Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 557
Filtrar
1.
J Biol Chem ; 299(9): 105086, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495113

RESUMO

Reductive dehalogenases are corrinoid and iron-sulfur cluster-containing enzymes that catalyze the reductive removal of a halogen atom. The oxygen-sensitive and membrane-associated nature of the respiratory reductive dehalogenases has hindered their detailed kinetic study. In contrast, the evolutionarily related catabolic reductive dehalogenases are oxygen tolerant, with those that are naturally fused to a reductase domain with similarity to phthalate dioxygenase presenting attractive targets for further study. We present efficient heterologous expression of a self-sufficient catabolic reductive dehalogenase from Jhaorihella thermophila in Escherichia coli. Combining the use of maltose-binding protein as a solubility-enhancing tag with the btuCEDFB cobalamin uptake system affords up to 40% cobalamin occupancy and a full complement of iron-sulfur clusters. The enzyme is able to efficiently perform NADPH-dependent dehalogenation of brominated and iodinated phenolic compounds, including the flame retardant tetrabromobisphenol, under both anaerobic and aerobic conditions. NADPH consumption is tightly coupled to product formation. Surprisingly, corresponding chlorinated compounds only act as competitive inhibitors. Electron paramagnetic resonance spectroscopy reveals loss of the Co(II) signal observed in the resting state of the enzyme under steady-state conditions, suggesting accumulation of Co(I)/(III) species prior to the rate-limiting step. In vivo reductive debromination activity is readily observed, and when the enzyme is expressed in E. coli strain W, supports growth on 3-bromo-4-hydroxyphenylacetic as a sole carbon source. This demonstrates the potential for catabolic reductive dehalogenases for future application in bioremediation.


Assuntos
Hidrolases , NADP , Rhodobacteraceae , Escherichia coli/genética , NADP/metabolismo , Oxigênio/química , Vitamina B 12/metabolismo , Fenóis/química , Fenóis/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Hidrolases/química , Hidrolases/genética , Hidrolases/isolamento & purificação , Hidrolases/metabolismo , Rhodobacteraceae/enzimologia , Rhodobacteraceae/genética , Estrutura Terciária de Proteína , Modelos Moleculares , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Coenzimas/metabolismo
2.
Chembiochem ; 23(1): e202100414, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34643018

RESUMO

l-2-Haloacid dehalogenases, industrially and environmentally important enzymes that catalyse cleavage of the carbon-halogen bond in S-2-halocarboxylic acids, were known to hydrolyse chlorinated, brominated and iodinated substrates but no activity towards fluorinated compounds had been reported. A screen for novel dehalogenase activities revealed four l-2-haloacid dehalogenases capable of defluorination. We now report crystal structures for two of these enzymes, Bpro0530 and Rha0230, as well as for the related proteins PA0810 and RSc1362, which hydrolyse chloroacetate but not fluoroacetate, all at ∼2.2 Šresolution. Overall structure and active sites of these enzymes are highly similar. In molecular dynamics (MD) calculations, only the defluorinating enzymes sample more compact conformations, which in turn allow more effective interactions with the small fluorine atom. Structural constraints, based on X-ray structures and MD calculations, correctly predict the defluorination activity of the homologous enzyme ST2570.


Assuntos
Hidrolases/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Halogenação , Hidrolases/química , Hidrolases/isolamento & purificação , Simulação de Dinâmica Molecular , Conformação Proteica , Alinhamento de Sequência
3.
Microb Cell Fact ; 20(1): 232, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963459

RESUMO

BACKGROUND: Proteins with novel functions or advanced activities developed by various protein engineering techniques must have sufficient solubility to retain their bioactivity. However, inactive protein aggregates are frequently produced during heterologous protein expression in Escherichia coli. To prevent the formation of inclusion bodies, fusion tag technology has been commonly employed, owing to its good performance in soluble expression of target proteins, ease of application, and purification feasibility. Thus, researchers have continuously developed novel fusion tags to expand the expression capacity of high-value proteins in E. coli. RESULTS: A novel fusion tag comprising carbohydrate-binding module 66 (CBM66) was developed for the soluble expression of heterologous proteins in E. coli. The target protein solubilization capacity of the CBM66 tag was verified using seven proteins that are poorly expressed or form inclusion bodies in E. coli: four human-derived signaling polypeptides and three microbial enzymes. Compared to native proteins, CBM66-fused proteins exhibited improved solubility and high production titer. The protein-solubilizing effect of the CBM66 tag was compared with that of two commercial tags, maltose-binding protein and glutathione-S-transferase, using poly(ethylene terephthalate) hydrolase (PETase) as a model protein; CBM66 fusion resulted in a 3.7-fold higher expression amount of soluble PETase (approximately 370 mg/L) compared to fusion with the other commercial tags. The intact PETase was purified from the fusion protein upon serial treatment with enterokinase and affinity chromatography using levan-agarose resin. The bioactivity of the three proteins assessed was maintained even when the CBM66 tag was fused. CONCLUSIONS: The use of the CBM66 tag to improve soluble protein expression facilitates the easy and economic production of high-value proteins in E. coli.


Assuntos
Carboidratos/química , Escherichia coli/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Álcool Desidrogenase/biossíntese , Álcool Desidrogenase/isolamento & purificação , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/isolamento & purificação , Proteína Morfogenética Óssea 7/biossíntese , Proteína Morfogenética Óssea 7/isolamento & purificação , Proteínas de Transporte/biossíntese , Proteínas de Transporte/isolamento & purificação , Clonagem Molecular , Fator de Crescimento Epidérmico/biossíntese , Fator de Crescimento Epidérmico/isolamento & purificação , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/isolamento & purificação , Expressão Gênica , Humanos , Hidrolases/biossíntese , Hidrolases/isolamento & purificação , Corpos de Inclusão/metabolismo , Lipase/biossíntese , Lipase/isolamento & purificação , Proteínas Ligantes de Maltose , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Solubilidade , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/isolamento & purificação
4.
Nat Commun ; 12(1): 4174, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234105

RESUMO

The folding of ß-barrel outer membrane proteins (OMPs) in Gram-negative bacteria is catalysed by the ß-barrel assembly machinery (BAM). How lateral opening in the ß-barrel of the major subunit BamA assists in OMP folding, and the contribution of membrane disruption to BAM catalysis remain unresolved. Here, we use an anti-BamA monoclonal antibody fragment (Fab1) and two disulphide-crosslinked BAM variants (lid-locked (LL), and POTRA-5-locked (P5L)) to dissect these roles. Despite being lethal in vivo, we show that all complexes catalyse folding in vitro, albeit less efficiently than wild-type BAM. CryoEM reveals that while Fab1 and BAM-P5L trap an open-barrel state, BAM-LL contains a mixture of closed and contorted, partially-open structures. Finally, all three complexes globally destabilise the lipid bilayer, while BamA does not, revealing that the BAM lipoproteins are required for this function. Together the results provide insights into the role of BAM structure and lipid dynamics in OMP folding.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidrolases/metabolismo , Lipossomos/metabolismo , Dobramento de Proteína , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Microscopia Crioeletrônica , Difusão Dinâmica da Luz , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/ultraestrutura , Hidrolases/genética , Hidrolases/isolamento & purificação , Hidrolases/ultraestrutura , Metabolismo dos Lipídeos , Lipossomos/ultraestrutura , Simulação de Dinâmica Molecular , Conformação Proteica em Folha beta , Proteolipídeos/metabolismo , Proteolipídeos/ultraestrutura , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
5.
Chemosphere ; 262: 128288, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182101

RESUMO

Short-chain chlorinated paraffins (SCCPs) are listed as persistent organic pollutants (POPs) under the Stockholm Convention. Such substances are toxic, bioaccumulating, transported over long distances and degrade slowly in the environment. Certain bacterial strains of the Sphingomonadacea family are able to degrade POPs, such as hexachlorocyclohexanes (HCHs) and hexabromocyclododecanes (HBCDs). The haloalkane dehalogenase LinB, expressed in certain Sphingomonadacea, is able to catalyze the transformation of haloalkanes to hydroxylated compounds. Therefore, LinB is a promising candidate for conversion of SCCPs. Hence, a mixture of chlorinated tridecanes was exposed in vitro to LinB, which was obtained through heterologous expression in Escherichia coli. Liquid chromatography mass spectrometry (LC-MS) was used to analyze chlorinated tridecanes and their transformation products. A chloride-enhanced soft ionization method, which favors the formation of chloride adducts [M+Cl]- without fragmentation, was applied. Mathematical deconvolution was used to distinguish interfering mass spectra of paraffinic, mono-olefinic and di-olefinic compounds. Several mono- and di-hydroxylated products including paraffinic, mono-olefinic and di-olefinic compounds were found after LinB exposure. Mono- (rt = 5.9-6.9 min) and di-hydroxylated (rt = 3.2-4.5 min) compounds were separated from starting material (rt = 7.7-8.5 min) by reversed phase LC. Chlorination degrees of chlorinated tridecanes increased during LinB-exposure from nCl = 8.80 to 9.07, indicating a preferential transformation of lower chlorinated (Cl<9) tridecanes. Thus, LinB indeed catalyzed a dehalohydroxylation of chlorinated tridecanes, tridecenes and tridecadienes. The observed hydroxylated compounds are relevant CP transformation products whose environmental and toxicological effects should be further investigated.


Assuntos
Poluentes Ambientais/análise , Hidrocarbonetos Clorados/análise , Hidrolases/química , Parafina/análise , Biocatálise , Monitoramento Ambiental/métodos , Escherichia coli/enzimologia , Escherichia coli/genética , Halogenação , Hexaclorocicloexano/análise , Hidrocarbonetos Bromados/análise , Hidrolases/isolamento & purificação , Hidroxilação , Sphingomonadaceae/enzimologia , Sphingomonadaceae/genética
6.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32060021

RESUMO

Chinese Jiuqu (fermentation starter) provides saccharifying enzymes for baijiu (Chinese liquor) fermentation, which undergoes a simultaneous saccharification and fermentation process. However, the key saccharifying enzymes associated with alcoholic fermentation from Jiuqu and their effects on ethanol production remain poorly understood. In this study, we identified 51 carbohydrate hydrolases in baijiu fermentation by metaproteomics analysis. Through source-tracking analysis, approximately 80% of carbohydrate hydrolases in the baijiu fermentation were provided by Jiuqu Among these enzymes, alpha-amylase (EC 3.2.1.1) and glucoamylase (EC 3.2.1.3), from Aspergillus, Rhizomucor, and Rhizopus, were positively related to starch hydrolysis and ethanol production, indicating that they were the key saccharifying enzymes associated with alcoholic fermentation in the baijiu fermentation. Moreover, a combined mixture of alpha-amylase and glucoamylase (in a ratio of 1:6, wt/wt) enhanced ethanol production in a simulative baijiu fermentation under laboratory conditions. This result revealed a synergistic effect of multiple saccharifying enzymes on ethanol production in baijiu fermentation. Our study provides a potential approach to improve the efficiency of saccharification and alcoholic fermentation by optimizing the profile of saccharifying enzymes for fermentation of baijiu and other beverages.IMPORTANCEJiuqu starter provides enzymes to the simultaneous saccharification and fermentation process of baijiu (Chinese liquor) production; however, the key saccharifying enzymes associated with alcoholic fermentation from Jiuqu and their effects on ethanol production remain unclear. We confirmed that Jiuqu was the main source of carbohydrate hydrolases for baijiu fermentation and identified two types of saccharifying enzymes from multiple microbes as the key enzymes associated with alcoholic fermentation. Moreover, a proper combination of multiple saccharifying enzymes could enhance ethanol production in baijiu fermentation. This combination provides an approach to optimize the profile of saccharifying enzymes for enhancing ethanol production in baijiu and other food fermentations.


Assuntos
Bebidas Alcoólicas/análise , Metabolismo dos Carboidratos , Fermentação , Hidrolases/isolamento & purificação , Animais , Bactérias/isolamento & purificação , China , Fungos/isolamento & purificação , Microbiota , Micobioma
7.
Appl Microbiol Biotechnol ; 104(5): 2067-2077, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31932896

RESUMO

Halohydrin dehalogenases (HHDHs) have attracted much attention due to their ability to synthesize enantiomerically enriched epoxides and ß-haloalcohols. However, most of the HHDHs exhibit low enantioselectivity. Here, a HHDH from the alphaproteobacteria isolate 46_93_T64 (AbHHDH), which shows only poor enantioselectivity in the catalytic resolution of rac-PGE (E = 9.9), has been subjected to protein engineering to enhance its enantioselectivity. Eight mutants (R89K, R89Y, V137I, P178A, N179Q, N179L, F187L, F187A) showed better enantioselectivity than the wild type. The best single mutant N179L (E = 93.0) showed a remarkable 9.4-fold increase in the enantioselectivity. Then, the single mutations were combined to produce the double, triple, quadruple, and quintuple mutants. Among the combinational mutants, the best variant (R89Y/N179L) showed an increased E value of up to 48. The E values of the variants N179L and R89Y/N179L for other epoxides 2-7 were 12.2 to > 200, which showed great improvement compared to 1.2 to 10.5 for the wild type. Using the variant N179L, enantiopure (R)-PGE with > 99% ee could be readily prepared, affording a high yield and a high concentration.


Assuntos
Proteínas de Bactérias/metabolismo , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Hidrolases/metabolismo , Alphaproteobacteria/enzimologia , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Biocatálise , Hidrolases/química , Hidrolases/genética , Hidrolases/isolamento & purificação , Cinética , Modelos Moleculares , Mutação , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidade por Substrato
8.
Parasit Vectors ; 12(1): 587, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842981

RESUMO

BACKGROUND: Mites of the genus Chorioptes are non-burrowing and cause mange in a wide range of domestic and wild animals including cattle, horses, sheep, goats, panda, moose, camelids, mydaus and alpacas. Molecular biology and host-parasite interactions of Chorioptes texanus are poorly understood, and only a few C. texanus genes and transcript sequences are available in public databases including the allergen genes. METHODS: Chorioptes texanus RNA was isolated from mites, and the transcriptome of C. texanus was analyzed using bioinformatics tools. Chorioptes texanus unigenes were compared with the allergen protein sequences from the mite allergen database website to predict the potential allergens. Chorioptes texanus putative allergen unigenes were compared with hydrolase genes by building a C. texanus hydrolase gene library with the best match of the homologous sequences. Three allergen genes were cloned and expressed, their recombinant proteins were purified and their allergenic activities were preliminarily investigated. RESULTS: Transcriptome sequencing (RNA-Seq) of C. texanus was analyzed and results demonstrated that 33,138 unigenes were assembled with an average length of 751 bp. A total of 15,130 unigenes were annotated and 5598 unigenes were enriched in 262 KEGG signaling pathways. We obtained 209 putative allergen genes and 34 putative allergen-hydrolase genes. Three recombinant allergen proteins were observed to induce different degrees of allergic reactions on rabbit skin. CONCLUSIONS: The present transcriptome data provide a useful basis for understanding the host-parasite interaction and molecular biology of the C. texanus mite. The allergenic activities of recombinant Euroglyphus maynei 1-like (Eur m 1-like) protein, Dermatophagoides ptreronyssinus 1-like (Der p 1-like) protein and Dermatophagoides ptreronyssinus 7-like (Der p 7-like) protein were preliminarily investigated by intradermal skin test. Meanwhile, differences in eosinophil counts were observed in different injected sites of the skin. The identification of putative allergen genes and hydrolase genes offers opportunities for the development of new diagnostic, prevention and treatment methods.


Assuntos
Alérgenos/análise , Hidrolases/análise , Psoroptidae/genética , Psoroptidae/imunologia , Transcriptoma , Alérgenos/genética , Alérgenos/imunologia , Alérgenos/isolamento & purificação , Animais , Biologia Computacional , Perfilação da Expressão Gênica , Hidrolases/genética , Hidrolases/imunologia , Hidrolases/isolamento & purificação , Coelhos , Testes Cutâneos
9.
J Vis Exp ; (148)2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31282888

RESUMO

Fumarylacetoacetate hydrolase (FAH) domain-containing proteins (FAHD) are identified members of the FAH superfamily in eukaryotes. Enzymes of this superfamily generally display multi-functionality, involving mainly hydrolase and decarboxylase mechanisms. This article presents a series of consecutive methods for the expression and purification of FAHD proteins, mainly FAHD protein 1 (FAHD1) orthologues among species (human, mouse, nematodes, plants, etc.). Covered methods are protein expression in E. coli, affinity chromatography, ion exchange chromatography, preparative and analytical gel filtration, crystallization, X-ray diffraction, and photometric assays. Concentrated protein of high levels of purity (>98%) may be employed for crystallization or antibody production. Proteins of similar or lower quality may be employed in enzyme assays or used as antigens in detection systems (Western-Blot, ELISA). In the discussion of this work, the identified enzymatic mechanisms of FAHD1 are outlined to describe its hydrolase and decarboxylase bi-functionality in more detail.


Assuntos
Ensaios Enzimáticos/métodos , Hidrolases/metabolismo , Domínios Proteicos , Cromatografia Líquida/métodos , Cristalização , Cristalografia por Raios X , Escherichia coli/metabolismo , Hidrolases/química , Hidrolases/isolamento & purificação
10.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 4): 307-311, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30950832

RESUMO

The hyperthermophilic crenarchaeon Ignicoccus hospitalis KIN4/I possesses at least 35 putative genes encoding enzymes that belong to the α/ß-hydrolase superfamily. One of those genes, the metallo-hydrolase-encoding igni18, was cloned and heterologously expressed in Pichia pastoris. The enzyme produced was purified in its catalytically active form. The recombinant enzyme was successfully crystallized and the crystal diffracted to a resolution of 2.3 Å. The crystal belonged to space group R32, with unit-cell parameters a = b = 67.42, c = 253.77 Å, α = ß = 90.0, γ = 120.0°. It is suggested that it contains one monomer of Igni18 within the asymmetric unit.


Assuntos
Clonagem Molecular , Desulfurococcaceae/enzimologia , Expressão Gênica , Hidrolases/química , Hidrolases/isolamento & purificação , Metais/química , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Hidrolases/genética
11.
J Biol Chem ; 294(17): 6923-6939, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30846563

RESUMO

Agars are sulfated galactans from red macroalgae and are composed of a d-galactose (G unit) and l-galactose (L unit) alternatively linked by α-1,3 and ß-1,4 glycosidic bonds. These polysaccharides display high complexity, with numerous modifications of their backbone (e.g. presence of a 3,6-anhydro-bridge (LA unit) and sulfations and methylation). Currently, bacterial polysaccharidases that hydrolyze agars (ß-agarases and ß-porphyranases) have been characterized on simple agarose and more rarely on porphyran, a polymer containing both agarobiose (G-LA) and porphyranobiose (GL6S) motifs. How bacteria can degrade complex agars remains therefore an open question. Here, we studied an enzyme from the marine bacterium Zobellia galactanivorans (ZgAgaC) that is distantly related to the glycoside hydrolase 16 (GH16) family ß-agarases and ß-porphyranases. Using a large red algae collection, we demonstrate that ZgAgaC hydrolyzes not only agarose but also complex agars from Ceramiales species. Using tandem MS analysis, we elucidated the structure of a purified hexasaccharide product, L6S-G-LA2Me-G(2Pentose)-LA2S-G, released by the activity of ZgAgaC on agar extracted from Osmundea pinnatifida By resolving the crystal structure of ZgAgaC at high resolution (1.3 Å) and comparison with the structures of ZgAgaB and ZgPorA in complex with their respective substrates, we determined that ZgAgaC recognizes agarose via a mechanism different from that of classical ß-agarases. Moreover, we identified conserved residues involved in the binding of complex oligoagars and demonstrate a probable influence of the acidic polysaccharide's pH microenvironment on hydrolase activity. Finally, a phylogenetic analysis supported the notion that ZgAgaC homologs define a new GH16 subfamily distinct from ß-porphyranases and classical ß-agarases.


Assuntos
Ágar/metabolismo , Proteínas de Bactérias/isolamento & purificação , Flavobacteriaceae/enzimologia , Hidrolases/isolamento & purificação , Sequência de Aminoácidos , Organismos Aquáticos/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Hidrolases/química , Hidrolases/metabolismo , Filogenia , Conformação Proteica , Água do Mar/microbiologia
12.
J Biosci Bioeng ; 127(2): 129-137, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30143336

RESUMO

Arginine deiminase (ADI) from Pseudomonas putida was purified using ammonium sulphate precipitation, anion exchange and hydrophobic interaction chromatography. Influence of various chemical compounds (metal ions, reducing agents, sulphydryl agents, and surfactants) on the catalytic activity of ADI was determined was evaluated on the purified ADI. The enzyme displayed high sensitivity towards thiol binding metal ions, chemicals acting on sulfhydryl group, and most of the surfactants. Substrate specificity studies exhibited that among the eight substrate analogues tested, canavanine had the highest affinity for ADI, followed by d-arginine and guanidine. Canavanine decreased the ADI activity up to 50% at its lowest concentration tested (10 mM), while d-arginine decreased the ADI activity up to ∼4% at its highest tested concentration (200 mM). Differential affinities of the structural analogues of arginine towards ADI were further studied by molecular modeling methods, which included homology modeling, molecular docking and molecular dynamic simulations. The molecular docking studies revealed the critical importance of residues Arg 243, Asp 166, Asp 280, Gly 299 and His 278. RMSDs for protein-ligand complexes were within a range of 1-3 Å, suggesting that the complexes were stable throughout the molecular dynamic simulation. The formation of strong hydrogen bonds by residues Asn 160, Asp166, Arg 185, Arg243, Asp280 and Gly 399 in l-arginine were preserved in the case of d-arginine and canavanine and was responsible for higher affinity towards ADI. Calculations of the substrate binding energies revealed that binding energies ΔGbind and ΔGvdw play a critical role for the differential affinities of various substrate analogues towards P. putida ADI.


Assuntos
Arginina/análogos & derivados , Arginina/metabolismo , Hidrolases/química , Hidrolases/isolamento & purificação , Pseudomonas putida/enzimologia , Domínio Catalítico , Guanidina/metabolismo , Hidrolases/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas putida/metabolismo , Especificidade por Substrato
13.
Microb Biotechnol ; 12(1): 148-160, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30302933

RESUMO

A high-throughput method (≥ 106 of clones can be analysed on a single agar plate) for the selection of ester-hydrolysing enzymes was developed based on the uridine auxotrophy of Escherichia coli strain DH10B ΔpyrFEC and the acylated derivatives 2',3',5'-O-tri-acetyluridine and 2',3',5'-O-tri-hexanoyluridine as the sole source of uridine. The proposed approach permits the selection of hydrolases belonging to different families and active towards different substrates. Moreover, the ester group of the substrate used for the selection, at least partly, determined the specificity of the selected enzymes.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Biblioteca Gênica , Hidrolases/genética , Hidrolases/isolamento & purificação , Metagenômica/métodos , Uridina/metabolismo , Clonagem Molecular , Meios de Cultura/química , Escherichia coli/crescimento & desenvolvimento , Seleção Genética
14.
Int J Biol Macromol ; 125: 1016-1023, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30576728

RESUMO

Haloalkane dehalogenase DhaA catalyzes the hydrolysis of halogenated compounds by cleavage of the carbon-halogen bond. However, DhaA suffers from poor environmental stability and difficult recovery, which significantly increase the cost of DhaA. Here, an effective enzyme immobilization strategy was developed to overcome the disadvantages of DhaA. DhaA was physically absorbed with amine-functionalized meso-cellular foam (MCF). The MCF-absorbed DhaA (MD) was intermolecularly crosslinked with 8-arm PEG N­hydroxysuccinimide ester and then PEGylated by maleimide-thiol chemistry. DhaA from Rhodococcus rhodochrous was absorbed at a loading capacity of 100 mg/g in MD. The bulk crystallinity and morphology of MCF were largely maintained. The immobilized DhaA (MD-P1-P2) showed a lower Michaelis constant (Km, 0.588 mM) than DhaA (0.905 mM), along with an extremely low leaching ratio of DhaA (1.1%) from MCF. MD-P1-P2 exhibited a high stability in the extreme environmental conditions, as reflected by the remaining activity of 99.8% in 40% (v/v) DMSO for 5 h, 87.3% in 3 M urea solution for 1 h, 25.9% at pH 3.0, and 51.8% at room temperature for 30 days. Thus, our study was expected to develop an effective immobilized DhaA for practical application.


Assuntos
Proteínas de Bactérias/química , Reagentes de Ligações Cruzadas/química , Enzimas Imobilizadas/química , Hidrolases/química , Rhodococcus/química , Adsorção , Proteínas de Bactérias/isolamento & purificação , Estabilidade Enzimática , Enzimas Imobilizadas/isolamento & purificação , Concentração de Íons de Hidrogênio , Hidrolases/isolamento & purificação , Cinética , Polietilenoglicóis/química , Rhodococcus/enzimologia , Succinimidas/química
15.
Methods Enzymol ; 606: 485-522, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30097104

RESUMO

MoaA is one of the founding members of the radical S-adenosyl-L-methionine (SAM) superfamily, and together with the second enzyme, MoaC, catalyzes the construction of the pyranopterin backbone structure of the molybdenum cofactor (Moco). However, the exact functions of both MoaA and MoaC had remained ambiguous for more than 2 decades. Recently, their functions were finally elucidated through successful characterization of the MoaA product as 3',8-cyclo-7,8-dihydro-GTP (3',8-cH2GTP), which was shown to be converted to cyclic pyranopterin monophosphate (cPMP) by MoaC. 3',8-cH2GTP was produced in a small quantity and was highly oxygen sensitive, which explains why this compound had previously eluded characterization. This chapter describes the methodologies for the characterization of MoaA, MoaC, and 3',8-cH2GTP, which together significantly altered the view of the mechanism of the pyranopterin backbone construction during the Moco biosynthesis. Through this chapter, we hope to share not only the protocols to study the first step of Moco biosynthesis but also the lessons we learned from the characterization of the chemically labile biosynthetic intermediate, which would be informative for the study of many other metabolic pathways and enzymes.


Assuntos
Coenzimas/biossíntese , Ensaios Enzimáticos/métodos , Proteínas de Escherichia coli/metabolismo , Hidrolases/metabolismo , Metaloproteínas/biossíntese , Proteínas de Escherichia coli/isolamento & purificação , Hidrolases/isolamento & purificação , Redes e Vias Metabólicas , Cofatores de Molibdênio , Compostos Organofosforados/metabolismo , Pteridinas , Pterinas/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
16.
Methods Mol Biol ; 1813: 271-283, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30097875

RESUMO

ADP-ribosylation is a posttranslational modification that involves the conjugation of monomers and polymers of the small molecule ADP-ribose onto amino acid side chains. A family of ADP-ribosyltransferases catalyzes the transfer of the ADP-ribose moiety of nicotinamide adenine dinucleotide (NAD+) onto a variety of amino acid side chains including aspartate, glutamate, lysine, arginine, cysteine, and serine. The monomeric form of the modification mono(ADP-ribosyl)ation (MARylation) is reversed by a number of enzymes including a family of MacroD-type macrodomain-containing mono(ADP-ribose) (MAR) hydrolases. Though it has been inferred from various chemical tests that these enzymes have specificity for MARylated aspartate and glutamate residues in vitro, the amino acid and site specificity of different family members are often not unambiguously defined. Here we describe a mass spectrometry-based assay to determine the site specificity of MAR hydrolases in vitro.


Assuntos
ADP Ribose Transferases/isolamento & purificação , ADP-Ribosilação/genética , Hidrolases/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , ADP Ribose Transferases/química , Adenosina Difosfato Ribose/química , Humanos , Hidrolases/química
17.
Sci Rep ; 8(1): 11262, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050039

RESUMO

Quorum quenching lactonases are enzymes that are capable of disrupting bacterial signaling based on acyl homoserine lactones (AHL) via their enzymatic degradation. In particular, lactonases have therefore been demonstrated to inhibit bacterial behaviors that depend on these chemicals, such as the formation of biofilms or the expression of virulence factors. Here we characterized biochemically and structurally a novel representative from the metallo-ß-lactamase superfamily, named AaL that was isolated from the thermoacidophilic bacterium Alicyclobacillus acidoterrestris. AaL is a potent quorum quenching enzyme as demonstrated by its ability to inhibit the biofilm formation of Acinetobacter baumannii. Kinetic studies demonstrate that AaL is both a proficient and a broad spectrum enzyme, being capable of hydrolyzing a wide range of lactones with high rates (kcat/KM > 105 M-1.s-1). Additionally, AaL exhibits unusually low KM values, ranging from 10 to 80 µM. Analysis of AaL structures bound to phosphate, glycerol, and C6-AHL reveals a unique hydrophobic patch (W26, F87 and I237), involved in substrate binding, possibly accounting for the enzyme's high specificity. Identifying the specificity determinants will aid the development of highly specific quorum quenching enzymes as potential therapeutics.


Assuntos
Alicyclobacillus/enzimologia , Hidrolases/química , Hidrolases/metabolismo , Lactonas/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/crescimento & desenvolvimento , Sítios de Ligação , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Cristalografia por Raios X , Hidrolases/isolamento & purificação , Hidrólise , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Percepção de Quorum , Especificidade por Substrato
18.
Viruses ; 10(6)2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29875339

RESUMO

Bacteriophage lysins and related bacteriolytic enzymes are now considered among the top antibiotic alternatives for solving the mounting resistance problem. Over the past 17 years, lysins have been widely developed against Gram-positive and recently Gram-negative pathogens, and successfully tested in a variety of animal models to demonstrate their efficacy. A lysin (CF-301) directed to methicillin resistant Staphylococcus aureus (MRSA) has effectively completed phase 1 human clinical trials, showing safety in this novel therapeutic class. To validate efficacy, CF-301 is currently the first lysin to enter phase 2 human trials to treat hospitalized patients with MRSA bacteremia or endocarditis. If successful, it could be the defining moment leading to the acceptance of lysins as an alternative to small molecule antibiotics. This article is a detailed account of events leading to the first therapeutic use and ultimate development of phage-encoded lysins as novel anti-infectives.


Assuntos
Antibacterianos/uso terapêutico , Bacteriófagos/enzimologia , Produtos Biológicos/uso terapêutico , Terapia Biológica/história , Descoberta de Drogas/história , Endopeptidases/uso terapêutico , Hidrolases/uso terapêutico , Antibacterianos/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Terapia Biológica/métodos , Ensaios Clínicos como Assunto , Descoberta de Drogas/métodos , Endopeptidases/isolamento & purificação , História do Século XX , História do Século XXI , Humanos , Hidrolases/isolamento & purificação , Infecções Estafilocócicas/tratamento farmacológico
19.
Methods Enzymol ; 605: 203-251, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29909825

RESUMO

Haloalkane dehalogenases degrade halogenated compounds to corresponding alcohols by a hydrolytic mechanism. These enzymes are being intensively investigated as model systems in experimental and in silico studies of enzyme mechanism and evolution, but also hold importance as useful biocatalysts for a number of biotechnological applications. Haloalkane dehalogenases originate from various organisms including bacteria (degraders, symbionts, or pathogens), eukaryotes, and archaea. Several members of this enzyme family have been found in marine organisms. The marine environment represents a good source of enzymes with novel properties, because of its diverse living conditions. A number of novel dehalogenases isolated from marine environments show interesting characteristics such as high activity, unusually broad substrate specificity, stability, or selectivity. In this chapter, the overview of haloalkane dehalogenases from marine organisms is presented and their characteristics are summarized together with an overview of the methods for their identification and biochemical characterization.


Assuntos
Alcanos/metabolismo , Organismos Aquáticos/metabolismo , Biotecnologia/métodos , Ensaios Enzimáticos/métodos , Hidrolases/metabolismo , Aldeídos/metabolismo , Biocatálise , Química Verde/métodos , Halogênios/metabolismo , Hidrolases/química , Hidrolases/isolamento & purificação , Especificidade por Substrato
20.
Methods Enzymol ; 605: 253-265, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29909826

RESUMO

While halogenases have been studied for decades, the first natural product dehalogenase was only recently described. This bacterial enzyme, Bmp8, catalyzes the reductive debromination of 2,3,4,5-tetrabromopyrrole to form 2,3,4-tribromopyrrole as part of the biosynthesis of pentabromopseudilin, a marine natural product. Bmp8 is hypothesized to utilize a catalytic mechanism analogous to the important human thyroid hormone deiodinase enzyme family, potentially enabling Bmp8 to serve as model system to study this conserved mechanism. Herein, we describe a method for the soluble expression and purification of Bmp8. Furthermore, we detail activity assay protocols to quantify both consumption of the tetrabromopyrrole substrate and formation of the tribromopyrrole product. These methods will enable further study of this unusual enzyme and its catalytic mechanism.


Assuntos
Organismos Aquáticos/metabolismo , Proteínas de Bactérias/isolamento & purificação , Ensaios Enzimáticos/métodos , Hidrolases/isolamento & purificação , Pirróis/metabolismo , Proteínas de Bactérias/metabolismo , Ensaios Enzimáticos/instrumentação , Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA