Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.954
Filtrar
1.
Food Res Int ; 186: 114328, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729714

RESUMO

The metabolism and absorption of citrus flavanones are intrinsically linked to the gut microbiota, creating a bidirectional relationship where these compounds influence the microbiome, and in turn, the microbiota affects their metabolism. This study evaluates the effect of acute and chronic consumption of orange juice (OJ) on the urinary excretion of gut-derived flavanone metabolites and the gut microbiota. Health volunteers ingested 500 mL of OJ for 60 days in a single-arm human intervention study. Blood and feces were collected at baseline and after 60 days, with an additional 24-hour urine collection after a single dose on day 1 and day 63. LC-MS/MS analyzed urinary flavanone metabolites, while 16S rRNA sequencing characterized gut microbiota. Total urinary hesperetin conjugates excretion significantly decreased over 60 days, while gut-derived total phenolic acids, particularly three hydroxybenzoic acids, increased. Moreover, the heterogeneity of the total amount of flavanone conjugates, initially categorizing individuals into high-, medium- and low- urinary excretor profiles, shifted towards medium-excretor, except for five individuals who remained as low-excretors. This alteration was accompanied by a decrease in intestinal ß-glucosidase activity and a shift in the relative abundance of specific genera, such as decreases in Blautia, Eubacterium hallii, Anaerostipes, and Fusicatenibacter, among which, Blautia was associated with higher urinary flavanone conjugates excretion. Conversely, an increase in Prevotella was observed. In summary, chronic OJ consumption induced transient changes in gut microbiota and altered the metabolism of citrus flavanones, leading to distinct urinary excretion profiles of flavanone metabolites.


Assuntos
Citrus sinensis , Fezes , Flavanonas , Sucos de Frutas e Vegetais , Microbioma Gastrointestinal , Humanos , Flavanonas/urina , Masculino , Adulto , Feminino , Fezes/microbiologia , Fezes/química , Hesperidina/urina , Espectrometria de Massas em Tandem , Pessoa de Meia-Idade , Adulto Jovem , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Hidroxibenzoatos/urina
2.
Front Cell Infect Microbiol ; 14: 1390104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741891

RESUMO

Introduction: Zinc (Zn) is an essential trace element in animals, but excessive intake can lead to renal toxicity damage. Thus, the exploration of effective natural antagonists to reduce the toxicity caused by Zn has become a major scientific problem. Methods: Here, we found that hesperidin could effectively alleviate the renal toxicity induced by Zn in pigs by using hematoxylin-eosin staining, transmission electron microscope, immunohistochemistry, fluorescence quantitative PCR, and microfloral DNA sequencing. Results: The results showed that hesperidin could effectively attenuate the pathological injury in kidney, and reduce autophagy and apoptosis induced by Zn, which evidenced by the downregulation of LC3, ATG5, Bak1, Bax, Caspase-3 and upregulation of p62 and Bcl2. Additionally, hesperidin could reverse colon injury and the decrease of ZO-1 protein expression. Interestingly, hesperidin restored the intestinal flora structure disturbed by Zn, and significantly reduced the abundance of Tenericutes (phylum level) and Christensenella (genus level). Discussion: Thus, altered intestinal flora and intestinal barrier function constitute the gut-kidney axis, which is involved in hesperidin alleviating Zn-induced nephrotoxicity. Our study provides theoretical basis and practical significance of hesperidin for the prevention and treatment of Zn-induced nephrotoxicity through gut-kidney axis.


Assuntos
Apoptose , Microbioma Gastrointestinal , Hesperidina , Rim , Zinco , Animais , Hesperidina/farmacologia , Suínos , Zinco/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Apoptose/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle
3.
Sci Rep ; 14(1): 11535, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773159

RESUMO

In this study, a novel method for the fabrication of hesperidin/reduced graphene oxide nanocomposite (RGOH) with the assistance of gamma rays is reported. The different RGOHs were obtained by varying hesperidin concentrations (25, 50, 100, and 200 wt.%) in graphene oxide (GO) solution. Hesperidin concentrations (25, 50, 100, and 200 wt.%) in graphene oxide (GO) were varied to produce the various RGOHs. Upon irradiation with 80 kGy from γ-Ray, the successful reduction of GO occurred in the presence of hesperidin. The reduction process was confirmed by different characterization techniques such as FTIR, XRD, HRTEM, and Raman Spectroscopy. A cytotoxicity study using the MTT method was performed to evaluate the cytotoxic-anticancer effects of arbitrary RGOH on Wi38, CaCo2, and HepG2 cell lines. The assessment of RGOH's anti-inflammatory activity, including the monitoring of IL-1B and IL-6 activities as well as NF-kB gene expression was done. In addition, the anti-invasive and antimetastatic properties of RGOH, ICAM, and VCAM were assessed. Additionally, the expression of the MMP2-9 gene was quantified. The assessment of apoptotic activity was conducted by the detection of gene expressions related to BCl2 and P53. The documentation of the JNK/SMAD4/MMP2 signaling pathway was ultimately accomplished. The findings of our study indicate that RGOH therapy has significant inhibitory effects on the JNK/SMAD4/MMP2 pathway. This suggests that it could be a potential therapeutic option for cancer.


Assuntos
Raios gama , Grafite , Hesperidina , Metaloproteinase 2 da Matriz , Nanocompostos , Proteína Smad4 , Humanos , Grafite/química , Grafite/farmacologia , Nanocompostos/química , Hesperidina/farmacologia , Hesperidina/química , Proteína Smad4/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Química Verde/métodos , Transdução de Sinais/efeitos dos fármacos , Células CACO-2 , Células Hep G2 , Linhagem Celular Tumoral , MAP Quinase Quinase 4/metabolismo
4.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732039

RESUMO

Hesperidin is a highly bioactive natural flavonoid whose role in ecological interactions is poorly known. In particular, the effects of hesperidin on herbivores are rarely reported. Flavonoids have been considered as prospective biopesticides; therefore, the aim of the present study was to examine the influence of hesperidin on the host plant selection behavior of three aphid (Hemiptera: Aphididae) species: Acyrthosiphon pisum Harrris, Rhopalosiphum padi (L.), and Myzus persicae (Sulz.). The aphid host plants were treated with 0.1% and 0.5% ethanolic solutions of hesperidin. Aphid probing behavior in the no-choice experiment was monitored using electropenetrography and aphid settling on plants in the choice experiment was recorded. The results demonstrated that hesperidin can be applied as a pre-ingestive, ingestive, and post-ingestive deterrent against A. pisum, as an ingestive deterrent against R. padi, and as a post-ingestive deterrent against M. persicae using the relatively low 0.1% concentration. While in A. pisum the deterrent effects of hesperidin were manifested as early as during aphid probing in peripheral plant tissues, in M. persicae, the avoidance of plants was probably the consequence of consuming the hesperidin-containing phloem sap.


Assuntos
Afídeos , Hesperidina , Afídeos/efeitos dos fármacos , Afídeos/fisiologia , Animais , Hesperidina/farmacologia , Hesperidina/química , Especificidade da Espécie , Comportamento Alimentar/efeitos dos fármacos , Herbivoria/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos
5.
J Agric Food Chem ; 72(19): 11174-11184, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687489

RESUMO

Polyphenols with a typical meta-phenol structure have been intensively investigated for scavenging of methylglyoxal (MGO) to reduce harmful substances in food. However, less attention has been paid to the formation level of polyphenol-MGO adducts in foods and in vivo and their absorption, metabolism, and health impacts. In this study, hesperitin (HPT) was found to scavenge MGO by forming two adducts, namely, 8-(1-hydroxyacetone)-hesperetin (HPT-mono-MGO) and 6-(1-hydroxyacetone)-8-(1-hydroxyacetone)-hesperetin (HPT-di-MGO). These two adducts were detected (1.6-15.9 mg/kg in total) in cookies incorporated with 0.01%-0.5% HPT. HPT-di-MGO was the main adduct detected in rat plasma after HPT consumption. The adducts were absorbed 8-30 times faster than HPT, and they underwent glucuronidation and sulfation in vivo. HPT-mono-MGO would continue to react with endogenous MGO in vivo to produce HPT-di-MGO, which effectively reduced the cytotoxicity of HPT and HPT-mono-MGO. This study provided data on the safety of employing HPT as a dietary supplement to scavenge MGO in foods.


Assuntos
Hesperidina , Aldeído Pirúvico , Animais , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/química , Hesperidina/metabolismo , Hesperidina/química , Hesperidina/análogos & derivados , Ratos , Masculino , Ratos Sprague-Dawley , Humanos
6.
Toxicon ; 243: 107724, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38649116

RESUMO

The potential health risks of bisphenol A (BS) and diabetes (DI) has sparked public concern due to be ubiquitous worldwide. The purpose of this study was to investigate the detrimental impact of BS (200 mg/kg) on the spinal cord tissue in a rat diabetic model. We also evaluated the antioxidant capacity of hesperidin (HS) (100 mg/kg) on spinal cord in BS-treated diabetic rat. Seventy male Wistar albino rats, weighing 180-230 g and 8 weeks old, were randomly chosen, and assigned into seven groups of 10 rats: Control (KON), BS, DI, BS + DI, HS + BS, HS + DI, HS + BS + DI. At the end of the 14-day experimental period, all samples were examined using stereological, biochemical, and histopathological techniques. Our biochemical findings revealed that the SOD level was significantly lower in the BS, DI, and BS + DI groups compared to the KON group (p < 0.05). Compared to the KON group, there was a significant decrease in the number of motor neurons and an increase in the mean volume of central canals in the BS, DI, and BS + DI groups (p < 0.05). In the HS + BC group than the BS group and in the HS + DI group than the DI group, SOD activity and the number of motor neurons were significantly higher; also, the mean volume of spinal central canal was significantly lower (p < 0.05). The novel findings gathered from the histopathological assessment supported our quantitative results. Our speculation was that the exposure to BS and DI was the main cause of neurological alteration in the spinal cord tissues. The administration of HS had the therapeutic potential to mitigate spinal cord abnormalities resulting from BS and DI. However, HS supplementation did not alleviate spinal cord complications in BS-treated diabetic rats.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Experimental , Hesperidina , Fenóis , Ratos Wistar , Medula Espinal , Animais , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Medula Espinal/efeitos dos fármacos , Masculino , Hesperidina/farmacologia , Hesperidina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos , Antioxidantes/farmacologia
7.
Redox Rep ; 29(1): 2341470, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38629504

RESUMO

Cisplatin is widely employed in clinical oncology as an anticancer chemotherapy drug in clinical practice and is known for its severe ototoxic side effects. Prior research indicates that the accumulation of reactive oxygen species (ROS) plays a pivotal role in cisplatin's inner ear toxicity. Hesperidin is a flavanone glycoside extracted from citrus fruits that has anti-inflammatory and antioxidant effects. Nonetheless, the specific pharmacological actions of hesperidin in alleviating cisplatin-induced ototoxicity remain elusive. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical mediator of the cellular oxidative stress response, is influenced by hesperidin. Activation of Nrf2 was shown to have a protective effect against cisplatin-induced ototoxicity. The potential of hesperidin to stimulate Nrf2 in attenuating cisplatin's adverse effects on the inner ear warrants further investigation. This study employs both in vivo and in vitro models of cisplatin ototoxicity to explore this possibility. Our results reveal that hesperidin mitigates cisplatin-induced ototoxicity by activating the Nrf2/NQO1 pathway in sensory hair cells, thereby reducing ROS accumulation, preventing hair cell apoptosis, and alleviating hearing loss.


Assuntos
Antineoplásicos , Hesperidina , Ototoxicidade , Humanos , Cisplatino/toxicidade , Hesperidina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Ototoxicidade/tratamento farmacológico , Ototoxicidade/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Antineoplásicos/toxicidade , Células Ciliadas Auditivas/metabolismo , Apoptose
8.
Behav Brain Res ; 466: 114981, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38580198

RESUMO

This study verified the effects of the natural compounds berberine and hesperidin on seizure development and cognitive impairment triggered by pentylenetetrazole (PTZ) in zebrafish. Adult animals were submitted to a training session in the inhibitory avoidance test and, after 10 minutes, they received an intraperitoneal injection of 25, 50, or 100 mg/kg berberine or 100 or 200 mg/kg hesperidin. After 30 minutes, the animals were exposed to 7.5 mM PTZ for 10 minutes. Animals were submitted to the test session 24 h after the training session to verify their cognitive performance. Zebrafish larvae were exposed to 100 µM or 500 µM berberine or 10 µM or 50 µM hesperidin for 30 minutes. After, larvae were exposed to PTZ and had the seizure development evaluated by latency to reach the seizure stages I, II, and III. Adult zebrafish pretreated with 50 mg/kg berberine showed a longer latency to reach stage III. Zebrafish larvae pretreated with 500 µM berberine showed a longer latency to reach stages II and III. Hesperidin did not show any effect on seizure development both in larvae and adult zebrafish. Berberine and hesperidin pretreatments prevented the memory consolidation impairment provoked by PTZ-induced seizures. There were no changes in the distance traveled in adult zebrafish pretreated with berberine or hesperidin. In larval stage, berberine caused no changes in the distance traveled; however, hesperidin increased the locomotion. Our results reinforce the need for investigating new therapeutic alternatives for epilepsy and its comorbidities.


Assuntos
Aprendizagem da Esquiva , Berberina , Hesperidina , Pentilenotetrazol , Convulsões , Peixe-Zebra , Animais , Pentilenotetrazol/farmacologia , Berberina/farmacologia , Berberina/administração & dosagem , Hesperidina/farmacologia , Convulsões/induzido quimicamente , Convulsões/prevenção & controle , Aprendizagem da Esquiva/efeitos dos fármacos , Consolidação da Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/prevenção & controle , Masculino , Modelos Animais de Doenças , Convulsivantes/farmacologia , Larva/efeitos dos fármacos , Relação Dose-Resposta a Droga , Anticonvulsivantes/farmacologia
9.
Pestic Biochem Physiol ; 200: 105835, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582597

RESUMO

Octanal was found to be able to reduce green mold incidence in citrus fruit by a defense response mechanism. However, the underlying mechanism remains largely unclear. Herein, the metabolomics, RNA-seq and biochemical analyses were integrated to explore the effect of octanal on disease resistance in harvested citrus fruit. Results showed that octanal fumigation at 40 µL L-1 was effective in controlling citrus green mold. Metabolomics analysis showed that octanal mainly led to the accumulation of some plant hormones including methyl jasmonate, abscisic acid, indole-3-butyric acid, indoleacetic acid (IAA), salicylic acid, and gibberellic acid and many phenylpropanoid metabolites including cinnamyl alcohol, hesperidin, dihydrokaempferol, vanillin, quercetin-3-O-malonylglucoside, curcumin, naringin, chrysin, coniferin, calycosin-7-O-ß-D-glucoside, trans-cinnamaldehyde, and 4',5,7-trihydroxy-3,6-dimethoxyflavone. Particularly, IAA and hesperidin were dramatically accumulated in the peel, which might be the contributors to the resistance response. Additionally, transcriptome analysis showed that octanal greatly activated the biosynthesis and metabolism of aromatic amino acids. This was further verified by the accumulation of some metabolites (shikimic acid, tryptophan, tyrosine, phenylalanine, IAA, total phenolics, flavonoids and lignin), increase in some enzyme activities (phenylalanine ammonia-lyase, tyrosine ammonia-lyase, 4-coumarate CoA ligase, cinnamic acid 4-hydroxylase, polyphenol oxidase, and peroxidase), up-regulation of some genes (tryptophan pyruvate aminotransferase, aldehyde dehydrogenase, shikimate kinase and shikimate dehydrogenase) expressions and molecular docking results. Thus, these results indicate that octanal is an efficient strategy for the control of postharvest green mold by triggering the defense response in citrus fruit.


Assuntos
Aldeídos , Citrus , Hesperidina , Citrus/química , Citrus/genética , Citrus/metabolismo , Aminoácidos Aromáticos/metabolismo , Resistência à Doença , Hesperidina/análise , Hesperidina/metabolismo , Hesperidina/farmacologia , Triptofano/metabolismo , Simulação de Acoplamento Molecular , Frutas
10.
Biomed Mater ; 19(3)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38653315

RESUMO

Hesperidin, a phytochemical renowned for its therapeutic effects including anticancer, antioxidant, and anti-inflammatory properties, encounters a significant limitation in its application due to its low bioavailability and restricted solubility in water. To surmount these challenges, we employed a spontaneous emulsification method to produce hesperidin nanoparticles. These nanoparticles, averaging 197.2 ± 2.8 nm, exhibited uniform dispersion (polydispersity index: 0.13), a zeta potential (ZP) of -28 mV, encapsulation efficiency of 84.04 ± 1.3%, and demonstrated stable and controlled release across various environments. Assessment of the nanoemulsions stability revealed remarkably high stability levels. Cytotoxicity evaluations (3-(4,5-dimethylthiazol-2-yl)-2,5diphenyl-2-H-tetrazolium bromide, neutral red, trypan blue, and lactate dehydrogenase) indicated that cancer cell viability following treatment with hesperidin nanoemulsion was concentration and time-dependent, significantly lower compared to cells treated with free hesperidin. The colony formation assay and cell morphology evaluation further corroborated the heightened efficacy of hesperidin in its nano form compared to the free form. In summary, hesperidin nanoparticles not only exhibited more potent anticancer activity than free hesperidin but also demonstrated high biocompatibility with minimal cytotoxic effects on healthy cells. These findings underscore the potential for further exploration of hesperidin nanoparticles as an adjunctive therapy in prostate cancer therapy.


Assuntos
Sobrevivência Celular , Hesperidina , Nanopartículas , Neoplasias da Próstata , Hesperidina/química , Hesperidina/farmacologia , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Tamanho da Partícula , Emulsões
11.
Mol Biol Rep ; 51(1): 591, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683228

RESUMO

BACKGROUND: Graphene oxide nanosheets (GONS) are recognized for their role in enhancing drug delivery and effectiveness in cancer treatment. With colon cancer being a prevalent global issue and the significant side effects associated with chemotherapy, the primary treatment for colon cancer alongside surgery, there is a critical need for novel therapeutic strategies to support patients in combating this disease. Hesperetin (HSP), a natural compound found in specific fruits, exhibits anti-cancer properties. The aim of this study is to investigate the effect of GONS on the LS174t colon cancer cell line. METHODS: In this study, an anti-cancer nano-drug was synthesized by creating a hesperetin-graphene oxide nanocomposite (Hsp-GO), which was subsequently evaluated for its efficacy through in vitro cell toxicity assays. Three systems were investigated: HSP, GONS, and HSP-loaded GONS, to determine their cytotoxic and pro-apoptotic impacts on the LS174t colon cancer cell line, along with assessing the expression of BAX and BCL2. The morphology and properties of both GO and Hsp-GO were examined using scanning electron microscopy (SEM), X-ray diffraction, and Fourier transform infrared spectroscopy (FTIR). RESULTS: The Hsp-GO nanocomposite displayed potent cytotoxic and pro-apoptotic effects on LS174t colon cancer cells, outperforming individual treatments with HSP or GONS. Cell viability assays showed a significant decrease in cell viability with Hsp-GO treatment. Analysis of BAX and BCL2 expression revealed elevated BAX and reduced BCL2 levels in Hsp-GO treated cells, indicating enhanced apoptotic activity. Morphological analysis confirmed successful Hsp-GO synthesis, while structural integrity was supported by X-ray diffraction and FTIR analyses. CONCLUSIONS: These study highlight the potential of Hsp-GO as a promising anti-cancer nano-drug for colon cancer therapy.


Assuntos
Neoplasias do Colo , Sistemas de Liberação de Medicamentos , Grafite , Hesperidina , Grafite/química , Grafite/farmacologia , Humanos , Hesperidina/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Nanocompostos/química , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética
12.
Food Funct ; 15(9): 4905-4924, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38598180

RESUMO

In recent years many women have looked for alternative therapies to address menopause. Hesperidin, phytosterols and curcumin are bioactive compounds that can ameliorate some cardiovascular risk factors associated with menopause, although there are no data concerning the effects of their combined supplementation. We used ovariectomized (OVX) rats, a postmenopausal model with oestrogen deficiency, to evaluate whether supplementation with a multi-ingredient (MI) including hesperidin, phytosterols and curcumin for 57 days would display beneficial effects against fat mass accretion and metabolic disturbances associated with menopause. Twenty OVX rats were orally supplemented with either MI (OVX-MI) or vehicle (OVX). Furthermore, 10 OVX rats orally received the vehicle along with subcutaneous injections of 17ß-oestradiol biweekly (OVX-E2), whereas 10 rats were sham operated and received oral and injected vehicles (control group; SH). MI supplementation partly counteracted the fat mass accretion observed in OVX animals, which was evidenced by decreased total fat mass, adiposity index, the weight of retroperitoneal, inguinal and mesenteric white adipose tissue (MWAT) depots and MWAT adipocyte hypertrophy. These effects were accompanied by a significant decrease in the circulating levels of leptin and the mRNA levels of the fatty acid uptake-related genes Lpl and Cd36 in MWAT. These results were very similar to those observed in OVX-E2 animals. OVX-MI rats also displayed a higher lean body mass, lean/fat mass ratio, adiponectin-to-leptin ratio and insulin sensitivity than their OVX counterparts. Our findings can pave the way for using this MI formulation as an alternative therapy to manage obesity and to improve the cardiometabolic health of menopausal women.


Assuntos
Adiposidade , Curcumina , Suplementos Nutricionais , Hesperidina , Ovariectomia , Fitosteróis , Animais , Feminino , Hesperidina/farmacologia , Hesperidina/administração & dosagem , Fitosteróis/farmacologia , Fitosteróis/administração & dosagem , Ratos , Curcumina/farmacologia , Curcumina/administração & dosagem , Adiposidade/efeitos dos fármacos , Leptina/sangue , Ratos Sprague-Dawley , Humanos , Ratos Wistar
13.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612864

RESUMO

Flavonoids exhibit various bioactivities including anti-oxidant, anti-tumor, anti-inflammatory, and anti-viral properties. Methylated flavonoids are particularly significant due to their enhanced oral bioavailability, improved intestinal absorption, and greater stability. The heterologous production of plant flavonoids in bacterial factories involves the need for enough biosynthetic precursors to allow for high production levels. These biosynthetic precursors are malonyl-CoA and l-tyrosine. In this work, to enhance flavonoid biosynthesis in Streptomyces albidoflavus, we conducted a transcriptomics study for the identification of candidate genes involved in l-tyrosine catabolism. The hypothesis was that the bacterial metabolic machinery would detect an excess of this amino acid if supplemented with the conventional culture medium and would activate the genes involved in its catabolism towards energy production. Then, by inactivating those overexpressed genes (under an excess of l-tyrosine), it would be possible to increase the intracellular pools of this precursor amino acid and eventually the final flavonoid titers in this bacterial factory. The RNAseq data analysis in the S. albidoflavus wild-type strain highlighted the hppD gene encoding 4-hydroxyphenylpyruvate dioxygenase as a promising target for knock-out, exhibiting a 23.2-fold change (FC) in expression upon l-tyrosine supplementation in comparison to control cultivation conditions. The subsequent knock-out of the hppD gene in S. albidoflavus resulted in a 1.66-fold increase in the naringenin titer, indicating enhanced flavonoid biosynthesis. Leveraging the improved strain of S. albidoflavus, we successfully synthesized the methylated flavanones hesperetin, homoeriodictyol, and homohesperetin, achieving titers of 2.52 mg/L, 1.34 mg/L, and 0.43 mg/L, respectively. In addition, the dimethoxy flavanone homohesperetin was produced as a byproduct of the endogenous metabolism of S. albidoflavus. To our knowledge, this is the first time that hppD deletion was utilized as a strategy to augment the biosynthesis of flavonoids. Furthermore, this is the first report where hesperetin and homoeriodictyol have been synthesized from l-tyrosine as a precursor. Therefore, transcriptomics is, in this case, a successful approach for the identification of catabolism reactions affecting key precursors during flavonoid biosynthesis, allowing the generation of enhanced production strains.


Assuntos
Anormalidades Craniofaciais , Flavonas , Flavonoides , Perfilação da Expressão Gênica , Hesperidina , Streptomyces , Aminoácidos , Tirosina
14.
Front Immunol ; 15: 1347420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686374

RESUMO

Introduction: Skin injuries represent a prevalent form of physical trauma, necessitating effective therapeutic strategies to expedite the wound healing process. Hesperidin, a bioflavonoid naturally occurring in citrus fruits, exhibits a range of pharmacological attributes, including antimicrobial, antioxidant, anti-inflammatory, anticoagulant, and analgesic properties. The main objective of the study was to formulate a hydrogel with the intention of addressing skin conditions, particularly wound healing. Methods: This research introduces a methodology for the fabrication of a membrane composed of a Polyvinyl alcohol - Sodium Alginate (PVA/A) blend, along with the inclusion of an anti-inflammatory agent, Hesperidin (H), which exhibits promising wound healing capabilities. A uniform layer of a homogeneous solution comprising PVA/A was cast. The process of crosslinking and the enhancement of hydrogel characteristics were achieved through the application of gamma irradiation at a dosage of 30 kGy. The membrane was immersed in a Hesperidin (H) solution, facilitating the permeation and absorption of the drug. The resultant system is designed to deliver H in a controlled and sustained manner, which is crucial for promoting efficient wound healing. The obtained PVA/AH hydrogel was evaluated for cytotoxicity, antioxidant and free radical scavenging activities, anti-inflammatory and membrane stability effect. In addition, its action on oxidative stress, and inflammatory markers was evaluated on BJ-1 human normal skin cell line. Results and Discussion: We determined the effect of radical scavenging activity PVA/A (49 %) and PVA/AH (87%), the inhibition of Human red blood cell membrane hemolysis by PVA/AH (81.97 and 84.34 %), hypotonicity (83.68 and 76.48 %) and protein denaturation (83.17 and 85.8 %) as compared to 250 µg/ml diclofenac (Dic.) and aspirin (Asp.), respectively. Furthermore, gene expression analysis revealed an increased expression of genes associated with anti-oxidant and anti-inflammatory properties and downregulated TNFα, NFκB, iNOS, and COX2 by 67, 52, 58 and 60%, respectively, by PVA/AH hydrogel compared to LPS-stimulated BJ-1 cells. The advantages associated with Hesperidin can be ascribed to its antioxidant and anti-inflammatory attributes. The incorporation of Hesperidin into hydrogels offers promise for the development of a novel, secure, and efficient strategy for wound healing. This innovative approach holds potential as a solution for wound healing, capitalizing on the collaborative qualities of PVA/AH and gamma irradiation, which can be combined to establish a drug delivery platform for Hesperidin.


Assuntos
Alginatos , Hesperidina , Hidrogéis , NF-kappa B , Álcool de Polivinil , Fator de Necrose Tumoral alfa , Hesperidina/farmacologia , Hesperidina/química , Álcool de Polivinil/química , Humanos , Alginatos/química , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Hidrogéis/química , Transdução de Sinais/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Cicatrização/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Inflamação/tratamento farmacológico
15.
J Med Virol ; 96(4): e29555, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38546037

RESUMO

In this study, we demonstrated the antiviral efficacy of hesperetin against multiple poxviruses, including buffalopox virus (BPXV), vaccinia virus (VACV), and lumpy skin disease virus (LSDV). The time-of-addition and virus step-specific assays indicated that hesperetin reduces the levels of viral DNA, mRNA, and proteins in the target cells. Further, by immunoprecipitation (IP) of the viral RNA from BPXV-infected Vero cells and a cell-free RNA-IP assay, we demonstrated that hesperetin-induced reduction in BPXV protein synthesis is also consistent with diminished interaction between eukaryotic translation initiation factor eIF4E and the 5' cap of viral mRNA. Molecular docking and MD simulation studies were also consistent with the binding of hesperetin to the cap-binding pocket of eIF4E, adopting a conformation similar to m7GTP binding. Furthermore, in a BPXV egg infection model, hesperetin was shown to suppress the development of pock lesions on the chorioallantoic membrane and associated mortality in the chicken embryos. Most importantly, long-term culture of BPXV in the presence of hesperetin did not induce the generation of drug-resistant viral mutants. In conclusion, we, for the first time, demonstrated the antiviral activity of hesperetin against multiple poxviruses, besides providing some insights into its potential mechanisms of action.


Assuntos
Fator de Iniciação 4E em Eucariotos , Hesperidina , Vaccinia virus , Animais , Bovinos , Chlorocebus aethiops , Embrião de Galinha , Células Vero , Simulação de Acoplamento Molecular , Vaccinia virus/genética , Antivirais/farmacologia , RNA Mensageiro , Replicação Viral
16.
Sci Rep ; 14(1): 7434, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548778

RESUMO

Cyclosporine A (CsA) is employed for organ transplantation and autoimmune disorders. Nephrotoxicity is a serious side effect that hampers the therapeutic use of CsA. Hesperidin and sitagliptin were investigated for their antioxidant, anti-inflammatory, and tissue-protective properties. We aimed to investigate and compare the possible nephroprotective effects of hesperidin and sitagliptin. Male Wistar rats were utilized for induction of CsA nephrotoxicity (20 mg/kg/day, intraperitoneally for 7 days). Animals were treated with sitagliptin (10 mg/kg/day, orally for 14 days) or hesperidin (200 mg/kg/day, orally for 14 days). Blood urea, serum creatinine, albumin, cystatin-C (CYS-C), myeloperoxidase (MPO), and glucose were measured. The renal malondialdehyde (MDA), glutathione (GSH), catalase, and SOD were estimated. Renal TNF-α protein expression was evaluated. Histopathological examination and immunostaining study of Bax, Nrf-2, and NF-κB were performed. Sitagliptin or hesperidin attenuated CsA-mediated elevations of blood urea, serum creatinine, CYS-C, glucose, renal MDA, and MPO, and preserved the serum albumin, renal catalase, SOD, and GSH. They reduced the expressions of TNF-α, Bax, NF-κB, and pathological kidney damage. Nrf2 expression in the kidney was raised. Hesperidin or sitagliptin could protect the kidney against CsA through the mitigation of oxidative stress, apoptosis, and inflammation. Sitagliptin proved to be more beneficial than hesperidin.


Assuntos
Hesperidina , Nefropatias , Insuficiência Renal , Ratos , Animais , Masculino , Ciclosporina/farmacologia , NF-kappa B/metabolismo , Catalase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo , Hesperidina/farmacologia , Hesperidina/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Wistar , Fosfato de Sitagliptina/efeitos adversos , Creatinina , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Rim/metabolismo , Estresse Oxidativo , Insuficiência Renal/patologia , Glutationa/metabolismo , Ureia/metabolismo , Superóxido Dismutase/metabolismo , Glucose/metabolismo
17.
Food Funct ; 15(8): 4233-4245, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517352

RESUMO

The aggregation of ß-amyloid (Aß) peptides to form amyloid plaques is one of the primary hallmarks for Alzheimer's disease (AD). Dietary flavonoid supplements containing hesperetin have an ability to decline the risk of developing AD, but the molecular mechanism is still unclear. In this work, hesperetin, a flavanone abundant in citrus fruits, has been proven to prevent the formation of Aß aggregates and depolymerized preformed fibrils in a concentration-dependent fashion. Hesperetin inhibited the conformational conversion from the natural structure to a ß-sheet-rich conformation. It was found that hesperetin significantly reduced the cytotoxicity and relieved oxidative stress eventuated by Aß aggregates in a concentration-dependent manner. Additionally, the beneficial effects of hesperetin were confirmed in Caenorhabditis elegans, including the inhibition of the formation and deposition of Aß aggregates and extension of their lifespan. Finally, the results of molecular dynamics simulations showed that hesperetin directly interacted with an Aß42 pentamer mainly through strong non-polar and electrostatic interactions, which destroyed the structural stability of the preformed pentamer. To summarize, hesperetin exhibits great potential as a prospective dietary supplement for preventing and improving AD.


Assuntos
Peptídeos beta-Amiloides , Caenorhabditis elegans , Hesperidina , Hesperidina/farmacologia , Hesperidina/química , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/química , Animais , Caenorhabditis elegans/efeitos dos fármacos , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Amiloide/metabolismo , Simulação de Dinâmica Molecular , Estresse Oxidativo/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124172, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38513316

RESUMO

Hesperidin (HE), a significant flavonoid polyphenolic compound present in citrus plants, exhibits diverse pharmacological effects. Considering the crucial involvement of biological membranes and transporter proteins in the transportation and biological processes of HE, it becomes essential to comprehend the potential mechanisms through which HE interacts with membranes and transporter proteins. In order to simulate the process of active molecule transport, a cell membrane model consisting of 1,2-dipalmitoyl-n-glycero-3-phosphatidylcholine (DPPC) and a transporter protein model of bovine serum albumin (BSA) were employed for investigation. The present study aimed to investigate the mechanism of action of hesperidin (HE) in DPPC and BSA using fluorescence quenching, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The localization and interaction of HE within liposomes were also elucidated. Furthermore, the binding of BSA and HE was analyzed through UV/Vis absorption spectroscopy, fluorescence spectroscopy, infrared spectroscopy, and computational biology techniques. Computational biology analysis revealed that the binding between HE and BSA primarily occurred via hydrogen bonding and hydrophobic interactions. This study aimed to investigate the role and mechanism of HE in the DPPC cell membrane model and the BSA transporter protein model, thereby offering novel insights into the action of HE in DPPC and BSA.


Assuntos
Hesperidina , Soroalbumina Bovina/química , Lipossomos/química , Flavonoides/química , 1,2-Dipalmitoilfosfatidilcolina , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Fluorescência
19.
Gene ; 911: 148357, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462023

RESUMO

PURPOSE: The most common malignancy among women worldwide is breast cancer. The estrogen receptor plays a vital role in this cancer. One of the most well-known mechanisms that affects the activity of this receptor is its phosphorylation by protein kinase pathways. Hesperetin, a flavonoid abundant in citrus species such as lemons, grapefruits, and oranges, is the aglycone form of hesperidin. It has undergone thorough evaluation for its potential anti-cancer properties, particularly in the context of breast cancer. Studies have shown that hesperetin has an effect on intracellular kinase pathways. The aim of this study was to investigate the effect of hesperetin on the expression, phosphorylation and activity of estrogen receptor alpha (ERα) in MCF-7 breast cancer cell line. STUDY DESIGN AND METHODS: MCF-7 cells were cultured in RPMI-1640 phenol red-free medium supplemented with charcoal-stripped FBS and treated with hesperetin. The MTT method was used to evaluate cell survival. The levels of the ERα protein and its phosphorylated form (Ser118) were determined via western blotting. A luciferase reporter vector was used to evaluate ERE activity. RESULTS: The results of this study indicated that hesperetin reduced the survival of MCF-7 cells in a dose-dependent manner. The expression and phosphorylation (at Ser118) of the ERα significantly increased and decreased, respectively, in the groups treated with hesperetin. Hesperetin increased the activity of the ERα in the absence of E2, although these differences were not statistically significant. Conversely, in the presence of E2, hesperetin caused a significant decrease in receptor activity. CONCLUSION: Based on the results of this study, it can be concluded that hesperetin has a significant effect on ERα expression, phosphorylation and activity.


Assuntos
Neoplasias da Mama , Hesperidina , Feminino , Humanos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Células MCF-7 , Hesperidina/farmacologia , Fosforilação , Estradiol , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células
20.
J Agric Food Chem ; 72(14): 8027-8038, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38529939

RESUMO

There is considerable research evidence that α-dicarbonyl compounds, including glyoxal (GO) and methylglyoxal (MGO), are closely related to many chronic diseases. In this work, after comparison of the capture capacity, reaction pathway, and reaction rate of synephrine (SYN) and neohesperidin (NEO) on GO/MGO in vitro, experimental mice were administrated with SYN and NEO alone and in combination. Quantitative data from UHPLC-QQQ-MS/MS revealed that SYN/NEO/HES (hesperetin, the metabolite of NEO) could form the GO/MGO-adducts in mice (except SYN-MGO), and the levels of GO/MGO-adducts in mouse urine and fecal samples were dose-dependent. Moreover, SYN and NEO had a synergistic scavenging effect on GO in vivo by promoting each other to form more GO adducts, while SYN could promote NEO to form more MGO-adducts, although it could not form MGO-adducts. Additionally, human experiments showed that the GO/MGO-adducts of SYN/NEO/HES found in mice were also detected in human urine and fecal samples after drinking flowers of Citrus aurantium L. var. amara Engl. (FCAVA) tea using UHPLC-QTOF-MS/MS. These findings provide a novel strategy to reduce endogenous GO/MGO via the consumption of dietary FCAVA rich in SYN and NEO.


Assuntos
Citrus , Hesperidina/análogos & derivados , Aldeído Pirúvico , Humanos , Animais , Camundongos , Glioxal , Sinefrina , Espectrometria de Massas em Tandem , Óxido de Magnésio , Flores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA