Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Elife ; 132024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235443

RESUMO

Noncoding RNA plays a pivotal role as novel regulators of endothelial cell function. Type 2 diabetes, acknowledged as a primary contributor to cardiovascular diseases, plays a vital role in vascular endothelial cell dysfunction due to induced abnormalities of glucolipid metabolism and oxidative stress. In this study, aberrant expression levels of circHMGCS1 and MIR4521 were observed in diabetes-induced human umbilical vein endothelial cell dysfunction. Persistent inhibition of MIR4521 accelerated development and exacerbated vascular endothelial dysfunction in diabetic mice. Mechanistically, circHMGCS1 upregulated arginase 1 by sponging MIR4521, leading to decrease in vascular nitric oxide secretion and inhibition of endothelial nitric oxide synthase activity, and an increase in the expression of adhesion molecules and generation of cellular reactive oxygen species, reduced vasodilation and accelerated the impairment of vascular endothelial function. Collectively, these findings illuminate the physiological role and interacting mechanisms of circHMGCS1 and MIR4521 in diabetes-induced cardiovascular diseases, suggesting that modulating the expression of circHMGCS1 and MIR4521 could serve as a potential strategy to prevent diabetes-associated cardiovascular diseases. Furthermore, our findings provide a novel technical avenue for unraveling ncRNAs regulatory roles of ncRNAs in diabetes and its associated complications.


Assuntos
Diabetes Mellitus Tipo 2 , Endotélio Vascular , Hidroximetilglutaril-CoA Sintase , MicroRNAs , RNA Circular , Animais , Humanos , Masculino , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , RNA Circular/genética , RNA Circular/metabolismo , Hidroximetilglutaril-CoA Sintase/genética
2.
J Investig Med High Impact Case Rep ; 12: 23247096241267154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39143735

RESUMO

Here, we report an individual, eventually diagnosed with HMG-CoA synthase deficiency, who presented with a cyclic vomiting phenotype. HMG-CoA synthase deficiency is a rare disorder affecting ketone body synthesis in which affected individuals typically present at a young age with hypoketotic hypoglycemia, lethargy, encephalopathy, and hepatomegaly, usually triggered by catabolism (e.g., infection or prolonged fasting). This individual presented with recurrent episodes of vomiting and lethargy, often associated with hypoglycemia or hyperglycemia, at 3 years of age. Metabolic labs revealed nonspecific abnormalities in her urine organic acids (showing mild elevation of dicarboxylic acids with relatively low excretion of ketones) and a normal acylcarnitine profile. Given her clinical presentation, as well as a normal upper gastrointestinal series, esophagogastroduodenoscopy with biopsies, and abdominal ultrasound, she was diagnosed with cyclic vomiting syndrome at 3 years of age. Molecular testing completed at 7 years of age revealed a previously reported pathogenic sequence variant (c.1016+1G>A) and a novel likely pathogenic deletion (1.57 kB deletion, including exon 1) within HMGCS2 consistent with HMG-CoA synthase deficiency. This individual's presentation, mimicking cyclic vomiting syndrome, widens the clinical spectrum of HMG-CoA synthase deficiency. In addition, this case highlights the importance of molecular genetic testing in such presentations, as this rare disorder lacks specific metabolic markers.


Assuntos
Hidroximetilglutaril-CoA Sintase , Vômito , Humanos , Vômito/etiologia , Feminino , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/deficiência , Pré-Escolar , Biomarcadores/urina , Biomarcadores/sangue , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/complicações , Diagnóstico Diferencial , Acetil-CoA C-Acetiltransferase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos
3.
Int Immunopharmacol ; 140: 112729, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39098229

RESUMO

ADORA3 is mainly expressed in intestinal tract, and has the potential to promote the expression of mucin 2 (MUC2), the function-related factor of goblet cells, under asthma conditions. This study aims to confirm the induction and mechanisms of ADORA3 activation on goblet cells in ulcerative colitis (UC). A significant decrease in ADORA3 expression was found in mucosal biopsies from UC patients and in the colons of colitis mice. This reduction correlated negatively with disease severity and positively with goblet cell number. ADORA3 activation mitigated dextran sulfate sodium (DSS)-induced colitis and facilitated ATOH1-mediated goblet cell differentiation in both in vivo and in vitro. Metabolomics analysis unveiled that ADORA3 activation bolstered ketogenesis, leading to elevated levels of the metabolite BHB. Subsequently, BHB heightened the activity of HDAC1/2, augmenting histone acetylation at the H3K9ac site within the promoter region of the ATOH1 gene. Furthermore, the reason for ADORA3 activation to enhance ketogenesis was attributed to controlling the competitive binding among ß-arrestin2, SHP1 and PPARγ. This results in the non-ligand-dependent activation of PPARγ, thereby promoting the transcription of HMGCS2. The exact mechanisms by which ADORA3 promoted goblet cell differentiation and alleviated UC were elucidated using MRS1191 and shHMGCS2 plasmid. Collectively, ADORA3 activation promoted goblet cell differentiation and alleviated UC by enhancing ketogenesis via the "BHB-HDAC1/2-H3K9ac" pathway.


Assuntos
Diferenciação Celular , Colite Ulcerativa , Células Caliciformes , Hidroximetilglutaril-CoA Sintase , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ácido Butírico/farmacologia , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Colo/patologia , Colo/metabolismo , Sulfato de Dextrana , Células Caliciformes/patologia , Células Caliciformes/metabolismo , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , PPAR gama/genética
4.
J Exp Clin Cancer Res ; 43(1): 185, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965575

RESUMO

BACKGROUND: Metastasis is the leading cause of mortality in patients with colorectal cancer (CRC) and angiogenesis is a crucial factor in tumor invasion and metastasis. Long noncoding RNAs (lncRNAs) play regulatory functions in various biological processes in tumor cells, however, the roles of lncRNAs in CRC-associated angiogenesis remain to be elucidated in CRC, as do the underlying mechanisms. METHODS: We used bioinformatics to screen differentially expressed lncRNAs from TCGA database. LOC101928222 expression was assessed by qRT-PCR. The impact of LOC101928222 in CRC tumor development was assessed both in vitro and in vivo. The regulatory mechanisms of LOC101928222 in CRC were investigated by cellular fractionation, RNA-sequencing, mass spectrometric, RNA pull-down, RNA immunoprecipitation, RNA stability, and gene-specific m6A assays. RESULTS: LOC101928222 expression was upregulated in CRC and was correlated with a worse outcome. Moreover, LOC101928222 was shown to promote migration, invasion, and angiogenesis in CRC. Mechanistically, LOC101928222 synergized with IGF2BP1 to stabilize HMGCS2 mRNA through an m6A-dependent pathway, leading to increased cholesterol synthesis and, ultimately, the promotion of CRC development. CONCLUSIONS: In summary, these findings demonstrate a novel, LOC101928222-based mechanism involved in the regulation of cholesterol synthesis and the metastatic potential of CRC. The LOC101928222-HMGCS2-cholesterol synthesis pathway may be an effective target for diagnosing and managing CRC metastasis.


Assuntos
Colesterol , Neoplasias Colorretais , Neovascularização Patológica , RNA Longo não Codificante , RNA Mensageiro , Animais , Humanos , Masculino , Camundongos , Angiogênese , Linhagem Celular Tumoral , Colesterol/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928261

RESUMO

Consumption of a high-fat diet (HFD) has been suggested as a contributing factor behind increased intestinal permeability in obesity, leading to increased plasma levels of microbial endotoxins and, thereby, increased systemic inflammation. We and others have shown that HFD can induce jejunal expression of the ketogenic rate-limiting enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS). HMGCS is activated via the free fatty acid binding nuclear receptor PPAR-α, and it is a key enzyme in ketone body synthesis that was earlier believed to be expressed exclusively in the liver. The function of intestinal ketogenesis is unknown but has been described in suckling rats and mice pups, possibly in order to allow large molecules, such as immunoglobulins, to pass over the intestinal barrier. Therefore, we hypothesized that ketone bodies could regulate intestinal barrier function, e.g., via regulation of tight junction proteins. The primary aim was to compare the effects of HFD that can induce intestinal ketogenesis to an equicaloric carbohydrate diet on inflammatory responses, nutrition sensing, and intestinal permeability in human jejunal mucosa. Fifteen healthy volunteers receiving a 2-week HFD diet compared to a high-carbohydrate diet were compared. Blood samples and mixed meal tests were performed at the end of each dietary period to examine inflammation markers and postprandial endotoxemia. Jejunal biopsies were assessed for protein expression using Western blotting, immunohistochemistry, and morphometric characteristics of tight junctions by electron microscopy. Functional analyses of permeability and ketogenesis were performed in Caco-2 cells, mice, and human enteroids. Ussing chambers were used to analyze permeability. CRP and ALP values were within normal ranges and postprandial endotoxemia levels were low and did not differ between the two diets. The PPARα receptor was ketone body-dependently reduced after HFD. None of the tight junction proteins studied, nor the basal electrical parameters, were different between the two diets. However, the ketone body inhibitor hymeglusin increased resistance in mucosal biopsies. In addition, the tight junction protein claudin-3 was increased by ketone inhibition in human enteroids. The ketone body ß-Hydroxybutyrate (ßHB) did not, however, change the mucosal transition of the large-size molecular FD4-probe or LPS in Caco-2 and mouse experiments. We found that PPARα expression was inhibited by the ketone body ßHB. As PPARα regulates HMGCS expression, the ketone bodies thus exert negative feedback signaling on their own production. Furthermore, ketone bodies were involved in the regulation of permeability on intestinal mucosal cells in vitro and ex vivo. We were not, however, able to reproduce these effects on intestinal permeability in vivo in humans when comparing two weeks of high-fat with high-carbohydrate diet in healthy volunteers. Further, neither the expression of inflammation markers nor the aggregate tight junction proteins were changed. Thus, it seems that not only HFD but also other factors are needed to permit increased intestinal permeability in vivo. This indicates that the healthy gut can adapt to extremes of macro-nutrients and increased levels of intestinally produced ketone bodies, at least during a shorter dietary challenge.


Assuntos
Dieta Hiperlipídica , Mucosa Intestinal , Jejuno , Corpos Cetônicos , Permeabilidade , Humanos , Masculino , Mucosa Intestinal/metabolismo , Dieta Hiperlipídica/efeitos adversos , Corpos Cetônicos/metabolismo , Adulto , Jejuno/metabolismo , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Feminino , Animais , Camundongos , Claudina-3/metabolismo
6.
Cancer Med ; 13(12): e7393, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923428

RESUMO

INTRODUCTION: A neurotrophic tropomyosin receptor kinase (NTRK)-tyrosine kinase inhibitor (TKI) has shown dramatic efficacy against malignant tumors harboring an NTRK fusion gene. However, almost all tumors eventually acquire resistance to NTRK-TKIs. METHOD: To investigate the mechanism of resistance to NTRK-TKIs, we established cells resistant to three types of NTRK-TKIs (larotrectinib, entrectinib, and selitrectinib) using KM12 colon cancer cells with a TPM3-NTRK1 rearrangement. RESULT: Overexpression of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) was observed in three resistant cells (KM12-LR, KM12-ER, and KM12-SR) by microarray analysis. Lower expression of sterol regulatory element-binding protein 2 (SREBP2) and peroxisome proliferator activated receptor α (PPARα) was found in two cells (KM12-ER and KM12-SR) in which HMGCS2 was overexpressed compared to the parental KM12 and KM12-LR cells. In resistant cells, knockdown of HMGCS2 using small interfering RNA improved the sensitivity to NTRK-TKI. Further treatment with mevalonolactone after HMGCS2 knockdown reintroduced the NTRK-TKI resistance. In addition, simvastatin and silibinin had a synergistic effect with NTRK-TKIs in resistant cells, and delayed tolerance was observed after sustained exposure to clinical concentrations of NTRK-TKI and simvastatin in KM12 cells. In xenograft mouse models, combination treatment with entrectinib and simvastatin reduced resistant tumor growth compared with entrectinib alone. CONCLUSION: These results suggest that HMGCS2 overexpression induces resistance to NTRK-TKIs via the mevalonate pathway in colon cancer cells. Statin inhibition of the mevalonate pathway may be useful for overcoming this mechanistic resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Ácido Mevalônico , Inibidores de Proteínas Quinases , Animais , Humanos , Camundongos , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Indazóis/farmacologia , Indazóis/uso terapêutico , Ácido Mevalônico/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptor trkA/metabolismo , Receptor trkA/genética , Receptor trkA/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Zhongguo Fei Ai Za Zhi ; 27(5): 330-336, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38880920

RESUMO

BACKGROUND: Targeted therapies are ineffective in lung squamous cancer (LUSC), and the low response rate of immunotherapy hampers its application in LUSC, so it is urgent to explore new strategies for LUSC treatment. Ferroptosis plays an important role in tumour suppression. The aim of this study was to investigate the role and mechanism of targeting 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) in regulating ferroptosis in LUSC cells, in order to provide a new research direction for LUSC therapy. METHODS: The expression of HMGCS1 in LUSC was analysed by The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) online databases; the relationship between HMGCS1 and survival time of lung cancer was analysed by the Kaplan-Meier Plotter online survival database; the expression level of HMGCS1 in LUSC tissues was verified by immunohistochemistry. After interfering with HMGCS1 expression by small interfering RNA (siRNA), cell activity and cell migration ability were detected by CCK8 and Transwell assay; apoptosis was detected by flow cytometry after interfering with HMGCS1 or after treatment with the HMGCS1 inhibitor of hymeglusin; Fe2+, reactive oxygen species (ROS) and lipid peroxidation levels were detected by flow cytometry and high-content confocal fluorescence imaging systems, respectively in SKMES cells after inhibition of HMGCS1; and Western blot was performed to detect the expression of ACSL4, GPX4 and SLC7A11, which are markers of the ferroptosis pathway after inhibition of HMGCS1. RESULTS: HMGCS1 mRNA and protein levels were significantly high in LUSC; siRNA interference with HMGCS1 expression inhibited the proliferative activity and migration ability of LUSC cells, but had no significant effect on apoptosis. Interference with HMGCS1 or treatment with the HMGCS1 inhibitor of hymeglusin significantly promoted intracellular Fe2+, ROS and lipid peroxidation levels in SKMES cells, and induced ferroptosis in LUSC cells; Western blot assay showed that inhibition of HMGCS1 significantly promoted the expression of ACSL4. CONCLUSIONS: Inhibition of HMGCS1, a target of LUSC, promotes ferroptosis in lung cancer cells and provides a research basis for screening new therapeutic targets for LUSC.


Assuntos
Ferroptose , Neoplasias Pulmonares , Ferroptose/genética , Ferroptose/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Espécies Reativas de Oxigênio/metabolismo , Movimento Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos
8.
Mol Metab ; 86: 101967, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876267

RESUMO

OBJECTIVE: In response to bacterial inflammation, anorexia of acute illness is protective and is associated with the induction of fasting metabolic programs such as ketogenesis. Forced feeding during the anorectic period induced by bacterial inflammation is associated with suppressed ketogenesis and increased mortality. As ketogenesis is considered essential in fasting adaptation, we sought to determine the role of ketogenesis in illness-induced anorexia. METHODS: A mouse model of inducible hepatic specific deletion of the rate limiting enzyme for ketogenesis (HMG-CoA synthase 2, Hmgcs2) was used to investigate the role of ketogenesis in endotoxemia, a model of bacterial inflammation, and in prolonged starvation. RESULTS: Mice deficient of hepatic Hmgcs2 failed to develop ketosis during endotoxemia and during prolonged fasting. Surprisingly, hepatic HMGCS2 deficiency and the lack of ketosis did not affect survival, glycemia, or body temperature in response to endotoxemia. Mice with hepatic ketogenic deficiency also did not exhibit any defects in starvation adaptation and were able to maintain blood glucose, body temperature, and lean mass compared to littermate wild-type controls. Mice with hepatic HMGCS2 deficiency exhibited higher levels of plasma acetate levels in response to fasting. CONCLUSIONS: Circulating hepatic-derived ketones do not provide protection against endotoxemia, suggesting that alternative mechanisms drive the increased mortality from forced feeding during illness-induced anorexia. Hepatic ketones are also dispensable for surviving prolonged starvation in the absence of inflammation. Our study challenges the notion that hepatic ketogenesis is required to maintain blood glucose and preserve lean mass during starvation, raising the possibility of extrahepatic ketogenesis and use of alternative fuels as potential means of metabolic compensation.


Assuntos
Hidroximetilglutaril-CoA Sintase , Cetose , Fígado , Inanição , Animais , Camundongos , Fígado/metabolismo , Inanição/metabolismo , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Masculino , Cetose/metabolismo , Endotoxemia/metabolismo , Adaptação Fisiológica , Corpos Cetônicos/metabolismo , Glicemia/metabolismo , Camundongos Endogâmicos C57BL , Jejum/metabolismo , Camundongos Knockout , Anorexia/metabolismo
9.
Ecotoxicol Environ Saf ; 281: 116623, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38905939

RESUMO

Diquat (DQ) is a commonly used bipyridine herbicide known for its toxic properties and adverse effects on individuals. However, the mechanism underlying DQ-induced damage remain elusive. Our research aimed to uncover the regulatory network involved in DQ-induced damage. We analyzed publicly accessible gene expression patterns and performed research using a DQ-induced damage animal model. The GSE153959 dataset from the Gene Expression Omnibus collection and the animal model of DQ-induced kidney injury were used to identify differentially expressed genes (DEGs). Pathways including the regulation of DNA-templated transcription in response to stress, RNA polymerase II transcription regulator complex and transcription coregulatory activity were shown to be enriched in 21 DEGs. We used least absolute shrinkage and selection operator (LASSO) regression analysis to find possible diagnostic biomarkers for DQ-induced damage. Then, we used an HK-2 cell model to confirm these results. Additionally, we confirmed that 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) was the major gene associated with DQ-induced damage using multi-omics screening. The sample validation strongly suggested that HMGCS2 has promise as a diagnostic marker and may provide new targets for therapy in the context of DQ-induced damage.


Assuntos
Diquat , Hidroximetilglutaril-CoA Sintase , Animais , Hidroximetilglutaril-CoA Sintase/genética , Diquat/toxicidade , Herbicidas/toxicidade , Humanos , Linhagem Celular , Masculino , Rim/efeitos dos fármacos , Biomarcadores , Ratos
10.
Chemosphere ; 359: 142332, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754493

RESUMO

Perfluorooctanesulfonic acid (PFOS) is a widely recognized environment pollutant known for its high bioaccumulation potential and a long elimination half-life. Several studies have shown that PFOS can alter multiple biological pathways and negatively affect human health. Considering the direct exposure to the gastrointestinal (GI) tract to environmental pollutants, PFOS can potentially disrupt intestinal homeostasis. However, there is limited knowledge about the effect of PFOS exposure on normal intestinal tissues, and its contribution to GI-associated diseases remains to be determined. In this study, we examined the effect of PFOS exposure on the gene expression profile of intestinal tissues of C57BL/6 mice using RNAseq analysis. We found that PFOS exposure in drinking water significantly downregulates mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting ketogenic enzyme, in intestinal tissues of mice. We found that diets containing the soluble fibers inulin and pectin, which are known to be protective against PFOS exposure, were ineffective in reversing the downregulation of HMGCS2 expression in vivo. Analysis of intestinal tissues also demonstrated that PFOS exposure leads to upregulation of proteins implicated in colorectal carcinogenesis, including ß-catenin, c-MYC, mTOR and FASN. Consistent with the in vivo results, PFOS exposure leads to downregulation of HMGCS2 in mouse and human normal intestinal organoids in vitro. Furthermore, we show that shRNA-mediated knockdown of HMGCS2 in a human normal intestinal cell line resulted in increased cell proliferation and upregulation of key proliferation-associated proteins such as cyclin D, survivin, ERK1/2 and AKT, along with an increase in lipid accumulation. In summary, our results suggest that PFOS exposure may contribute to pathological changes in normal intestinal cells via downregulation of HMGCS2 expression and upregulation of pro-carcinogenic signaling pathways that may increase the risk of colorectal cancer development.


Assuntos
Ácidos Alcanossulfônicos , Carcinogênese , Regulação para Baixo , Fluorocarbonos , Hidroximetilglutaril-CoA Sintase , Camundongos Endogâmicos C57BL , Animais , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Camundongos , Regulação para Baixo/efeitos dos fármacos , Neoplasias Intestinais/induzido quimicamente , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/patologia , Regulação para Cima/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Intestinos/efeitos dos fármacos , Humanos , Mucosa Intestinal/metabolismo
11.
Mol Cell ; 84(11): 2166-2184.e9, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38788716

RESUMO

Mammalian target of rapamycin (mTOR) senses changes in nutrient status and stimulates the autophagic process to recycle amino acids. However, the impact of nutrient stress on protein degradation beyond autophagic turnover is incompletely understood. We report that several metabolic enzymes are proteasomal targets regulated by mTOR activity based on comparative proteome degradation analysis. In particular, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) synthase 1 (HMGCS1), the initial enzyme in the mevalonate pathway, exhibits the most significant half-life adaptation. Degradation of HMGCS1 is regulated by the C-terminal to LisH (CTLH) E3 ligase through the Pro/N-degron motif. HMGCS1 is ubiquitylated on two C-terminal lysines during mTORC1 inhibition, and efficient degradation of HMGCS1 in cells requires a muskelin adaptor. Importantly, modulating HMGCS1 abundance has a dose-dependent impact on cell proliferation, which is restored by adding a mevalonate intermediate. Overall, our unbiased degradomics study provides new insights into mTORC1 function in cellular metabolism: mTORC1 regulates the stability of limiting metabolic enzymes through the ubiquitin system.


Assuntos
Proliferação de Células , Hidroximetilglutaril-CoA Sintase , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteólise , Ubiquitina-Proteína Ligases , Ubiquitinação , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células HEK293 , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Ácido Mevalônico/metabolismo , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/genética , Transdução de Sinais , Degrons , Proteínas Adaptadoras de Transdução de Sinal
12.
Cancer Lett ; 592: 216919, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38704133

RESUMO

Efforts to develop targetable molecular bases for drug resistance for pancreatic ductal adenocarcinoma (PDAC) have been equivocally successful. Using RNA-seq and ingenuity pathway analysis we identified that the superpathway of cholesterol biosynthesis is upregulated in gemcitabine resistant (gemR) tumors using a unique PDAC PDX model with resistance to gemcitabine acquired in vivo. Analysis of additional in vitro and in vivo gemR PDAC models showed that HMG-CoA synthase 2 (HMGCS2), an enzyme involved in cholesterol biosynthesis and rate limiting in ketogenesis, is overexpressed in these models. Mechanistic data demonstrate the novel findings that HMGCS2 contributes to gemR and confers metastatic properties in PDAC models, and that HMGCS2 is BRD4 dependent. Further, BET inhibitor JQ1 decreases levels of HMGCS2, sensitizes PDAC cells to gemcitabine, and a combination of gemcitabine and JQ1 induced regressions of gemR tumors in vivo. Our data suggest that decreasing HMGCS2 may reverse gemR, and that HMGCS2 represents a useful therapeutic target for treating gemcitabine resistant PDAC.


Assuntos
Azepinas , Carcinoma Ductal Pancreático , Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Hidroximetilglutaril-CoA Sintase , Neoplasias Pancreáticas , Triazóis , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Camundongos , Antimetabólitos Antineoplásicos/farmacologia , Azepinas/farmacologia , Proteínas que Contêm Bromodomínio , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Feminino , Camundongos SCID
13.
Acta Pharmacol Sin ; 45(9): 1898-1911, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38760545

RESUMO

Tacrolimus, one of the macrolide calcineurin inhibitors, is the most frequently used immunosuppressant after transplantation. Long-term administration of tacrolimus leads to dyslipidemia and affects liver lipid metabolism. In this study, we investigated the mode of action and underlying mechanisms of this adverse reaction. Mice were administered tacrolimus (2.5 mg·kg-1·d-1, i.g.) for 10 weeks, then euthanized; the blood samples and liver tissues were collected for analyses. We showed that tacrolimus administration induced significant dyslipidemia and lipid deposition in mouse liver. Dyslipidemia was also observed in heart or kidney transplantation patients treated with tacrolimus. We demonstrated that tacrolimus did not directly induce de novo synthesis of fatty acids, but markedly decreased fatty acid oxidation (FAO) in AML12 cells. Furthermore, we showed that tacrolimus dramatically decreased the expression of HMGCS2, the rate-limiting enzyme of ketogenesis, with decreased ketogenesis in AML12 cells, which was responsible for lipid deposition in normal hepatocytes. Moreover, we revealed that tacrolimus inhibited forkhead box protein O1 (FoxO1) nuclear translocation by promoting FKBP51-FoxO1 complex formation, thus reducing FoxO1 binding to the HMGCS2 promoter and its transcription ability in AML12 cells. The loss of HMGCS2 induced by tacrolimus caused decreased ketogenesis and increased acetyl-CoA accumulation, which promoted mitochondrial protein acetylation, thereby resulting in FAO function inhibition. Liver-specific HMGCS2 overexpression via tail intravenous injection of AAV8-TBG-HMGCS2 construct reversed tacrolimus-induced mitochondrial protein acetylation and FAO inhibition, thus removing the lipid deposition in hepatocytes. Collectively, this study demonstrates a novel mechanism of liver lipid deposition and hyperlipidemia induced by long-term administration of tacrolimus, resulted from the loss of HMGCS2-mediated ketogenesis and subsequent FAO inhibition, providing an alternative target for reversing tacrolimus-induced adverse reaction.


Assuntos
Hidroximetilglutaril-CoA Sintase , Fígado , Camundongos Endogâmicos C57BL , Tacrolimo , Animais , Tacrolimo/farmacologia , Camundongos , Masculino , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Humanos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Imunossupressores/farmacologia , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/induzido quimicamente , Transtornos do Metabolismo dos Lipídeos/tratamento farmacológico , Linhagem Celular
14.
Int Immunopharmacol ; 133: 112033, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38608446

RESUMO

Psoriasis is an immuno-inflammatory disease characterized by excessive keratinocyte proliferation, requiring extensive lipids. 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1) is an essential enzyme in the mevalonate pathway, involved in cholesterol synthesis and the inflammatory response. However, the role of HMGCS1 in psoriasis has remained elusive. This study aims to elucidate the mechanism by which HMGCS1 controls psoriasiform inflammation. We discovered an increased abundance of HMGCS1 in psoriatic lesions when analyzing two Gene Expression Omnibus (GEO) datasets and confirmed this in psoriatic animal models and psoriatic patients by immunohistochemistry. In a TNF-α stimulated psoriatic HaCaT cell line, HMGCS1 was found to be overexpressed. Knockdown of HMGCS1 using siRNA suppressed the migration and proliferation of HaCaT cells. Mechanistically, HMGCS1 downregulation also reduced the expression of IL-23 and the STAT3 phosphorylation level. In imiquimod-induced psoriatic mice, intradermal injection of HMGCS1 siRNA significantly decreased the expression of HMGCS1 in the epidermis, which in turn led to an improvement in the Psoriasis Area and Severity Index score, epidermal thickening, and pathological Baker score. Additionally, expression levels of inflammatory cytokines IL-23, IL1-ß, chemokine CXCL1, and innate immune mediator S100A7-9 were downregulated in the epidermis. In conclusion, HMGCS1 downregulation improved psoriasis in vitro and in vivo through the STAT3/IL-23 axis.


Assuntos
Hidroximetilglutaril-CoA Sintase , Interleucina-23 , Queratinócitos , Psoríase , Fator de Transcrição STAT3 , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Células HaCaT , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Imiquimode , Interleucina-23/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos Endogâmicos BALB C , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/imunologia , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética
15.
Respir Res ; 25(1): 176, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658970

RESUMO

BACKGROUND: Abnormal lipid metabolism has recently been reported as a crucial signature of idiopathic pulmonary fibrosis (IPF). However, the origin and biological function of the lipid and possible mechanisms of increased lipid content in the pathogenesis of IPF remains undetermined. METHODS: Oil-red staining and immunofluorescence analysis were used to detect lipid accumulation in mouse lung fibrosis frozen sections, Bleomycin-treated human type II alveolar epithelial cells (AECIIs) and lung fibroblast. Untargeted Lipid omics analysis was applied to investigate differential lipid species and identified LysoPC was utilized to treat human lung fibroblasts and mice. Microarray and single-cell RNA expression data sets identified lipid metabolism-related differentially expressed genes. Gain of function experiment was used to study the function of 3-hydroxy-3-methylglutaryl-Coa Synthase 2 (HMGCS2) in regulating AECIIs lipid metabolism. Mice with AECII-HMGCS2 high were established by intratracheally delivering HBAAV2/6-SFTPC- HMGCS2 adeno-associated virus. Western blot, Co-immunoprecipitation, immunofluorescence, site-directed mutation and flow cytometry were utilized to investigate the mechanisms of HMGCS2-mediated lipid metabolism in AECIIs. RESULTS: Injured AECIIs were the primary source of accumulated lipids in response to Bleomycin stimulation. LysoPCs released by injured AECIIs could activate lung fibroblasts, thus promoting the progression of pulmonary fibrosis. Mechanistically, HMGCS2 was decreased explicitly in AECIIs and ectopic expression of HMGCS2 in AECIIs using the AAV system significantly alleviated experimental mouse lung fibrosis progression via modulating lipid degradation in AECIIs through promoting CPT1A and CPT2 expression by interacting with PPARα. CONCLUSIONS: These data unveiled a novel etiological mechanism of HMGCS2-mediated AECII lipid metabolism in the genesis and development of pulmonary fibrosis and provided a novel target for clinical intervention.


Assuntos
Regulação para Baixo , Fibroblastos , Hidroximetilglutaril-CoA Sintase , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Animais , Humanos , Masculino , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Bleomicina/toxicidade , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/biossíntese , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/genética , Metabolismo dos Lipídeos/fisiologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/genética
16.
Andrology ; 12(6): 1449-1462, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38273709

RESUMO

BACKGROUND: The relationship between erectile dysfunction (ED) and type 1 diabetes mellitus (T1DM) is currently a hot topic of medical research. It has been reported that autophagy plays a crucial role in causing erectile dysfunction in T1DM. Recent research has shown that mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) is strongly linked to the development of T1DM. However, the specific mechanism by which it regulates the erectile function is not yet fully understood. OBJECTIVES: To investigate whether HMGCS2 affects erectile function in type 1 diabetic rats by regulating autophagy in corpus cavernosum endothelial cells (CCECs). MATERIALS AND METHODS: First, the rat model of T1DM was established. Then, the ratio of maximum penile intracavernous pressure (ICPmax) and mean arterial pressure (MAP) was detected to assess the erectile function in various groups, and the protein expression of HMGCS2, mTOR and p-mTOR was evaluated by western blot (WB) and immunohistochemistry (IHC). To explore the relationship between HMGCS2 and the mTOR signaling pathway in T1DM ED rats, we silenced the expression of HMGCS2 and activated the mTOR signaling pathway with MHY1485 in CCECs and then assessed the expression of beclin1, P62, LC3, autophagosome, endothelial nitric oxide synthase (eNOS), phosphorylation of eNOS (p-eNOS), and nitric oxide (NO) to evaluate autophagy and the erectile function by reverse transcription quantitative polymerase chain reaction and western blot. RESULTS: The study conducted on T1DM ED rats showed that the expression of HMGCS2 was significantly increased, while the autophagy was suppressed. Additionally, the mTOR signaling pathway was highly activated. In contrast, when HMGCS2 was silenced in vitro, p-mTOR/mTOR was reduced, and autophagy was improved. These effects were accompanied by the enhanced activity of eNOS. Furthermore, when HMGCS2 was silenced and the mTOR signaling pathway was simultaneously activated, the results revealed a decrease in autophagy as well as a reduction in activity of eNOS in comparison to just silencing HMGCS2 alone. DISCUSSION AND CONCLUSION: HMGCS2 upregulation in T1DM rats inhibited autophagy and eNOS activity by activating the mTOR pathway and led to a decrease in the erectile function.


Assuntos
Autofagia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Disfunção Erétil , Hidroximetilglutaril-CoA Sintase , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Masculino , Disfunção Erétil/metabolismo , Disfunção Erétil/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo , Ratos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Pênis/metabolismo , Células Endoteliais/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo
17.
Exp Hematol ; 129: 104124, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898316

RESUMO

Erythroid terminal differentiation and maturation depend on an enormous energy supply. During periods of fasting, ketone bodies from the liver are transported into circulation and utilized as crucial fuel for peripheral tissues. However, the effects of fasting or ketogenesis on erythroid behavior remain unknown. Here, we generated a mouse model with insufficient ketogenesis by conditionally knocking out the gene encoding the hepatocyte-specific ketogenic enzyme hydroxymethylglutary-CoA synthase 2 (Hmgcs2 KO). Intriguingly, erythroid maturation was enhanced with boosted fatty acid synthesis in the bone marrow of a hepatic Hmgcs2 KO mouse under fasting conditions, suggesting that systemic ketogenesis has a profound effect on erythropoiesis. Moreover, we observed significantly activated fatty acid synthesis and mevalonate pathways along with reduced histone acetylation in immature erythrocytes under a less systemic ketogenesis condition. Our findings revealed a new insight into erythroid differentiation, in which metabolic homeostasis and histone acetylation mediated by ketone bodies are essential factors in adaptation toward nutrient deprivation and stressed erythropoiesis.


Assuntos
Histonas , Hidroximetilglutaril-CoA Sintase , Camundongos , Animais , Histonas/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Corpos Cetônicos/genética , Corpos Cetônicos/metabolismo , Fígado/metabolismo , Jejum/fisiologia , Ácidos Graxos/metabolismo
18.
Adv Biol (Weinh) ; 8(2): e2300481, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37990936

RESUMO

The liver is the major ketogenic organ of the body, and ketones are reported to possess favorable neuroprotective effects. This study aims to elucidate whether ketone bodies generated from the liver play a critical role in bridging the liver and spinal cord. Mice model with a contusive spinal cord injury (SCI) surgery is established, and SCI induces significant histological changes in mice liver. mRNA-seq of liver tissue shows the temporal changes of ketone bodies-related genes, ß-hydroxybutyrate dehydrogenase (BDH1) and solute carrier family 16 (monocarboxylic acid transporters), member 6 (SLC16A6). Then, an activated ketogenesis model is created with adult C57BL/6 mice receiving the tail intravenous injection of GPAAV8-TBG-Mouse-Hmgcs2-CMV- mCherry -WPRE (HMGCS2liver ) and mice receiving equal AAV8-Null being the control group (Vectorliver ). Then, the mice undergo either a contusive SCI or sham surgery. The results show that overexpression of HMG-CoA synthase (Hmgcs2) in mice liver dramatically alleviates SCI-mediated pathological changes and promotes ketogenesis in the liver. Amazingly, liver-derived ketogenesis evidently alleviates neuron apoptosis and inflammatory microglia activation and improves the recovery of motor function of SCI mice. In conclusion, a liver-spinal cord axis can be bridged via ketone bodies, and enhancing the production of the ketone body within the liver has neuroprotective effects on traumatic SCI.


Assuntos
Fármacos Neuroprotetores , Traumatismos da Medula Espinal , Camundongos , Animais , Camundongos Endogâmicos C57BL , Corpos Cetônicos , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Fígado/patologia , Hidroximetilglutaril-CoA Sintase/genética
19.
BMJ Case Rep ; 16(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37931961

RESUMO

Mitochondrial 3-hydroxymethylglutaryl-CoA synthase-2 (HMGCS2) is the main enzyme involved in ketogenesis. It is an essential enzyme for the catalysis of ß-oxidation-derived-acetyl-CoA and acetoacetyl Co-A to produce ß-hydroxy-ß-methylglutaryl-CoA (HMG-CoA) and free coenzyme A.The deficiency of this enzyme (3-hydoxy-3-methylglutaryl-CoA synthase) is a very rare metabolic disorder with limited cases described in the literature. The manifestations of this disease include hypoketotic hypoglycaemia, metabolic acidosis, lethargy, hepatomegaly with fatty liver and encephalopathy.We report a middle childhood male who presented with hepatosplenomegaly, lymphadenopathy and bicytopenia. The case was diagnosed by the whole exome sequencing which revealed a homozygous missense variant of uncertain significance in HMGCS2 gene.


Assuntos
Acidose , Transtornos da Coagulação Sanguínea , Criança , Humanos , Masculino , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Mitocôndrias/metabolismo , Corpos Cetônicos/metabolismo , Mutação de Sentido Incorreto
20.
Front Med ; 17(2): 339-351, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36602721

RESUMO

Ketone bodies have beneficial metabolic activities, and the induction of plasma ketone bodies is a health promotion strategy. Dietary supplementation of sodium butyrate (SB) is an effective approach in the induction of plasma ketone bodies. However, the cellular and molecular mechanisms are unknown. In this study, SB was found to enhance the catalytic activity of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting enzyme in ketogenesis, to promote ketone body production in hepatocytes. SB administrated by gavage or intraperitoneal injection significantly induced blood ß-hydroxybutyrate (BHB) in mice. BHB production was induced in the primary hepatocytes by SB. Protein succinylation was altered by SB in the liver tissues with down-regulation in 58 proteins and up-regulation in 26 proteins in the proteomics analysis. However, the alteration was mostly observed in mitochondrial proteins with 41% down- and 65% up-regulation, respectively. Succinylation status of HMGCS2 protein was altered by a reduction at two sites (K221 and K358) without a change in the protein level. The SB effect was significantly reduced by a SIRT5 inhibitor and in Sirt5-KO mice. The data suggests that SB activated HMGCS2 through SIRT5-mediated desuccinylation for ketone body production by the liver. The effect was not associated with an elevation in NAD+/NADH ratio according to our metabolomics analysis. The data provide a novel molecular mechanism for SB activity in the induction of ketone body production.


Assuntos
Corpos Cetônicos , Sirtuínas , Camundongos , Animais , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Corpos Cetônicos/metabolismo , Fígado/metabolismo , Hidroxibutiratos/metabolismo , Regulação para Baixo , Sirtuínas/genética , Sirtuínas/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA