Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.218
Filtrar
1.
J Agric Food Chem ; 72(32): 18100-18109, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39090787

RESUMO

Inulin has found commercial applications in the pharmaceutical, nutraceutical, and food industries due to its beneficial health effects. The enzymatic biosynthesis of microbial inulin has garnered increasing attention. In this study, molecular modification was applied to Lactobacillus mulieris UMB7800 inulosucrase, an enzyme that specifically produces high-molecular weight inulin, to enhance its catalytic activity and thermostability. Among the 18 variable regions, R5 was identified as a crucial region significantly impacting enzymatic activity by replacing it with more conserved sequences. Site-directed mutagenesis combined with saturated mutagenesis revealed that the mutant A250 V increased activity by 68%. Additionally, after screening candidate mutants by rational design, four single-point mutants, S344D, H434P, E526D, and G531P, were shown to enhance thermostability. The final combinational mutant, M5, exhibited a 66% increase in activity and a 5-fold enhancement in half-life at 55 °C. These findings are significant for understanding the catalytic activity and thermostability of inulosucrase and are promising for the development of microbial inulin biosynthesis platforms.


Assuntos
Proteínas de Bactérias , Estabilidade Enzimática , Hexosiltransferases , Inulina , Lactobacillus , Mutagênese Sítio-Dirigida , Inulina/metabolismo , Inulina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Hexosiltransferases/química , Lactobacillus/enzimologia , Lactobacillus/genética , Lactobacillus/metabolismo , Cinética , Temperatura Alta , Engenharia de Proteínas , Especificidade por Substrato
2.
J Med Chem ; 67(16): 14586-14608, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39136957

RESUMO

In the aftermath of the COVID-19 pandemic, opportunities to modulate biological pathways common to the lifecycles of viruses need to be carefully considered. N-linked glycosylation in humans is mediated exclusively by the oligosaccharyltransferase complex and is frequently hijacked by viruses to facilitate infection. As such, STT3A/B, the catalytic domain of the OST complex, became an intriguing drug target with broad-spectrum antiviral potential. However, due to the critical role N-linked glycosylation plays in a number of fundamental human processes, the toxicological ramifications of STT3A/B inhibition required attention commensurate to that given to antiviral efficacy. Herein, we describe how known STT3A/B inhibitor NGI-1 inspired the discovery of superior tool compounds which were evaluated in in vitro efficacy and translational safety (e.g., CNS, cardiovascular, liver) studies. The described learnings will appeal to those interested in the therapeutic utility of modulating N-linked glycosylation as well as the broader scientific community.


Assuntos
Antivirais , Proteínas de Membrana , SARS-CoV-2 , Sialiltransferases , Antivirais/farmacologia , Antivirais/química , Humanos , Animais , SARS-CoV-2/efeitos dos fármacos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Sialiltransferases/antagonistas & inibidores , Sialiltransferases/metabolismo , Descoberta de Drogas , Tratamento Farmacológico da COVID-19 , Glicosilação , Ratos , Hexosiltransferases
3.
J Agric Food Chem ; 72(30): 17030-17040, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39034843

RESUMO

Carbohydrate degradation is crucial for living organisms due to their essential functions in providing energy and composing various metabolic pathways. Nevertheless, in the catalytic cycle of polysaccharide degradation, the details of how the substrates bind and how the products release need more case studies. Here, we choose an inulin fructotransferase (SpIFTase) as a model system, which can degrade inulin into functionally difructose anhydride I. At first, the crystal structures of SpIFTase in the absence of carbohydrates and complex with fructosyl-nystose (GF4), difructose anhydride I, and fructose are obtained, giving the substrate trajectory and product path of SpIFTase, which are further supported by steered molecular dynamics simulations (MDSs) along with mutagenesis. Furthermore, structural topology variations at the active centers of inulin fructotransferases are suggested as the structural base for product release, subsequently proven by substitution mutagenesis and MDSs. Therefore, this study provides a case in point for a deep understanding of the catalytic cycle with substrate trajectory and product path.


Assuntos
Hexosiltransferases , Inulina , Hexosiltransferases/química , Hexosiltransferases/metabolismo , Hexosiltransferases/genética , Inulina/metabolismo , Inulina/química , Especificidade por Substrato , Simulação de Dinâmica Molecular , Domínio Catalítico , Biocatálise , Catálise , Frutose/metabolismo , Frutose/química
4.
ACS Infect Dis ; 10(8): 2913-2928, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39023360

RESUMO

The lack of effective vaccines and the development of resistance to the current treatments highlight the urgent need for new anti-leishmanials. Sphingolipid metabolism has been proposed as a promising source of Leishmania-specific targets as these lipids are key structural components of the eukaryotic plasma membrane and are involved in distinct cellular events. Inositol phosphorylceramide (IPC) is the primary sphingolipid in the Leishmania species and is the product of a reaction mediated by IPC synthase (IPCS). The antihistamine clemastine fumarate has been identified as an inhibitor of IPCS in L. major and a potent anti-leishmanial in vivo. Here we sought to further examine the target of this compound in the more tractable species L. mexicana, using an approach combining genomic, proteomic, metabolomic and lipidomic technologies, with molecular and biochemical studies. While the data demonstrated that the response to clemastine fumarate was largely conserved, unexpected disturbances beyond sphingolipid metabolism were identified. Furthermore, while deletion of the gene encoding LmxIPCS had little impact in vitro, it did influence clemastine fumarate efficacy and, importantly, in vivo pathogenicity. Together, these data demonstrate that clemastine does inhibit LmxIPCS and cause associated metabolic disturbances, but its primary target may lie elsewhere.


Assuntos
Antiprotozoários , Antiprotozoários/farmacologia , Antiprotozoários/química , Esfingolipídeos/metabolismo , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Hexosiltransferases/antagonistas & inibidores , Leishmania/efeitos dos fármacos , Leishmania/genética , Leishmania/enzimologia , Animais , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/genética , Leishmania mexicana/enzimologia , Glicoesfingolipídeos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
5.
ACS Chem Biol ; 19(7): 1570-1582, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38934647

RESUMO

N-linked glycosylation plays a key role in the efficacy of many therapeutic proteins. One limitation to the bacterial glycoengineering of human N-linked glycans is the difficulty of installing a single N-acetylglucosamine (GlcNAc), the reducing end sugar of many human-type glycans, onto asparagine in a single step (N-GlcNAcylation). Here, we develop an in vitro method for N-GlcNAcylating proteins using the oligosaccharyltransferase PglB from Campylobacter jejuni. We use cell-free protein synthesis (CFPS) to test promiscuous PglB variants previously reported in the literature for the ability to produce N-GlcNAc and successfully determine that PglB with an N311V mutation (PglBN311V) exhibits increased GlcNAc transferase activity relative to the wild-type enzyme. We then improve the transfer efficiency by producing CFPS extracts enriched with PglBN311V and further optimize the reaction conditions, achieving a 98.6 ± 0.5% glycosylation efficiency. We anticipate this method will expand the glycoengineering toolbox for therapeutic research and biomanufacturing.


Assuntos
Acetilglucosamina , Campylobacter jejuni , Sistema Livre de Células , Glicoproteínas , Hexosiltransferases , Campylobacter jejuni/enzimologia , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Glicosilação , Glicoproteínas/metabolismo , Glicoproteínas/genética , Glicoproteínas/química , Acetilglucosamina/metabolismo , Acetilglucosamina/química , Hexosiltransferases/metabolismo , Hexosiltransferases/genética , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética
6.
Microb Biotechnol ; 17(6): e14480, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38858807

RESUMO

The application of bacterial oligosaccharyltransferases (OSTs) such as the Campylobacter jejuni PglB for glycoengineering has attracted considerable interest in glycoengineering and glycoconjugate vaccine development. However, PglB has limited specificity for glycans that can be transferred to candidate proteins, which along with other factors is dependent on the reducing end sugar of glycans. In this study, we developed a cell-free glycosylation assay that offers the speed and simplicity of a 'yes' or 'no' determination. Using the assay, we tested the activity of eleven PglBs from Campylobacter species and more distantly related bacteria. The following assorted glycans with diverse reducing end sugars were tested for transfer, including Streptococcus pneumoniae capsule serotype 4, Salmonella enterica serovar Typhimurium O antigen (B1), Francisella tularensis O antigen, Escherichia coli O9 antigen and Campylobacter jejuni heptasaccharide. Interestingly, while PglBs from the same genus showed high activity, whereas divergent PglBs differed in their transfer of glycans to an acceptor protein. Notably for glycoengineering purposes, Campylobacter hepaticus and Campylobacter subantarcticus PglBs showed high glycosylation efficiency, with C. hepaticus PglB potentially being useful for glycoconjugate vaccine production. This study demonstrates the versatility of the cell-free assay in rapidly assessing an OST to couple glycan/carrier protein combinations and lays the foundation for future screening of PglBs by linking amino acid similarity to glycosyltransferase activity.


Assuntos
Hexosiltransferases , Proteínas de Membrana , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Hexosiltransferases/química , Glicosilação , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Campylobacter/genética , Campylobacter/enzimologia , Campylobacter/metabolismo , Polissacarídeos/metabolismo , Sistema Livre de Células , Campylobacter jejuni/enzimologia , Campylobacter jejuni/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Glicoconjugados/metabolismo
7.
FASEB J ; 38(13): e23782, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38934375

RESUMO

N-glycosylation is the most common protein modification in the eukaryotic secretory pathway. It involves the attachment a high mannose glycan to Asn residues in the context of Asn-X-Ser/Thr/Cys, a motif known as N-glycosylation sequon. This process is mediated by STT3A and STT3B, the catalytic subunits of the oligosaccharyltransferase complexes. STT3A forms part of complexes associated with the SEC61 translocon and functions co-translationally. Vacant sequons have another opportunity for glycosylation by complexes carrying STT3B. Local sequence information plays an important role in determining N-glycosylation efficiency, but non-local factors can also have a significant impact. For instance, certain proteins associated with human genetic diseases exhibit abnormal N-glycosylation levels despite having wild-type acceptor sites. Here, we investigated the effect of protein stability on this process. To this end, we generated a family of 40 N-glycan acceptors based on superfolder GFP, and we measured their efficiency in HEK293 cells and in two derived cell lines lacking STT3B or STT3A. Sequon occupancy was highly dependent on protein stability, improving as the thermodynamic stability of the acceptor proteins decreases. This effect is mainly due to the activity of the STT3B-based OST complex. These findings can be integrated into a simple kinetic model that distinguishes local information within sequons from global information of the acceptor proteins.


Assuntos
Hexosiltransferases , Proteínas de Membrana , Processamento de Proteína Pós-Traducional , Humanos , Glicosilação , Células HEK293 , Hexosiltransferases/metabolismo , Hexosiltransferases/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Estabilidade Proteica , Polissacarídeos/metabolismo
8.
Bioprocess Biosyst Eng ; 47(9): 1499-1514, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38904715

RESUMO

The trisaccharide 1-kestose, a major constituent of commercial fructooligosaccharide (FOS) formulations, shows a superior prebiotic effect compared to higher-chain FOS. The plant sucrose:sucrose 1-fructosyltransferases (1-SST) are extensively used for selective synthesis of lower chain FOS. In this study, enhanced recombinant (r) 1-SST production was achieved in Komagataella phaffii (formerly Pichia pastoris) containing three copies of a codon-optimized Festuca arundinacea 1-SST gene. R1-SST production reached 47 U/mL at the shake-flask level after a 96-h methanol induction phase. A chemostat-based strain characterization methodology was adopted to assess the influence of specific growth rate (µ) on cell-specific r1-SST productivity (Qp) and cell-specific oxygen uptake rate (Qo) under two different feeding strategies across dilution rates from 0.02 to 0.05 h-1. The methanol-sorbitol co-feeding strategy significantly reduced Qo by 46 ± 2.4% compared to methanol-only feeding without compromising r1-SST productivity. Based on the data, a dilution rate of 0.025 h-1 was applied for continuous cultivation of recombinant cells to achieve a sustained r1-SST productivity of 5000 ± 64.4 U/L/h for 15 days.


Assuntos
Hexosiltransferases , Proteínas Recombinantes , Saccharomycetales , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/enzimologia , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Hexosiltransferases/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Carbono/metabolismo , Sacarose/metabolismo , Reatores Biológicos , Metanol/metabolismo , Proteínas de Bactérias
9.
Food Chem ; 453: 139597, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788653

RESUMO

Fructansucrases produce fructans by polymerizing the fructose moiety released from sucrose. Here, we describe the recombinant expression and characterization of a unique fructansucrase from Lactiplantibacillus plantarum DKL3 that showed low sequence similarity with previously characterized fructansucrases. The optimum pH and temperature of fructansucrase were found to be 4.0 and 35 °C, respectively. Enzyme activity increased in presence of Ca2+ and distinctly in presence of Mn2+. The enzyme was characterized as an inulosucrase (LpInu), based on the production of an inulin-type fructan as assessed byNMR spectroscopy and methylation analysis. In addition to ß-2,1-linkages, the inulin contained a few ß-2,1,6-linked branchpoints. High-performance size exclusion chromatography with refractive index detection (HPSEC-RI) revealed the production of inulin with a lower molecular weight compared to other characterized bacterial inulin. LpInu and its inulin product represent novel candidates to be explored for possible food and biomedical applications.


Assuntos
Proteínas de Bactérias , Hexosiltransferases , Inulina , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Hexosiltransferases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Inulina/química , Inulina/metabolismo , Concentração de Íons de Hidrogênio , Temperatura , Estabilidade Enzimática , Peso Molecular , Lactobacillaceae/enzimologia , Lactobacillaceae/genética , Lactobacillaceae/metabolismo , Lactobacillaceae/química
10.
Int J Biol Macromol ; 271(Pt 1): 132508, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782321

RESUMO

Levan-type fructooligosaccharides (LFOS) exhibit significant biological activities and selectively promote the growth of certain beneficial bacteria. Levanase is an important enzyme for LFOS production. In this study, two isoforms of levanases, exo- and endo-type depolymerizing enzymes, from Bacillus subtilis HM7 isolated from Dynastes hercules larvae excrement were cloned, expressed, and characterized. The synergistic effect on the levan hydrolysis and kinetic properties of both isoforms were evaluated, indicating their cooperation in levan metabolism, where the endo-levanase catalyzes a rate-limiting step. In addition, homology models and molecular dynamics simulations revealed the key amino residues of the enzymes for levan binding and catalysis. It was found that both isoforms possessed distinct binding residues in the active sites, suggesting the importance of the specificity of the enzymes. Finally, we demonstrated the potential of endo-type levanase in LFOS synthesis using a one-pot reaction with levansucrase. Overall, this study fills the knowledge gap in understanding levanase's mechanism, making an important contribution to the fields of food science and biotechnology.


Assuntos
Bacillus subtilis , Glicosídeo Hidrolases , Oligossacarídeos , Bacillus subtilis/enzimologia , Oligossacarídeos/biossíntese , Oligossacarídeos/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Cinética , Frutanos/biossíntese , Frutanos/química , Hidrólise , Simulação de Dinâmica Molecular , Especificidade por Substrato , Hexosiltransferases/metabolismo , Hexosiltransferases/química , Hexosiltransferases/genética , Catálise
11.
World J Microbiol Biotechnol ; 40(7): 214, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789837

RESUMO

Levan, a ß-(2,6)-linked fructose polymer, exhibits diverse properties that impart versatility, rendering it a highly sought-after biopolymer with various industrial applications. Levan can be produced by various microorganisms using sucrose, food industry byproducts and agricultural wastes. Microbial levan represents the most potent cost-effective process for commercial-scale levan production. This study reviews the optimization of levan production by understanding its biosynthesis, physicochemical properties and the fermentation process. In addition, genetic and protein engineering for its increased production and emerging methods for its detection are introduced and discussed. All of these comprehensive studies could serve as powerful tools to optimize levan production and broaden its applications across various industries.


Assuntos
Fermentação , Frutanos , Frutanos/biossíntese , Frutanos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Engenharia de Proteínas/métodos , Sacarose/metabolismo , Hexosiltransferases/metabolismo , Hexosiltransferases/genética , Microbiologia Industrial/métodos
12.
BMC Plant Biol ; 24(1): 352, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689209

RESUMO

BACKGROUND: Fructans are water-soluble carbohydrates that accumulate in wheat and are thought to contribute to a pool of stored carbon reserves used in grain filling and tolerance to abiotic stress. RESULTS: In this study, transgenic wheat plants were engineered to overexpress a fusion of two fructan biosynthesis pathway genes, wheat sucrose: sucrose 1-fructosyltransferase (Ta1SST) and wheat sucrose: fructan 6-fructosyltransferase (Ta6SFT), regulated by a wheat ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (TaRbcS) gene promoter. We have shown that T4 generation transgene-homozygous single-copy events accumulated more fructan polymers in leaf, stem and grain when compared in the same tissues from transgene null lines. Under water-deficit (WD) conditions, transgenic wheat plants showed an increased accumulation of fructan polymers with a high degree of polymerisation (DP) when compared to non-transgenic plants. In wheat grain of a transgenic event, increased deposition of particular fructan polymers such as, DP4 was observed. CONCLUSIONS: This study demonstrated that the tissue-regulated expression of a gene fusion between Ta1SST and Ta6SFT resulted in modified fructan accumulation in transgenic wheat plants and was influenced by water-deficit stress conditions.


Assuntos
Proteínas de Bactérias , Frutanos , Hexosiltransferases , Plantas Geneticamente Modificadas , Triticum , Triticum/genética , Triticum/metabolismo , Plantas Geneticamente Modificadas/genética , Frutanos/metabolismo , Frutanos/biossíntese , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fusão Gênica
13.
J Agric Food Chem ; 72(17): 9647-9655, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629750

RESUMO

Difructose anhydride I (DFA-I) can be produced from inulin, with DFA-I-forming inulin fructotransferase (IFTase-I). However, the metabolism of inulin through DFA-I remains unclear. To clarify this pathway, several genes of enzymes related to this pathway in the genome of Microbacterium flavum DSM 18909 were synthesized, and the corresponding enzymes were encoded, purified, and investigated in vitro. After inulin is decomposed to DFA-I by IFTase-I, DFA-I is hydrolyzed to inulobiose by DFA-I hydrolase. Inulobiose is then hydrolyzed by ß-fructofuranosidase to form fructose. Finally, fructose enters glycolysis through fructokinase. A ß-fructofuranosidase (MfFFase1) clears the byproducts (sucrose and fructo-oligosaccharides), which might be partially hydrolyzed by fructan ß-(2,1)-fructosidase/1-exohydrolase and another fructofuranosidase (MfFFase2). Exploring the DFA-I pathway of inulin and well-studied enzymes in vitro extends our basic scientific knowledge of the energy-providing way of inulin, thereby paving the way for further investigations in vivo and offering a reference for further nutritional investigation of inulin and DFA-I in the future.


Assuntos
Proteínas de Bactérias , Inulina , Microbacterium , Inulina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Microbacterium/metabolismo , Microbacterium/genética , beta-Frutofuranosidase/metabolismo , beta-Frutofuranosidase/genética , Dissacarídeos/metabolismo , Hexosiltransferases/metabolismo , Hexosiltransferases/genética , Hidrólise , Frutose/metabolismo
14.
Food Chem ; 449: 139180, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579650

RESUMO

Maple syrup, a popular natural sweetener has a high content of sucrose, whose consumption is linked to different health issues such as obesity and diabetes. Hence, within this paper, the conversion of sucrose to prebiotics (fructo-oligosaccharides, FOS) was proposed as a promising approach to obtaining a healthier, value-added product. Enzymatic conversion was optimized with respect to key experimental factors, and thereafter derived immobilized preparation of fructosyltransferase (FTase) from Pectinex® Ultra SP-L (FTase-epoxy Purolite, 255 IU/g support) was successfully utilized to produce novel functional product in ten consecutive reaction cycles. The product, obtained under optimal conditions (60 °C, 7.65 IU/mL, 12 h), resulted in 56.0% FOS, 16.7% sucrose, and 27.3% monosaccharides of total carbohydrates, leading to a 1.6-fold reduction in caloric content. The obtained products` prebiotic potential toward the probiotic strain Lactobacillus plantarum 299v was demonstrated. The changes in physico-chemical and sensorial characteristics were esteemed as negligible.


Assuntos
Acer , Proteínas de Bactérias , Hexosiltransferases , Oligossacarídeos , Prebióticos , Sacarose , Prebióticos/análise , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Hexosiltransferases/metabolismo , Hexosiltransferases/química , Sacarose/metabolismo , Sacarose/química , Acer/química , Acer/metabolismo , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/química , Biocatálise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo
15.
Cell ; 187(9): 2209-2223.e16, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670073

RESUMO

Nuclear factor κB (NF-κB) plays roles in various diseases. Many inflammatory signals, such as circulating lipopolysaccharides (LPSs), activate NF-κB via specific receptors. Using whole-genome CRISPR-Cas9 screens of LPS-treated cells that express an NF-κB-driven suicide gene, we discovered that the LPS receptor Toll-like receptor 4 (TLR4) is specifically dependent on the oligosaccharyltransferase complex OST-A for N-glycosylation and cell-surface localization. The tool compound NGI-1 inhibits OST complexes in vivo, but the underlying molecular mechanism remained unknown. We did a CRISPR base-editor screen for NGI-1-resistant variants of STT3A, the catalytic subunit of OST-A. These variants, in conjunction with cryoelectron microscopy studies, revealed that NGI-1 binds the catalytic site of STT3A, where it traps a molecule of the donor substrate dolichyl-PP-GlcNAc2-Man9-Glc3, suggesting an uncompetitive inhibition mechanism. Our results provide a rationale for and an initial step toward the development of STT3A-specific inhibitors and illustrate the power of contemporaneous base-editor and structural studies to define drug mechanism of action.


Assuntos
Sistemas CRISPR-Cas , Hexosiltransferases , Lipopolissacarídeos , Proteínas de Membrana , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Hexosiltransferases/metabolismo , Hexosiltransferases/genética , NF-kappa B/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Humanos , Receptor 4 Toll-Like/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Células HEK293 , Inflamação/metabolismo , Inflamação/genética , Glicosilação , Microscopia Crioeletrônica , Domínio Catalítico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
16.
J Sci Food Agric ; 104(11): 6563-6572, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38520271

RESUMO

BACKGROUND: Fructo-oligosaccharide (FOS) belongs to the group of short inulin-type fructans and is one of the most important non-digestible bifid-oligosaccharides capable of biotransforming sucrose using fructosyltransferase (FTase). However, there are no immobilized FTase products that can be successfully used industrially. In this study, diatomite was subjected to extrusion, sintering and granulation to form diatomaceous earth particles that were further modified via chitosan aminomethylation for modification. FTase derived from Aspergillus oryzae was successfully immobilized on the modified support via covalent binding. RESULTS: The immobilized enzyme activity was 503 IU g-1 at an enzyme concentration of 0.6 mg mL-1, immobilization pH of 7.0 and contact time of 3 h. Additionally, the immobilization yield was 56.91%. Notably, the immobilized enzyme was more stable under acidic conditions. Moreover, the half-life of the immobilized enzyme was 20.80 and 10.96 times as long as that of the free enzyme at 45 and 60 °C, respectively. The results show good reusability, as evidenced by the 84.77% retention of original enzyme activity after eight cycles. Additionally, the column transit time of the substrate was 35.56 min when the immobilized enzyme was applied in a packed-bed reactor. Furthermore, a consistently high FOS production yield of 60.68% was achieved and maintained over the 15-day monitoring period. CONCLUSIONS: Our results suggest that immobilized FTase is a viable candidate for continuous FOS production on an industrial scale. © 2024 Society of Chemical Industry.


Assuntos
Quitosana , Terra de Diatomáceas , Estabilidade Enzimática , Enzimas Imobilizadas , Hexosiltransferases , Oligossacarídeos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Hexosiltransferases/metabolismo , Hexosiltransferases/química , Quitosana/química , Quitosana/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Terra de Diatomáceas/química , Concentração de Íons de Hidrogênio , Aspergillus oryzae/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Cinética , Proteínas de Bactérias
17.
Chembiochem ; 25(10): e202400107, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38536122

RESUMO

This study characterizes the acceptor specificity of levansucrases (LSs) from Gluconobacter oxydans (LS1), Vibrio natriegens (LS2), Novosphingobium aromaticivorans (LS3), and Paraburkholderia graminis (LS4) using sucrose as fructosyl donor and selected phenolic compounds and carbohydrates as acceptors. Overall, V. natriegens LS2 proved to be the best biocatalyst for the transfructosylation of phenolic compounds. More than one fructosyl unit could be attached to fructosylated phenolic compounds. The transfructosylation of epicatechin by P. graminis LS4 resulted in the most diversified products, with up to five fructosyl units transferred. In addition to the LS source, the acceptor specificity of LS towards phenolic compounds and their transfructosylation products were found to greatly depend on their chemical structure: the number of phenolic rings, the reactivity of hydroxyl groups and the presence of aliphatic chains or methoxy groups. Similarly, for carbohydrates, the transfructosylation yield was dependent on both the LS source and the acceptor type. The highest yield of fructosylated-trisaccharides was Erlose from the transfructosylation of maltose catalyzed by LS2, with production reaching 200 g/L. LS2 was more selective towards the transfructosylation of phenolic compounds and carbohydrates, while reactions catalyzed by LS1, LS3 and LS4 also produced fructooligosaccharides. This study shows the high potential for the application of LSs in the glycosylation of phenolic compounds and carbohydrates.


Assuntos
Biocatálise , Hexosiltransferases , Fenóis , Hexosiltransferases/metabolismo , Hexosiltransferases/química , Fenóis/metabolismo , Fenóis/química , Glicosilação , Especificidade por Substrato , Vibrio/enzimologia , Gluconobacter oxydans/enzimologia , Gluconobacter oxydans/metabolismo , Carboidratos/química
18.
Bioresour Technol ; 395: 130395, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301939

RESUMO

Currently, levan is attracting attention due to its promising applications in the food and biomedical fields. Levansucrase synthesizes levan by polymerizing the fructosyl unit in sucrose. However, a large amount of the byproduct glucose is produced during this process. In this paper, an engineered oleaginous yeast (Yarrowia lipolytica) strain was constructed using a surface display plasmid containing the LevS gene of Gluconobacter sp. MP2116. The levansucrase activity of the engineered yeast strain reached 327.8 U/g of cell dry weight. The maximal levan concentration (58.9 g/l) was achieved within 156 h in the 5-liter fermentation. Over 81.2 % of the sucrose was enzymolyzed by the levansucrase, and the byproduct glucose was converted to 21.8 g/l biomass with an intracellular oil content of 25.5 % (w/w). The obtained oil was comprised of 91.3 % long-chain fatty acids (C16-C18). This study provides new insight for levan production and comprehensive utilization of the byproduct in levan biosynthesis.


Assuntos
Hexosiltransferases , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Glucose , Frutanos/metabolismo , Sacarose/metabolismo
19.
Proteomics ; 24(14): e2300496, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38361220

RESUMO

Protein glycosylation is increasingly recognized as a common protein modification across bacterial species. Within the Neisseria genus O-linked protein glycosylation is conserved yet closely related Neisseria species express O-oligosaccharyltransferases (PglOs) with distinct targeting activities. Within this work, we explore the targeting capacity of different PglOs using Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) fractionation and Data-Independent Acquisition (DIA) to allow the characterization of the impact of changes in glycosylation on the proteome of Neisseria gonorrhoeae. We demonstrate FAIMS expands the known glycoproteome of wild type N. gonorrhoeae MS11 and enables differences in glycosylation to be assessed across strains expressing different pglO allelic chimeras with unique substrate targeting activities. Combining glycoproteomic insights with DIA proteomics, we demonstrate that alterations within pglO alleles have widespread impacts on the proteome of N. gonorrhoeae. Examination of peptides known to be targeted by glycosylation using DIA analysis supports alterations in glycosylation occupancy occurs independently of changes in protein levels and that the occupancy of glycosylation is generally low on most glycoproteins. This work thus expands our understanding of the N. gonorrhoeae glycoproteome and the roles that pglO allelic variation may play in governing genus-level protein glycosylation.


Assuntos
Proteínas de Bactérias , Neisseria gonorrhoeae , Proteoma , Proteômica , Neisseria gonorrhoeae/metabolismo , Neisseria gonorrhoeae/genética , Glicosilação , Proteômica/métodos , Proteoma/metabolismo , Proteoma/análise , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Espectrometria de Mobilidade Iônica/métodos , Glicoproteínas/metabolismo , Glicoproteínas/genética , Hexosiltransferases/metabolismo , Hexosiltransferases/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
20.
J Biomol NMR ; 78(2): 109-117, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38421550

RESUMO

N-linked glycosylation is an essential and highly conserved co- and post-translational protein modification in all domains of life. In humans, genetic defects in N-linked glycosylation pathways result in metabolic diseases collectively called Congenital Disorders of Glycosylation. In this modification reaction, a mannose rich oligosaccharide is transferred from a lipid-linked donor substrate to a specific asparagine side-chain within the -N-X-T/S- sequence (where X ≠ Proline) of the nascent protein. Oligosaccharyltransferase (OST), a multi-subunit membrane embedded enzyme catalyzes this glycosylation reaction in eukaryotes. In yeast, Ost4 is the smallest of nine subunits and bridges the interaction of the catalytic subunit, Stt3, with Ost3 (or its homolog, Ost6). Mutations of any C-terminal hydrophobic residues in Ost4 to a charged residue destabilizes the enzyme and negatively impacts its function. Specifically, the V23D mutation results in a temperature-sensitive phenotype in yeast. Here, we report the reconstitution of both purified recombinant Ost4 and Ost4V23D each in a POPC/POPE lipid bilayer and their resonance assignments using heteronuclear 2D and 3D solid-state NMR with magic-angle spinning. The chemical shifts of Ost4 changed significantly upon the V23D mutation, suggesting a dramatic change in its chemical environment.


Assuntos
Hexosiltransferases , Lipossomos , Proteínas de Membrana , Ressonância Magnética Nuclear Biomolecular , Hexosiltransferases/genética , Hexosiltransferases/química , Hexosiltransferases/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Lipossomos/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mutação , Glicosilação , Subunidades Proteicas/química , Subunidades Proteicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA