Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
ACS Infect Dis ; 10(8): 2913-2928, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39023360

RESUMO

The lack of effective vaccines and the development of resistance to the current treatments highlight the urgent need for new anti-leishmanials. Sphingolipid metabolism has been proposed as a promising source of Leishmania-specific targets as these lipids are key structural components of the eukaryotic plasma membrane and are involved in distinct cellular events. Inositol phosphorylceramide (IPC) is the primary sphingolipid in the Leishmania species and is the product of a reaction mediated by IPC synthase (IPCS). The antihistamine clemastine fumarate has been identified as an inhibitor of IPCS in L. major and a potent anti-leishmanial in vivo. Here we sought to further examine the target of this compound in the more tractable species L. mexicana, using an approach combining genomic, proteomic, metabolomic and lipidomic technologies, with molecular and biochemical studies. While the data demonstrated that the response to clemastine fumarate was largely conserved, unexpected disturbances beyond sphingolipid metabolism were identified. Furthermore, while deletion of the gene encoding LmxIPCS had little impact in vitro, it did influence clemastine fumarate efficacy and, importantly, in vivo pathogenicity. Together, these data demonstrate that clemastine does inhibit LmxIPCS and cause associated metabolic disturbances, but its primary target may lie elsewhere.


Assuntos
Antiprotozoários , Antiprotozoários/farmacologia , Antiprotozoários/química , Esfingolipídeos/metabolismo , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Hexosiltransferases/antagonistas & inibidores , Leishmania/efeitos dos fármacos , Leishmania/genética , Leishmania/enzimologia , Animais , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/genética , Leishmania mexicana/enzimologia , Glicoesfingolipídeos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
2.
J Lipid Res ; 65(8): 100584, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925252

RESUMO

Measurements of sphingolipid metabolism are most accurately performed by LC-MS. However, this technique is expensive, not widely accessible, and without the use of specific probes, it does not provide insight into metabolic flux through the pathway. Employing the fluorescent ceramide analogue NBD-C6-ceramide as a tracer in intact cells, we developed a comprehensive HPLC-based method that simultaneously measures the main nodes of ceramide metabolism in the Golgi. Hence, by quantifying the conversion of NBD-C6-ceramide to NBD-C6-sphingomyelin, NBD-C6-hexosylceramides, and NBD-C6-ceramide-1-phosphate (NBD-C1P), the activities of Golgi resident enzymes sphingomyelin synthase 1, glucosylceramide synthase, and ceramide kinase (CERK) could be measured simultaneously. Importantly, the detection of NBD-C1P allowed us to quantify CERK activity in cells, a usually difficult task. By applying this method, we evaluated the specificity of commonly used sphingolipid inhibitors and discovered that 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, which targets glucosylceramide synthase, and fenretinide (4HPR), an inhibitor for dihydroceramide desaturase, also suppress CERK activity. This study demonstrates the benefit of an expanded analysis of ceramide metabolism in the Golgi, and it provides a qualitative and easy-to-implement method.


Assuntos
Ceramidas , Glucosiltransferases , Complexo de Golgi , Fosfotransferases (Aceptor do Grupo Álcool) , Esfingolipídeos , Complexo de Golgi/metabolismo , Ceramidas/metabolismo , Esfingolipídeos/metabolismo , Humanos , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Cromatografia Líquida de Alta Pressão , Células HeLa , Hexosiltransferases/metabolismo , Hexosiltransferases/antagonistas & inibidores , Esfingomielinas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)
3.
EBioMedicine ; 74: 103712, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34839261

RESUMO

BACKGROUND: Despite clinical success with anti-spike vaccines, the effectiveness of neutralizing antibodies and vaccines has been compromised by rapidly spreading SARS-CoV-2 variants. Viruses can hijack the glycosylation machinery of host cells to shield themselves from the host's immune response and attenuate antibody efficiency. However, it remains unclear if targeting glycosylation on viral spike protein can impair infectivity of SARS-CoV-2 and its variants. METHODS: We adopted flow cytometry, ELISA, and BioLayer interferometry approaches to assess binding of glycosylated or deglycosylated spike with ACE2. Viral entry was determined by luciferase, immunoblotting, and immunofluorescence assays. Genome-wide association study (GWAS) revealed a significant relationship between STT3A and COVID-19 severity. NF-κB/STT3A-regulated N-glycosylation was investigated by gene knockdown, chromatin immunoprecipitation, and promoter assay. We developed an antibody-drug conjugate (ADC) that couples non-neutralization anti-spike antibody with NGI-1 (4G10-ADC) to specifically target SARS-CoV-2-infected cells. FINDINGS: The receptor binding domain and three distinct SARS-CoV-2 surface N-glycosylation sites among 57,311 spike proteins retrieved from the NCBI-Virus-database are highly evolutionarily conserved (99.67%) and are involved in ACE2 interaction. STT3A is a key glycosyltransferase catalyzing spike glycosylation and is positively correlated with COVID-19 severity. We found that inhibiting STT3A using N-linked glycosylation inhibitor-1 (NGI-1) impaired SARS-CoV-2 infectivity and that of its variants [Alpha (B.1.1.7) and Beta (B.1.351)]. Most importantly, 4G10-ADC enters SARS-CoV-2-infected cells and NGI-1 is subsequently released to deglycosylate spike protein, thereby reinforcing the neutralizing abilities of antibodies, vaccines, or convalescent sera and reducing SARS-CoV-2 variant infectivity. INTERPRETATION: Our results indicate that targeting evolutionarily-conserved STT3A-mediated glycosylation via an ADC can exert profound impacts on SARS-CoV-2 variant infectivity. Thus, we have identified a novel deglycosylation method suitable for eradicating SARS-CoV-2 variant infection in vitro. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Assuntos
Benzamidas/farmacologia , Tratamento Farmacológico da COVID-19 , Glicosilação/efeitos dos fármacos , Hexosiltransferases/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Sulfonamidas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Células A549 , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Células HEK293 , Hexosiltransferases/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2/crescimento & desenvolvimento , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
Arch Virol ; 164(11): 2789-2792, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31414286

RESUMO

Replication of the dengue virus (DENV) genome occurs in a vesicle in the endoplasmic reticulum by a complex of host and viral proteins. Two host proteins, STT3A and STT3B, as members of the oligosaccharyl transferase complex, have been implicated in playing structural roles in the vesicle in mammalian cells, and the absence of these proteins has been shown to decrease DENV replication. Aedes aegypti is the main vector of the virus and has been used previously as a model organism to study mosquito-virus interactions. In this study, we found that genes of the oligosaccharyl transferase complex have no effect on replication of DENV in mosquito cells.


Assuntos
Aedes/virologia , Vírus da Dengue/crescimento & desenvolvimento , Vírus da Dengue/genética , Hexosiltransferases/genética , Proteínas de Membrana/genética , Replicação Viral/genética , Animais , Benzamidas/farmacologia , Linhagem Celular , Chlorocebus aethiops , Dengue/virologia , Retículo Endoplasmático/virologia , Genoma Viral/genética , Glicosilação , Hexosiltransferases/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Proteínas de Membrana/antagonistas & inibidores , RNA Viral/genética , Sulfonamidas/farmacologia , Células Vero
5.
Sci Rep ; 9(1): 8083, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147620

RESUMO

Resistance to 157 different herbicides and 88% of known sites of action has been observed, with many weeds resistant to two or more modes. Coupled with tighter environmental regulation, this demonstrates the need to identify new modes of action and novel herbicides. The plant sphingolipid biosynthetic enzyme, inositol phosphorylceramide synthase (IPCS), has been identified as a novel, putative herbicide target. The non-mammalian nature of this enzyme offers the potential of discovering plant specific inhibitory compounds with minimal impact on animals and humans, perhaps leading to the development of new non-toxic herbicides. The best characterised and most highly expressed isoform of the enzyme in the model-dicot Arabidopsis, AtIPCS2, was formatted into a yeast-based assay which was then utilized to screen a proprietary library of over 11,000 compounds provided by Bayer AG. Hits from this screen were validated in a secondary in vitro enzyme assay. These studies led to the identification of a potent inhibitor that showed selectivity for AtIPCS2 over the yeast orthologue, and activity against Arabidopsis seedlings. This work highlighted the use of a yeast-based screening assay to discover herbicidal compounds and the status of the plant IPCS as a novel herbicidal target.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Arabidopsis/efeitos dos fármacos , Herbicidas/farmacologia , Hexosiltransferases/antagonistas & inibidores , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ensaios Enzimáticos , Técnicas de Inativação de Genes , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Plântula/efeitos dos fármacos
6.
FASEB J ; 33(6): 6801-6812, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30811219

RESUMO

Herpes simplex virus 1 (HSV-1) is a contagious neurotropic herpesvirus responsible for oral lesions and herpesviral encephalitis. The HSV-1 envelope contains N-glycosylated proteins involved in infection and that are candidate drug targets. NGI-1 is a small-molecule inhibitor of oligosaccharyltransferase (OST) complexes STT3A-OST and STT3B-OST, which catalyze cotranslational and post-translational N-glycosylation, respectively. Because host OSTs attach HSV-1 glycans, NGI-1 might have anti-HSV-1 activity. We evaluated HSV-1 function using NGI-1 and human embryonic kidney 293 knockout lines for OST isoform-specific catalytic and accessory subunits. N-glycosylation of 2 representative envelope proteins (gC and gD) was primarily dependent upon STT3A-OST, but to a large extent replaceable by STT3B-OST. Knockouts impairing STT3A- or STT3B-OST activity, by themselves, did not appreciably affect HSV-1 function (plaque-forming units, normalized to viral particles measured by unglycosylated capsid protein VP5 content). However, with cells lacking STT3B-OST activity (missing the catalytic subunit STT3B or the oxidoreductase subunits magnesium transporter 1/tumor suppressor candidate 3) and thus solely dependent upon STT3A-OST for N-glycosylation, NGI-1 treatment resulted in HSV-1 having cell type-dependent dysfunction (affecting infectivity with Vero cells much more than with the 293 lines). Ablation of post-translational N-glycosylation can therefore make HSV-1 infectivity, and possibly masking of immunogenic peptide epitopes by glycans, highly sensitive to pharmacological inhibition of cotranslational N-glycosylation.-Lu, H., Cherepanova, N. A., Gilmore, R., Contessa, J. N., Lehrman, M. A. Targeting STT3A-oligosaccharyltransferase with NGI-1 causes herpes simplex virus 1 dysfunction.


Assuntos
Benzamidas/farmacologia , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Hexosiltransferases/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Chlorocebus aethiops , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Glicosilação , Células HEK293 , Herpes Simples/metabolismo , Herpes Simples/virologia , Humanos , Células Vero
7.
Clin Cancer Res ; 25(2): 784-795, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29967251

RESUMO

PURPOSE: Parallel signaling reduces the effects of receptor tyrosine kinase (RTK)-targeted therapies in glioma. We hypothesized that inhibition of protein N-linked glycosylation, an endoplasmic reticulum co- and posttranslational modification crucial for RTK maturation and activation, could provide a new therapeutic approach for glioma radiosensitization.Experimental Design: We investigated the effects of a small-molecule inhibitor of the oligosaccharyltransferase (NGI-1) on EGFR family receptors, MET, PDGFR, and FGFR1. The influence of glycosylation state on tumor cell radiosensitivity, chemotherapy-induced cell toxicity, DNA damage, and cell-cycle arrest were determined and correlated with glioma cell receptor expression profiles. The effects of NGI-1 on xenograft tumor growth were tested using a nanoparticle formulation validated by in vivo molecular imaging. A mechanistic role for RTK signaling was evaluated through the expression of a glycosylation-independent CD8-EGFR chimera. RESULTS: NGI-1 reduced glycosylation, protein levels, and activation of most RTKs. NGI-1 also enhanced the radiosensitivity and cytotoxic effects of chemotherapy in those glioma cells with elevated ErbB family activation, but not in cells without high levels of RTK activation. NGI-1 radiosensitization was associated with increases in both DNA damage and G1 cell-cycle arrest. Combined treatment of glioma xenografts with fractionated radiotherapy and NGI-1 significantly reduced tumor growth compared with controls. Expression of the CD8-EGFR eliminated the effects of NGI-1 on G1 arrest, DNA damage, and cellular radiosensitivity, identifying RTK inhibition as the principal mechanism for the NGI-1 effect. CONCLUSIONS: This study suggests that oligosaccharyltransferase inhibition with NGI-1 is a novel approach to radiosensitize malignant gliomas with enhanced RTK signaling.See related commentary by Wahl and Lawrence, p. 455.


Assuntos
Glioma/metabolismo , Hexosiltransferases/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Tolerância a Radiação , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Receptores ErbB/metabolismo , Glioma/patologia , Glioma/radioterapia , Humanos , Camundongos , Tolerância a Radiação/genética , Radiossensibilizantes/administração & dosagem , Radiossensibilizantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Sci Rep ; 8(1): 16297, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389987

RESUMO

Oligosaccharyltransferase (OST) is a key enzyme of the N-glycosylation pathway, where it catalyzes the transfer of a glycan from a lipid-linked oligosaccharide (LLO) to an acceptor asparagine within the conserved sequon N-X-T/S. A previous structure of a ternary complex of bacterial single subunit OST, PglB, bound to a non-hydrolyzable LLO analog and a wild type acceptor peptide showed how both substrates bind and how an external loop (EL5) of the enzyme provided specific substrate-binding contacts. However, there was a relatively large separation of the substrates at the active site. Here we present the X-ray structure of PglB bound to a reactive LLO analog and an inhibitory peptide, revealing previously unobserved interactions in the active site. We found that the atoms forming the N-glycosidic bond (C-1 of the GlcNAc moiety of LLO and the -NH2 group of the peptide) are closer than in the previous structure, suggesting that we have captured a conformation closer to the transition state of the reaction. We find that the distance between the divalent metal ion and the glycosidic oxygen of LLO is now 4 Å, suggesting that the metal stabilizes the leaving group of the nucleophilic substitution reaction. Further, the carboxylate group of a conserved aspartate of PglB mediates an interaction network between the reducing-end sugar of the LLO, the asparagine side chain of the acceptor peptide, and a bound divalent metal ion. The interactions identified in this novel state are likely to be relevant in the catalytic mechanisms of all OSTs.


Assuntos
Proteínas de Bactérias/ultraestrutura , Campylobacter lari/enzimologia , Hexosiltransferases/ultraestrutura , Lipopolissacarídeos/metabolismo , Proteínas de Membrana/ultraestrutura , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Hexosiltransferases/antagonistas & inibidores , Hexosiltransferases/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Modelos Moleculares , Peptídeos/farmacologia , Ligação Proteica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
9.
Cell Chem Biol ; 25(10): 1231-1241.e4, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30078634

RESUMO

The oligosaccharyltransferase (OST) is a multisubunit enzyme complex that N-glycosylates proteins in the secretory pathway and is considered to be constitutive and unregulated. However, small-molecule OST inhibitors such as NGI-1 provide a pharmacological approach for regulating N-linked glycosylation. Herein we design cell models with knockout of each OST catalytic subunit (STT3A or STT3B) to screen the activity of NGI-1 and its analogs. We show that NGI-1 targets the function of both STT3A and STT3B and use structure-activity relationships to guide synthesis of catalytic subunit-specific inhibitors. Using this approach, pharmacophores that increase STT3B selectivity are characterized and an STT3B-specific inhibitor is identified. This inhibitor has discrete biological effects on endogenous STT3B target proteins such as COX2 but does not activate the cellular unfolded protein response. Together this work demonstrates that subsets of glycoproteins can be regulated through pharmacologic inhibition of N-linked glycosylation.


Assuntos
Benzamidas/química , Benzamidas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hexosiltransferases/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Sulfonamidas/química , Sulfonamidas/farmacologia , Domínio Catalítico , Avaliação Pré-Clínica de Medicamentos , Técnicas de Inativação de Genes , Células HEK293 , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Relação Estrutura-Atividade
10.
Org Lett ; 20(15): 4637-4640, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30035548

RESUMO

X-ray analysis and total synthesis of 1 unambiguously confirmed pleofingin A's absolute configuration. The total synthesis was achieved by convergent assembly of three fragments (12, 14, and 18). This synthetic approach provides access to derivatives of 1 to search for antifungal agents that will be more effective in clinical use.


Assuntos
Antifúngicos/síntese química , Depsipeptídeos/síntese química , Glicoesfingolipídeos/química , Hexosiltransferases/antagonistas & inibidores , Cristalização , Ciclização , Concentração Inibidora 50 , Estrutura Molecular , Saccharomyces cerevisiae/efeitos dos fármacos , Relação Estrutura-Atividade
11.
Cancer Res ; 78(17): 5094-5106, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30026325

RESUMO

Asparagine (N)-linked glycosylation is a posttranslational modification essential for the function of complex transmembrane proteins. However, targeting glycosylation for cancer therapy has not been feasible due to generalized effects on all glycoproteins. Here, we perform sensitivity screening of 94 lung cancer cell lines using NGI-1, a small-molecule inhibitor of the oligosaccharyltransferase (OST) that partially disrupts N-linked glycosylation, and demonstrate a selective loss of tumor cell viability. This screen revealed NGI-1 sensitivity in just 11 of 94 (12%) cell lines, with a significant correlation between OST and EGFR inhibitors. In EGFR-mutant non-small cell lung cancer with EGFR tyrosine kinase inhibitor (TKI) resistance (PC9-GR, HCC827-GR, and H1975-OR), OST inhibition maintained its ability to induce cell-cycle arrest and a proliferative block. Addition of NGI-1 to EGFR TKI treatment was synthetic lethal in cells resistant to gefitinib, erlotinib, or osimertinib. OST inhibition invariably disrupted EGFR N-linked glycosylation and reduced activation of receptors either with or without the T790M TKI resistance mutation. OST inhibition also dissociated EGFR signaling from other coexpressed receptors like MET via altered receptor compartmentalization. Translation of this approach to preclinical models was accomplished through synthesis and delivery of NGI-1 nanoparticles, confirmation of in vivo activity through molecular imaging, and demonstration of significant tumor growth delay in TKI-resistant HCC827 and H1975 xenografts. This therapeutic strategy breaks from kinase-targeted approaches and validates N-linked glycosylation as an effective target in tumors driven by glycoprotein signaling.Significance:EGFR-mutant NSCLC is incurable despite the marked sensitivity of these tumors to EGFR TKIs. These findings identify N-linked glycosylation, a posttranslational modification common to EGFR and other oncogenic signaling proteins, as an effective therapeutic target that enhances tumor responses for EGFR-mutant NSCLC. Cancer Res; 78(17); 5094-106. ©2018 AACR.


Assuntos
Benzamidas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Hexosiltransferases/genética , Proteínas de Membrana/genética , Sulfonamidas/farmacologia , Células A549 , Animais , Apoptose/efeitos dos fármacos , Benzamidas/química , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Gefitinibe/efeitos adversos , Gefitinibe/uso terapêutico , Hexosiltransferases/antagonistas & inibidores , Humanos , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Mutação/efeitos dos fármacos , Nanopartículas/química , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Sulfonamidas/química , Ensaios Antitumorais Modelo de Xenoenxerto
12.
FEMS Microbiol Lett ; 365(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29240942

RESUMO

Sphingolipids are essential for normal cell growth of yeast Saccharomyces cerevisiae. Aureobasidin A (AbA), an antifungal drug, inhibits Aur1, an enzyme catalyzing the synthesis of inositol phosphorylceramide, and induces a strong growth defect in yeast. In this study, we screened for multicopy suppressor genes that confer resistance to AbA, and identified PDR16. In addition, it was found that PDR17, a paralog of PDR16, also functions as a multicopy suppressor. Pdr16 and Pdr17 belong to a family of phosphatidylinositol transfer proteins; however, cells overexpressing the other members of the family hardly exhibited resistance to AbA. Overexpression of a lipid-binding defective mutant of Pdr16 did not confer the resistance to AbA, indicating that the lipid-binding activity is essential for acquiring resistance to AbA. When expression of the AUR1 gene was repressed by a tetracycline-regulatable promoter, the overexpression of PDR16 or PDR17 did not suppress the growth defect caused by the AUR1 repression. Quantification analysis of complex sphingolipids revealed that in AbA-treated cells, but not in cells in which AUR1 was repressed by the tetracycline-regulatable promoter, the reductions of complex sphingolipid levels were suppressed by the overexpressed PDR16. Thus, it was indicated that the overexpression of PDR16 reduces the effectiveness of AbA against intracellular Aur1 activity.


Assuntos
Proteínas de Transporte/genética , Depsipeptídeos/farmacologia , Farmacorresistência Fúngica/genética , Expressão Gênica , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Antifúngicos/farmacologia , Proteínas de Transporte/metabolismo , Glicoesfingolipídeos/biossíntese , Hexosiltransferases/antagonistas & inibidores , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Mutação/genética , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Cell Rep ; 21(11): 3032-3039, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29241533

RESUMO

The mosquito-borne flaviviruses include important human pathogens such as dengue, Zika, West Nile, and yellow fever viruses, which pose a serious threat for global health. Recent genetic screens identified endoplasmic reticulum (ER)-membrane multiprotein complexes, including the oligosaccharyltransferase (OST) complex, as critical flavivirus host factors. Here, we show that a chemical modulator of the OST complex termed NGI-1 has promising antiviral activity against flavivirus infections. We demonstrate that NGI-1 blocks viral RNA replication and that antiviral activity does not depend on inhibition of the N-glycosylation function of the OST. Viral mutants adapted to replicate in cells deficient of the OST complex showed resistance to NGI-1 treatment, reinforcing the on-target activity of NGI-1. Lastly, we show that NGI-1 also has strong antiviral activity in primary and disease-relevant cell types. This study provides an example for advancing from the identification of genetic determinants of infection to a host-directed antiviral compound with broad activity against flaviviruses.


Assuntos
Antivirais/farmacologia , Benzamidas/farmacologia , Vírus da Dengue/efeitos dos fármacos , Hexosiltransferases/genética , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Proteínas de Membrana/genética , Sulfonamidas/farmacologia , Replicação Viral/efeitos dos fármacos , Vírus da Dengue/genética , Vírus da Dengue/crescimento & desenvolvimento , Expressão Gênica , Regulação da Expressão Gênica , Genes Reporter , Células HEK293 , Hexosiltransferases/antagonistas & inibidores , Hexosiltransferases/deficiência , Humanos , Luciferases , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/deficiência , Testes de Sensibilidade Microbiana , Transdução de Sinais , Vírus do Nilo Ocidental/efeitos dos fármacos , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/crescimento & desenvolvimento , Vírus da Febre Amarela/efeitos dos fármacos , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/crescimento & desenvolvimento , Zika virus/efeitos dos fármacos , Zika virus/genética , Zika virus/crescimento & desenvolvimento
14.
Glycobiology ; 27(9): 820-833, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28810664

RESUMO

Phosphoglycosyl transferases (PGTs) initiate the biosynthesis of both essential and virulence-associated bacterial glycoconjugates including lipopolysaccharide, peptidoglycan and glycoproteins. PGTs catalyze the transfer of a phosphosugar moiety from a nucleoside diphosphate sugar to a polyprenol phosphate, to form a membrane-bound polyprenol diphosphosugar product. PGTs are integral membrane proteins, which include between 1 and 11 predicted transmembrane domains. Despite this variation, common motifs have been identified in PGT families through bioinformatics and mutagenesis studies. Bacterial PGTs represent important antibacterial and virulence targets due to their significant role in initiating the biosynthesis of key bacterial glycoconjugates. Considerable effort has gone into mechanistic and inhibition studies for this class of enzymes, both of which depend on reliable, high-throughput assays for easy quantification of activity. This review summarizes recent advances made in the characterization of this challenging but important class of enzymes.


Assuntos
Membrana Celular/enzimologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica , Glicoconjugados/biossíntese , Hexosiltransferases/metabolismo , Metabolismo dos Carboidratos , Membrana Celular/química , Sequência Conservada , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Glicoconjugados/química , Glicoconjugados/genética , Hexosiltransferases/antagonistas & inibidores , Hexosiltransferases/genética , Ensaios de Triagem em Larga Escala , Cinética , Domínios Proteicos , Especificidade por Substrato
15.
Proteomics ; 16(23): 2977-2988, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27717196

RESUMO

A new acridone derivative 2-aminoacetamido-10-(3, 5-dimethoxy)-benzyl-9(10H)-acridone hydrochloride (8a) has been shown to have potent antitumor activity. In order to understand the underlying action mechanism of 8a, three compounds of the same class with structures optimized step-by-step, 9(10H)-acridone (A), 10-(3,5-dimethoxy) benzyl-9(10H)-acridone (I) and 8a, were exposed to CCRF-CEM leukemia cell to determine the N-glycosylation changes using the microfluidic HPLC-chip-TOF MS platform. N-Glycans from whole cell lysates (WCL) and cell membranes (CM) were analyzed using isomer-sensitive chip-based porous graphitized carbon nano-LC/MS. A total of 223 N-glycan compositions and 398 N-glycan compounds were identified. Comparison of the two analyses showed that more apparent changes were observed in the CM compared with WCL, suggesting that CM may be a more sensitive indicator of changes in glycosylation. Upon 8a exposure to CCRF-CEM cells, a significant decrease in high-mannose-type glycans was observed. Different expressions of oligosaccharyltransferase subunits appear to play a key functional role in regulating the hypoglycosylation and contribute to the action mechanism of 8a. Taken together our findings suggest that glycosylation is strongly affected by therapeutic potency and can be used as possible biomarkers for monitoring toxicity and antitumor activity of 8a.


Assuntos
Acridonas/farmacologia , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Polissacarídeos/análise , Linhagem Celular Tumoral , Glicômica/instrumentação , Glicômica/métodos , Glicosilação/efeitos dos fármacos , Hexosiltransferases/antagonistas & inibidores , Hexosiltransferases/metabolismo , Humanos , Leucemia/patologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Modelos Teóricos , Polissacarídeos/química , Proteômica/métodos
16.
Nat Chem Biol ; 12(12): 1023-1030, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27694802

RESUMO

Asparagine (N)-linked glycosylation is a protein modification critical for glycoprotein folding, stability, and cellular localization. To identify small molecules that inhibit new targets in this biosynthetic pathway, we initiated a cell-based high-throughput screen and lead-compound-optimization campaign that delivered a cell-permeable inhibitor, NGI-1. NGI-1 targets oligosaccharyltransferase (OST), a hetero-oligomeric enzyme that exists in multiple isoforms and transfers oligosaccharides to recipient proteins. In non-small-cell lung cancer cells, NGI-1 blocks cell-surface localization and signaling of the epidermal growth factor receptor (EGFR) glycoprotein, but selectively arrests proliferation in only those cell lines that are dependent on EGFR (or fibroblast growth factor, FGFR) for survival. In these cell lines, OST inhibition causes cell-cycle arrest accompanied by induction of p21, autofluorescence, and cell morphology changes, all hallmarks of senescence. These results identify OST inhibition as a potential therapeutic approach for treating receptor-tyrosine-kinase-dependent tumors and provides a chemical probe for reversibly regulating N-linked glycosylation in mammalian cells.


Assuntos
Benzamidas/farmacologia , Senescência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hexosiltransferases/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Sulfonamidas/farmacologia , Benzamidas/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Hexosiltransferases/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Proteínas de Membrana/metabolismo , Estrutura Molecular , Receptores Proteína Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/química
17.
Eukaryot Cell ; 14(12): 1203-16, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26432633

RESUMO

Inositolphosphorylceramide (IPC) and its mannosylated derivatives are the only complex sphingolipids of yeast. Their synthesis can be reduced by aureobasidin A (AbA), which specifically inhibits the IPC synthase Aur1. AbA reportedly, by diminishing IPC levels, causes endoplasmic reticulum (ER) stress, an increase in cytosolic calcium, reactive oxygen production, and mitochondrial damage leading to apoptosis. We found that when Aur1 is gradually depleted by transcriptional downregulation, the accumulation of ceramides becomes a major hindrance to cell survival. Overexpression of the alkaline ceramidase YPC1 rescues cells under this condition. We established hydroxylated C26 fatty acids as a reliable hallmark of ceramide hydrolysis. Such hydrolysis occurs only when YPC1 is overexpressed. In contrast, overexpression of YPC1 has no beneficial effect when Aur1 is acutely repressed by AbA. A high-throughput genetic screen revealed that vesicle-mediated transport between Golgi apparatus, endosomes, and vacuole becomes crucial for survival when Aur1 is repressed, irrespective of the mode of repression. In addition, vacuolar acidification becomes essential when cells are acutely stressed by AbA, and quinacrine uptake into vacuoles shows that AbA activates vacuolar acidification. The antioxidant N-acetylcysteine does not improve cell growth on AbA, indicating that reactive oxygen radicals induced by AbA play a minor role in its toxicity. AbA strongly induces the cell wall integrity pathway, but osmotic support does not improve the viability of wild-type cells on AbA. Altogether, the data support and refine current models of AbA-mediated cell death and add vacuolar protein transport and acidification as novel critical elements of stress resistance.


Assuntos
Glicoesfingolipídeos/metabolismo , Complexo de Golgi/metabolismo , Hexosiltransferases/metabolismo , Saccharomyces cerevisiae/enzimologia , Vesículas Transportadoras/metabolismo , Vacúolos/metabolismo , Alelos , Transporte Biológico/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Ceramidas/metabolismo , Depsipeptídeos/farmacologia , Doxiciclina/farmacologia , Epistasia Genética/efeitos dos fármacos , Deleção de Genes , Ontologia Genética , Testes Genéticos , Complexo de Golgi/efeitos dos fármacos , Hexosiltransferases/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Hidrólise , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Mutação/genética , Quinacrina/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/biossíntese , Vesículas Transportadoras/efeitos dos fármacos , Vacúolos/efeitos dos fármacos
18.
Bioprocess Biosyst Eng ; 38(12): 2417-26, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26437965

RESUMO

Experimental investigations were made to synthesize fructo-oligosaccharides (FOS) from sucrose using fructosyltransferase. The influence of various parameters such as temperature (45-55 °C), pH (4-5), initial sucrose concentration (ISC: 300-500 g/L) and enzyme concentration (4-32 U/mL) were varied. A maximum FOS yield of 60% was observed at ISC 500 g/L, pH 4.5 with enzyme activity 32 U/mL and at 55 °C. It was confirmed that 1-kestose (tri-) was the major product of FOS as compared to nystose (tetra-) and fructosylnystose (penta-saccharides). Further, the reaction rate increases with increase in temperature. From separate sets of experiments, it was observed that FOS formation was affected by glucose inhibition. Apart from the increase in the rate of FOS formation with increasing enzyme activity, the final values of FOS yield increase though till 16 U/mL and thereafter attain plateau. A kinetic model was also developed, based on Michaelis-Menten kinetics, and a five-step ten-parameter model, including glucose inhibition, was obtained. Model was solved using COPASI(®) (version 4.8) solver for kinetic parameter estimations followed by time course simulations.


Assuntos
Hexosiltransferases/metabolismo , Modelos Biológicos , Oligossacarídeos/biossíntese , Aspergillus/enzimologia , Cromatografia Líquida de Alta Pressão , Hexosiltransferases/antagonistas & inibidores , Concentração de Íons de Hidrogênio , Cinética , Temperatura
19.
J Gen Appl Microbiol ; 61(4): 108-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26377130

RESUMO

Inositol phosphorylceramide (IPC) synthase is the key enzyme with highly conserved sequences, which is involved in fungal sphingolipid biosynthesis. The antibiotic aureobasidin A (AbA) induces the death of fungi through inhibiting IPC synthase activity. The mutations of AUR1 gene coding IPC synthase in fungi and protozoa causes a resistance to AbA. However, the mechanism of AbA resistance is still elusive. In this paper, we generated two mutants of Botrytis cinerea with AbA-resistance, BcAUR1a and BcAUR1b, through UV irradiation. BcAUR1a lost an intron and BcAUR1b had three amino acid mutations (L197P, F288S and T323A) in the AUR1 gene. AbA strongly inhibits the activity of IPC synthase in wild-type B. cinerea, which leads to distinct changes in cell morphology, including the delay in conidial germination, excessive branching near the tip of the germ tube and mycelium, and the inhibition of the mycelium growth. Further, AbA prevents the infection of wild-type B. cinerea in tomato fruits via reducing oxalic acid secretion and the activity of cellulase and pectinase. On the contrary, AbA has no effect on the growth and pathogenicity of the two mutants. Although both mutants show a similar AbA resistance, the molecular mechanisms might be different between the two mutants.


Assuntos
Antifúngicos/farmacologia , Botrytis/enzimologia , Botrytis/crescimento & desenvolvimento , Depsipeptídeos/farmacologia , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Solanum lycopersicum/microbiologia , Sequência de Aminoácidos , Botrytis/efeitos dos fármacos , Botrytis/patogenicidade , Depsipeptídeos/antagonistas & inibidores , Farmacorresistência Fúngica Múltipla/genética , Proteínas Fúngicas/genética , Hexosiltransferases/antagonistas & inibidores , Mutação , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Micélio/ultraestrutura , Alinhamento de Sequência , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia , Esporos Fúngicos/ultraestrutura
20.
Biotechnol Appl Biochem ; 62(6): 815-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25524717

RESUMO

An intracellular levansucrase from Bacillus methylotrophicus SK 21.002 was isolated, purified, and characterized. The final specific levansucrase activity was 135.40 U/mg protein with an 11.78-fold enrichment and a 9.28% recovery rate. The molecular weight of the enzyme was approximately 60,000 Da as evaluated by gel filtration and SDS-PAGE. Both the maximum transfructosylation and hydrolytic activities were observed at pH 6.5. The enzyme exhibited optimum transfructosylation activity at 40 °C, whereas the optimum temperature of hydrolytic activity was 45 °C. Cu(2+), Fe(2+), Zn(2+), and Ni(2+) inhibited both the transfructosylation and hydrolytic activities up to 100%, whereas Mn(2+) inhibited only hydrolytic activity. Ca(2+) and Mg(2+) stimulated both transfructosylation and hydrolytic activities. The chemical modifiers (n-bromosuccinimide and phenylmethanesulfonyl fluoride) strongly inhibited hydrolytic and transfructosylation activity of the levansucrase. The Km and Vmax values of the purified levansucrase were 117.2 mM and 33.23 µmol/mg·Min, respectively. When the fructose concentration was below 0.2 M, higher fructose concentrations promoted the transfructosylation and inhibited the hydrolytic activity.


Assuntos
Bacillus/citologia , Hexosiltransferases/isolamento & purificação , Hexosiltransferases/metabolismo , Espaço Intracelular/enzimologia , Animais , Bacillus/enzimologia , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Frutose/metabolismo , Hexosiltransferases/antagonistas & inibidores , Hexosiltransferases/química , Concentração de Íons de Hidrogênio , Hidrólise , Metais/farmacologia , Peso Molecular , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA