted that herpesviruses suppress the apoptosis of host cells via various strategies to ensure sustained viral replication during infection. However, a recent in vivo study reported the apoptosis of remote uninfected cells during GaHV-1 infection. The mechanism and the biological meaning of this unexpected herpesvirus-host interaction are unclear. This study uncovers the mechanisms of herpesvirus-triggered apoptosis in uninfected cells and may also contribute to a mechanistic illustration of paracrine-regulated apoptosis induced by other viruses in uninfected host cells.


Assuntos
Apoptose , Genes p53/genética , Herpesvirus Galináceo 1/fisiologia , Interações Hospedeiro-Patógeno/genética , Comunicação Parácrina/genética , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Galinhas/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma Viral , Herpesvirus Galináceo 1/genética , Interações Hospedeiro-Patógeno/imunologia , Masculino , Comunicação Parácrina/imunologia , Organismos Livres de Patógenos Específicos
13.
J Virol ; 92(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29070686

RESUMO

Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that infects chickens, causing upper respiratory tract disease and significant losses to poultry industries worldwide. Glycoprotein G (gG) is a broad-range viral chemokine-binding protein conserved among most alphaherpesviruses, including ILTV. A number of studies comparing the immunological parameters between infection with gG-expressing and gG-deficient ILTV strains have demonstrated that expression of gG is associated with increased virulence, modification of the amount and the composition of the inflammatory response, and modulation of the immune responses toward antibody production and away from cell-mediated immune responses. The aims of the current study were to examine the establishment of infection and inflammation by ILTV and determine how gG influences that response to infection. In vitro infection studies using tracheal organ tissue specimen cultures and blood-derived monocytes and in vivo infection studies in specific-pathogen-free chickens showed that leukocyte recruitment to the site of infection is an important component of the induced pathology and that this is influenced by the expression of ILTV gG and changes in the transcription of the chicken orthologues of mammalian CXC chemokine ligand 8 (CXCL8), chicken CXCLi1 and chicken CXCLi2, among other cytokines and chemokines. The results from this study demonstrate that ILTV gG interferes with chemokine and cytokine transcription at different steps of the inflammatory cascade, thus altering inflammation, virulence, and the balance of the immune response to infection.IMPORTANCE Infectious laryngotracheitis virus is an alphaherpesvirus that expresses gG, a conserved broad-range viral chemokine-binding protein known to interfere with host immune responses. However, little is known about how gG modifies virulence and influences the inflammatory signaling cascade associated with infection. Here, data from in vitro and in vivo infection studies are presented. These data show that gG has a direct impact on the transcription of cytokines and chemokine ligands in vitro (such as chicken CXCL8 orthologues, among others), which explains the altered balance of the inflammatory response that is associated with gG during ILTV infection of the upper respiratory tract of chickens. This is the first report to associate gG with the dysregulation of cytokine transcription at different stages of the inflammatory cascade triggered by ILTV infection of the natural host.


Assuntos
Quimiocinas/genética , Citocinas/genética , Infecções por Herpesviridae/imunologia , Herpesvirus Galináceo 1/imunologia , Herpesvirus Galináceo 1/fisiologia , Mediadores da Inflamação/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Anticorpos Antivirais/sangue , Quimiocinas/imunologia , Quimiocinas/metabolismo , Galinhas/virologia , Citocinas/imunologia , Citocinas/metabolismo , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/química , Herpesvirus Galináceo 1/genética , Mediadores da Inflamação/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Interleucina-8/metabolismo , Técnicas de Cultura de Órgãos , Doenças das Aves Domésticas/imunologia , Ligação Proteica , Organismos Livres de Patógenos Específicos , Traqueia/virologia , Virulência
14.
Appl Environ Microbiol ; 83(23)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939604

RESUMO

Recombination is a feature of many alphaherpesviruses that infect people and animals. Infectious laryngotracheitis virus (ILTV; Gallid alphaherpesvirus 1) causes respiratory disease in chickens, resulting in significant production losses in poultry industries worldwide. Natural (field) ILTV recombination is widespread, particularly recombination between attenuated ILTV vaccine strains to create virulent viruses. These virulent recombinants have had a major impact on animal health. Recently, the development of a single nucleotide polymorphism (SNP) genotyping assay for ILTV has helped to understand ILTV recombination in laboratory settings. In this study, we applied this SNP genotyping assay to further examine ILTV recombination in the natural host. Following coinoculation of specific-pathogen-free chickens, we examined the resultant progeny for evidence of viral recombination and characterized the diversity of the recombinants over time. The results showed that ILTV replication and recombination are closely related and that the recombinant viral progeny are most diverse 4 days after coinoculation, which is the peak of viral replication. Further, the locations of recombination breakpoints in a selection of the recombinant progeny, and in field isolates of ILTV from different geographical regions, were examined following full-genome sequencing and used to identify recombination hot spots in the ILTV genome.IMPORTANCE Alphaherpesviruses are common causes of disease in people and animals. Recombination enables genome diversification in many different species of alphaherpesviruses, which can lead to the evolution of higher levels of viral virulence. Using the alphaherpesvirus infectious laryngotracheitis virus (ILTV), we performed coinfections in the natural host (chickens) to demonstrate high levels of virus recombination. Higher levels of diversity in the recombinant progeny coincided with the highest levels of virus replication. In the recombinant progeny, and in field isolates, recombination occurred at greater frequency in recombination hot spot regions of the virus genome. Our results suggest that control measures that aim to limit viral replication could offer the potential to limit virus recombination and thus the evolution of virulence. The development and use of vaccines that are focused on limiting virus replication, rather than vaccines that are focused more on limiting clinical disease, may be indicated in order to better control disease.


Assuntos
Coinfecção/veterinária , Variação Genética , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/genética , Doenças das Aves Domésticas/virologia , Recombinação Genética , Replicação Viral , Animais , Galinhas , Coinfecção/virologia , Genoma Viral , Genótipo , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/classificação , Herpesvirus Galináceo 1/isolamento & purificação , Herpesvirus Galináceo 1/fisiologia
15.
Avian Pathol ; 46(6): 585-593, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28532159

RESUMO

Infectious laryngotracheitis virus (ILTV) has a high proclivity to replicate in the larynx and trachea of chickens causing severe lesions. There is a lack of knowledge on the ability of ILTV to replicate in other respiratory associated tissues apart from in the trachea. The objective of this study was to investigate how tissues that first encounter the virus dictate further sites of viral replication during the lytic stage of infection. Replication patterns of the pathogenic strain 63140 and the chicken embryo origin (CEO) vaccine in the conjunctiva, the Harderian gland, nasal cavity and trachea were evaluated after ocular, oral, intranasal or intratracheal inoculation of specific pathogen-free chickens. Viral replication was assessed by detection of microscopic cytolytic lesions, detection of viral antigen and viral genome load. The route of viral entry greatly influenced virus replication of both strain 63140 and CEO vaccine in the conjunctiva and trachea, while replication in the nasal cavity was not affected. In the Harderian gland, independently of the route of viral entry, microscopic lesions characteristic of lytic replication were absent, whereas viral antigen and viral genomes for either virus were detected, suggesting that the Harderian gland may be a key site of antigen uptake. Findings from this study suggest that interactions of the virus with the epithelial-lymphoid tissues of the nasal cavity, conjunctiva and the Harderian gland dictate patterns of ILTV lytic replication.


Assuntos
Galinhas/imunologia , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/fisiologia , Doenças das Aves Domésticas/virologia , Vacinas Virais/imunologia , Animais , Embrião de Galinha , Galinhas/virologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/imunologia , Herpesvirus Galináceo 1/patogenicidade , Doenças das Aves Domésticas/prevenção & controle , Organismos Livres de Patógenos Específicos , Traqueia/virologia , Vacinação/veterinária , Carga Viral/veterinária , Replicação Viral
16.
Arch Virol ; 162(6): 1541-1548, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28194527

RESUMO

Infectious laryngotracheitis virus (ILTV) encodes several unique genes, including a pair of unique nuclear proteins UL0 and UL[-1] that are expressed during replication in cell culture. Although the UL0 gene has been shown to be dispensable for replication, the role of UL[-1] has not been elucidated. In this study a deletion mutant of ILTV lacking the UL[-1] gene was constructed using homologous recombination. The coding sequences of the gene were replaced with the gene for enhanced green fluorescent protein and the cytomegalovirus major immediate early promoter element. The progeny virus carrying the reporter gene was readily identified using fluorescent microscopy, but was unable to propagate in the permissive cells in the absence of wild type ILTV. Even after plaque purification and fluorescent associated cell sorting the recombinant virus deficient in UL[-1] gene could not be successfully isolated. Our findings suggest that the UL[-1] gene has an important role in ILTV replication.


Assuntos
Deleção de Genes , Genes Virais , Herpesvirus Galináceo 1/genética , Herpesvirus Galináceo 1/fisiologia , Proteínas Virais/genética , Replicação Viral/genética , Animais , Linhagem Celular , Células Cultivadas , Galinhas/virologia , Replicação do DNA , Genes Reporter , Genoma Viral , Proteínas de Fluorescência Verde/genética , Recombinação Homóloga , Deleção de Sequência , Proteínas Virais/fisiologia
17.
J Virol ; 90(1): 9-21, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26446601

RESUMO

UNLABELLED: Given the side effects of vaccination against infectious laryngotracheitis (ILT), novel strategies for ILT control and therapy are urgently needed. The modulation of host-virus interactions is a promising strategy to combat the virus; however, the interactions between the host and avian ILT herpesvirus (ILTV) are unclear. Using genome-wide transcriptome studies in combination with a bioinformatic analysis, we identified proto-oncogene tyrosine-protein kinase Src (Src) to be an important modulator of ILTV infection. Src controls the virulence of ILTV and is phosphorylated upon ILTV infection. Functional studies revealed that Src prolongs the survival of host cells by increasing the threshold of virus-induced cell death. Therefore, Src is essential for viral replication in vitro and in ovo but is not required for ILTV-induced cell death. Furthermore, our results identify a positive-feedback loop between Src and the tyrosine kinase focal adhesion kinase (FAK), which is necessary for the phosphorylation of either Src or FAK and is required for Src to modulate ILTV infection. To the best of our knowledge, we are the first to identify a key host regulator controlling host-ILTV interactions. We believe that our findings have revealed a new potential therapeutic target for ILT control and therapy. IMPORTANCE: Despite the extensive administration of live attenuated vaccines starting from the mid-20th century and the administration of recombinant vaccines in recent years, infectious laryngotracheitis (ILT) outbreaks due to avian ILT herpesvirus (ILTV) occur worldwide annually. Presently, there are no drugs or control strategies that effectively treat ILT. Targeting of host-virus interactions is considered to be a promising strategy for controlling ILTV infections. However, little is known about the mechanisms governing host-ILTV interactions. The results from our study advance our understanding of host-ILTV interactions on a molecular level and provide experimental evidence that it is possible to control ILT via the manipulation of host-virus interactions.


Assuntos
Herpesvirus Galináceo 1/fisiologia , Interações Hospedeiro-Patógeno , Fatores de Virulência/metabolismo , Quinases da Família src/metabolismo , Animais , Embrião de Galinha , Galinhas , Perfilação da Expressão Gênica
18.
PLoS One ; 10(3): e0120282, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25785629

RESUMO

Attenuated live infectious laryngotracheitis virus (ILTV) vaccines are widely used in the poultry industry to control outbreaks of disease. Natural recombination between commercial ILTV vaccines has resulted in virulent recombinant viruses that cause severe disease, and that have now emerged as the dominant field strains in important poultry producing regions in Australia. Genotype analysis using PCR-restriction fragment length polymorphism has shown one recombinant virus (class 9) has largely replaced the previously dominant class 2 field strain. To examine potential reasons for this displacement we compared the growth kinetics and transmission potential of class 2 and class 9 viruses. The class 9 ILTV grew to higher titres in cell culture and embryonated eggs, but no differences were observed in entry kinetics or egress into the allantoic fluid from the chorioallantoic membrane. In vivo studies showed that birds inoculated with class 9 ILTV had more severe tracheal pathology and greater weight loss than those inoculated with the class 2 virus. Consistent with the predominance of class 9 field strains, birds inoculated with 10(2) or 10(3) plaque forming units of class 9 ILTV consistently transmitted virus to in-contact birds, whereas this could only be seen in birds inoculated with 10(4) PFU of the class 2 virus. Taken together, the improved growth kinetics and transmission potential of the class 9 virus is consistent with improved fitness of the recombinant virus over the previously dominant field strain.


Assuntos
Herpesvirus Galináceo 1/classificação , Herpesvirus Galináceo 1/fisiologia , Animais , Linhagem Celular Tumoral , Galinhas/virologia , Feminino , Genótipo , Herpesvirus Galináceo 1/genética , Herpesvirus Galináceo 1/crescimento & desenvolvimento , Cinética , Masculino , Especificidade da Espécie , Replicação Viral
19.
Avian Pathol ; 43(5): 450-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25144137

RESUMO

Avian infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus of poultry that is spread worldwide. ILTV enters its host via the respiratory tract and the eyes. Although ILTV has been known for a long time, the replication characteristics of the virus in the respiratory and conjunctival mucosa are still poorly studied. To study these characteristics, two in vitro explant models were developed. Light microscopy and fluorescent terminal deoxynucleotidyl transferase dUTP nick end-labelling staining were used to evaluate the viability of mucosal explants, which were found to be viable up to the end of the experiment at 96 h of cultivation. The tracheal and conjunctival mucosal explants were inoculated with ILTV and collected at 0, 24, 48 and 72 h post inoculation (p.i.). ILTV spread in a plaque-wise manner in both mucosae. A reproducible quantitative analysis of this mucosal spread was evaluated by measuring plaque numbers, plaque latitude and invasion depth underneath the basement membrane. No major differences in plaque numbers were observed over time. Plaque latitude progressively increased to 70.4 ± 12.9 µm in the trachea and 97.8 ± 9.5 µm in the conjunctiva at 72 h p.i. The virus had difficulty crossing the basement membrane and was first observed only at 48 h p.i. The virus was observed at 72 h p.i. in 56% (trachea) and 74% (conjunctiva) of the plaques. Viability analysis of infected explants indicated that ILTV blocks apoptosis in infected cells of both mucosae but activates apoptosis in bystander cells.


Assuntos
Túnica Conjuntiva/virologia , Herpesvirus Galináceo 1/fisiologia , Mucosa Respiratória/virologia , Replicação Viral/fisiologia , Animais , Sobrevivência Celular , Técnicas de Cultura de Tecidos , Ensaio de Placa Viral
20.
Avian Dis ; 57(3): 587-94, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24283123

RESUMO

Several epidemiologic surveillance studies have implicated backyard flocks as a reservoir for poultry diseases; however, much debate still exists over the risk these small flocks pose. To evaluate this concern, the prevalence of Newcastle disease (ND), infectious laryngotracheitis (ILT), Mycoplasma gallisepticum (MG), and Salmonella was determined in 39 Maryland backyard flocks. Serum, tracheal, and cloacal swabs were randomly collected from 262 birds throughout nine counties in Maryland. Through PCR and ELISA analysis, disease prevalence and seroprevalence were determined in flocks, respectively, for the following: ND (0%, 23%); ILT (26%, 77%); MG (3%, 13%); and Salmonella (0%, not done). Vaccine status could not be accurately confirmed. Premise positives were further differentiated and identified by partial nucleotide sequencing. Screening of the 10 ILT premise positives showed that most were live attenuated vaccines: eight matched a tissue culture origin vaccine, one matched a chicken embryo origin (CEO) vaccine, and one was CEO related. The single MG-positive flock, also positive for the CEO-related sequence, was identified as the infectious S6 strain. The prevalence rates for these economically important poultry diseases ranged from none to relatively low, with the vast majority of sampled flocks presenting no clinical signs.


Assuntos
Patos , Galliformes , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/virologia , Criação de Animais Domésticos , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antivirais/sangue , Cloaca/microbiologia , Cloaca/virologia , Ensaio de Imunoadsorção Enzimática/veterinária , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/genética , Herpesvirus Galináceo 1/fisiologia , Maryland/epidemiologia , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/veterinária , Mycoplasma gallisepticum/genética , Mycoplasma gallisepticum/fisiologia , Doença de Newcastle/epidemiologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/fisiologia , Reação em Cadeia da Polimerase/veterinária , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia , Prevalência , Salmonella/genética , Salmonella/fisiologia , Salmonelose Animal/epidemiologia , Salmonelose Animal/microbiologia , Estudos Soroepidemiológicos , Traqueia/microbiologia , Traqueia/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA