Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(12): e0259588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34874940

RESUMO

Candida albicans is the leading cause of life-threatening bloodstream candidiasis, especially among immunocompromised patients. The reversible morphological transition from yeast to hyphal filaments in response to host environmental cues facilitates C. albicans tissue invasion, immune evasion, and dissemination. Hence, it is widely considered that filamentation represents one of the major virulence properties in C. albicans. We have previously characterized Ppg1, a PP2A-type protein phosphatase that controls filament extension and virulence in C. albicans. This study conducted RNA sequencing analysis of samples obtained from C. albicans wild type and ppg1Δ/Δ strains grown under filament-inducing conditions. Overall, ppg1Δ/Δ strain showed 1448 upregulated and 710 downregulated genes, representing approximately one-third of the entire annotated C. albicans genome. Transcriptomic analysis identified significant downregulation of well-characterized genes linked to filamentation and virulence, such as ALS3, HWP1, ECE1, and RBT1. Expression analysis showed that essential genes involved in C. albicans central carbon metabolisms, including GDH3, GPD1, GPD2, RHR2, INO1, AAH1, and MET14 were among the top upregulated genes. Subsequent metabolomics analysis of C. albicans ppg1Δ/Δ strain revealed a negative enrichment of metabolites with carboxylic acid substituents and a positive enrichment of metabolites with pyranose substituents. Altogether, Ppg1 in vitro analysis revealed a link between metabolites substituents and filament formation controlled by a phosphatase to regulate morphogenesis and virulence.


Assuntos
Candida albicans/patogenicidade , Carbono/metabolismo , Fosfoproteínas Fosfatases/genética , Candida albicans/genética , Candida albicans/metabolismo , Ácidos Carboxílicos/metabolismo , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Genes Essenciais , Hifas/metabolismo , Hifas/patogenicidade , Metabolômica , Análise de Sequência de RNA , Fatores de Virulência/genética
2.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830140

RESUMO

The smut fungus Ustilago esculenta infects Zizania latifolia and induces stem expansion to form a unique vegetable named Jiaobai. Although previous studies have demonstrated that hormonal control is essential for triggering stem swelling, the role of hormones synthesized by Z. latifolia and U. esculenta and the underlying molecular mechanism are not yet clear. To study the mechanism that triggers swollen stem formation, we analyzed the gene expression pattern of both interacting organisms during the initial trigger of culm gall formation, at which time the infective hyphae also propagated extensively and penetrated host stem cells. Transcriptional analysis indicated that abundant genes involving fungal pathogenicity and plant resistance were reprogrammed to maintain the subtle balance between the parasite and host. In addition, the expression of genes involved in auxin biosynthesis of U. esculenta obviously decreased during stem swelling, while a large number of genes related to the synthesis, metabolism and signal transduction of hormones of the host plant were stimulated and showed specific expression patterns, particularly, the expression of ZlYUCCA9 (a flavin monooxygenase, the key enzyme in indole-3-acetic acid (IAA) biosynthesis pathway) increased significantly. Simultaneously, the content of IAA increased significantly, while the contents of cytokinin and gibberellin showed the opposite trend. We speculated that auxin produced by the host plant, rather than the fungus, triggers stem swelling. Furthermore, from the differently expressed genes, two candidate Cys2-His2 (C2H2) zinc finger proteins, GME3058_g and GME5963_g, were identified from U. esculenta, which may conduct fungus growth and infection at the initial stage of stem-gall formation.


Assuntos
Basidiomycota/genética , Resistência à Doença/genética , Perfilação da Expressão Gênica/métodos , Doenças das Plantas/genética , Tumores de Planta/genética , Poaceae/genética , Sequência de Aminoácidos , Basidiomycota/metabolismo , Basidiomycota/patogenicidade , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Hifas/genética , Hifas/metabolismo , Hifas/patogenicidade , Ácidos Indolacéticos/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/biossíntese , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Caules de Planta/microbiologia , Tumores de Planta/microbiologia , Poaceae/metabolismo , Poaceae/microbiologia , Homologia de Sequência de Aminoácidos , Virulência/genética
3.
Front Immunol ; 12: 698849, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819929

RESUMO

Candida albicans is usually a benign member of the human gut microbiota, but can become pathogenic under certain circumstances, for example in an immunocompromised host. The innate immune system, in particular neutrophils and macrophages, constitutes a crucial first line of defense against fungal invasion, however adaptive immunity may provide long term protection and thus allow vaccination of at risk patients. While TH1 and TH17 cells are important for antifungal responses, the role of B cells and antibodies in protection from C. albicans infection is less well defined. In this study, we show that C. albicans hyphae but not yeast, as well as fungal cell wall components, directly activate B cells via MyD88 signaling triggered by Toll- like receptor 2, leading to increased IgG1 production. While Dectin-1 signals and specific recognition by the B cell receptor are dispensable for B cell activation in this system, TLR2/MyD88 signals cooperate with CD40 signals in promoting B cell activation. Importantly, recognition of C. albicans via MyD88 signaling is also essential for induction of IL-6 secretion by B cells, which promotes TH17 polarization in T-B cell coculture experiments. B cells may thus be activated directly by C. albicans in its invasive form, leading to production of antibodies and T cell help for fungal clearance.


Assuntos
Linfócitos B/imunologia , Candida albicans/imunologia , Candidíase/imunologia , Diferenciação Celular , Hifas/imunologia , Imunoglobulina G/metabolismo , Interleucina-6/metabolismo , Células Th17/imunologia , Receptor 2 Toll-Like/metabolismo , Animais , Linfócitos B/metabolismo , Linfócitos B/microbiologia , Candida albicans/patogenicidade , Candidíase/metabolismo , Candidíase/microbiologia , Células Cultivadas , Técnicas de Cocultura , Interações Hospedeiro-Patógeno , Humanos , Hifas/patogenicidade , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Fenótipo , Via Secretória , Transdução de Sinais , Células Th17/metabolismo , Células Th17/microbiologia
4.
mBio ; 12(6): e0260021, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34781734

RESUMO

Acetylation and deacetylation of histones are key epigenetic mechanisms for gene regulation in response to environmental stimuli. RPD3 is a well-conserved class I histone deacetylase (HDAC) that is involved in diverse biological processes. Here, we investigated the roles of the Magnaporthe oryzae RPD3 (MoRPD3) gene, an ortholog of Saccharomyces cerevisiae Rpd3, during development and pathogenesis in the model plant-pathogenic fungus Magnaporthe oryzae. We demonstrated that the MoRPD3 gene is able to functionally complement the yeast Rpd3 deletion mutant despite the C-terminal extension of the MoRPD3 protein. MoRPD3 localizes primarily to the nuclei of vegetative hyphae, asexual spores, and invasive hyphae. Deletion of MoRPD3 appears to be lethal. Depletion of MoRPD3 transcripts via gene silencing (MoRPD3kd, where "kd" stands for "knockdown") has opposing effects on asexual and sexual reproduction. Although conidial germination and appressorium formation rates of the mutants were almost comparable to those of the wild type, in-depth analysis revealed that the appressoria of mutants are smaller than those of the wild type. Furthermore, the MoRPD3kd strain shows a significant reduction in pathogenicity, which can be attributed to the delay in appressorium-mediated penetration and impaired invasive growth. Interestingly, MoRPD3 does not regulate potassium transporters, as shown for Rpd3 of S. cerevisiae. However, it functioned in association with the target of rapamycin (TOR) kinase pathway, resulting in the dependency of appressorium formation on hydrophilic surfaces and on TOR's inhibition by MoRPD3. Taken together, our results uncovered distinct and evolutionarily conserved roles of MoRPD3 in regulating fungal reproduction, infection-specific development, and virulence. IMPORTANCE RPD3 is an evolutionarily conserved class I histone deacetylase (HDAC) that plays a pivotal role in diverse cellular processes. In filamentous fungal pathogens, abrogation of the gene encoding RPD3 results in either lethality or severe growth impairment, making subsequent genetic analyses challenging. Magnaporthe oryzae is a causal agent of rice blast disease, which is responsible for significant annual yield losses in rice production. Here, we characterized the RPD3 gene of M. oryzae (MoRPD3) in unprecedented detail using a gene-silencing approach. We provide evidence that MoRPD3 is a bona fide HDAC regulating fungal reproduction and pathogenic development by potentially being involved in the TOR-mediated signaling pathway. To the best of our knowledge, this work is the most comprehensive genetic dissection of RPD3 in filamentous fungal pathogens. Our work extends and deepens our understanding of how an epigenetic factor is implicated in the development and virulence of fungal pathogens of plants.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/patogenicidade , Proteínas Fúngicas/metabolismo , Histona Desacetilases/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Acetilação , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/genética , Histonas/genética , Histonas/metabolismo , Hifas/enzimologia , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/patogenicidade , Esporos Fúngicos/enzimologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/patogenicidade , Virulência
5.
Nat Commun ; 12(1): 6151, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686660

RESUMO

The fungus Candida albicans is an opportunistic pathogen that can exploit imbalances in microbiome composition to invade its human host, causing pathologies ranging from vaginal candidiasis to fungal sepsis. Bacteria of the genus Lactobacillus are colonizers of human mucosa and can produce compounds with bioactivity against C. albicans. Here, we show that some Lactobacillus species produce a small molecule under laboratory conditions that blocks the C. albicans yeast-to-filament transition, an important virulence trait. It remains unexplored whether the compound is produced in the context of the human host. Bioassay-guided fractionation of Lactobacillus-conditioned medium linked this activity to 1-acetyl-ß-carboline (1-ABC). We use genetic approaches to show that filamentation inhibition by 1-ABC requires Yak1, a DYRK1-family kinase. Additional biochemical characterization of structurally related 1-ethoxycarbonyl-ß-carboline confirms that it inhibits Yak1 and blocks C. albicans biofilm formation. Thus, our findings reveal Lactobacillus-produced 1-ABC can prevent the yeast-to-filament transition in C. albicans through inhibition of Yak1.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Lactobacillus/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Antifúngicos/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candida albicans/genética , Candida albicans/patogenicidade , Candidíase/microbiologia , Carbolinas/metabolismo , Carbolinas/farmacologia , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifas/efeitos dos fármacos , Hifas/genética , Hifas/patogenicidade , Mutação , Inibidores de Proteínas Quinases/metabolismo , Ratos , Virulência/efeitos dos fármacos , Quinases Dyrk
6.
Cell Rep ; 36(8): 109584, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433036

RESUMO

Evasion of killing by immune cells is crucial for fungal survival in the host. For the human fungal pathogen Candida albicans, internalization by macrophages induces a transition from yeast to filaments that promotes macrophage death and fungal escape. Nutrient deprivation, alkaline pH, and oxidative stress have been implicated as triggers of intraphagosomal filamentation; however, the impact of other host-derived factors remained unknown. Here, we show that lysates prepared from macrophage-like cell lines and primary macrophages robustly induce C. albicans filamentation. Enzymatic treatment of lysate implicates a phosphorylated protein, and bioactivity-guided fractionation coupled to mass spectrometry identifies the immunomodulatory phosphoprotein PTMA as a candidate trigger of C. albicans filamentation. Immunoneutralization of PTMA within lysate abolishes its activity, strongly supporting PTMA as a filament-inducing component of macrophage lysate. Adding to the known repertoire of physical factors, this work implicates a host protein in the induction of C. albicans filamentation within immune cells.


Assuntos
Proteínas Fúngicas/imunologia , Hifas/patogenicidade , Macrófagos/imunologia , Fagossomos/microbiologia , Candida albicans/metabolismo , Candida albicans/patogenicidade , Linhagem Celular , Proteínas Fúngicas/metabolismo , Humanos , Hifas/metabolismo , Evasão da Resposta Imune/imunologia
7.
mBio ; 12(4): e0189121, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34399611

RESUMO

A sparse number of available antifungal drugs, therapeutic side effects, and drug resistance are major challenges in current antifungal therapy to treat Candida albicans-associated infections. Here, we describe two food-derived yeasts, Saccharomyces cerevisiae and Issatchenkia occidentalis, that inhibit virulence traits of C. albicans, including hyphal morphogenesis, biofilm formation, and adhesion to intestinal epithelial cells. These yeasts also protect the model host Caenorhabditis elegans from C. albicans infection. We demonstrate that the protective activity is primarily retained in the secretome of the beneficial yeasts, and the protection they provide as a physical barrier is negligible. S. cerevisiae aro8 aro9 mutant analysis demonstrate that phenylethanol and tryptophol are necessary for protection, and experiments with commercially procured compounds indicate that they are sufficient to inhibit C. albicans virulence. We propose food-derived yeasts as an alternative or combination therapy to conventional antifungal therapy for C. albicans infection. IMPORTANCE The gut microbiome, primarily established by food, is complex and contributes to the health of the host. Molecular mechanisms that regulate microbial interactions and host health remain unclear. Here, we show that the pathogen C. albicans interacts with food-derived beneficial yeasts in the gut of the microscopic worm, C. elegans, forming a simple microbiome. C. albicans can colonize the worm gut, compromising the worm's health, and exposure to the food-derived yeasts ameliorates this effect protecting the nematode host. We identify small molecules from food-derived yeasts that are necessary and sufficient to inhibit multiple virulence traits of C. albicans and protect the nematode host. The nematode gut faithfully recapitulates a mammalian intestine. This could be an effective alternative or combination therapy for C. albicans infection.


Assuntos
Candida albicans/patogenicidade , Microbiologia de Alimentos , Hifas/patogenicidade , Interações Microbianas , Metabolismo Secundário , Secretoma , Leveduras/metabolismo , Animais , Antifúngicos/farmacologia , Biofilmes/crescimento & desenvolvimento , Caenorhabditis elegans/microbiologia , Candidíase/prevenção & controle , Pichia/química , Pichia/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Virulência/efeitos dos fármacos , Leveduras/química
8.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941699

RESUMO

Chemical insecticides remain the main strategy to combat mosquito-borne diseases, but the growing threat of insecticide resistance prompts the urgent need to develop alternative, ecofriendly, and sustainable vector control tools. Entomopathogenic fungi can overcome insecticide resistance and represent promising biocontrol tools for the control of mosquitoes. However, insects have evolved robust defense mechanisms against infection. Better understanding of mosquito defenses against fungal infection is critical for improvement of fungal efficacy. Here, we show that as the pathogenic fungus Beauveria bassiana penetrates into the host hemocoel, mosquitoes increase expression of the let-7 and miR-100 microRNAs (miRNAs). Both miRNAs translocate into fungal hyphae to specifically silence the virulence-related genes sec2p and C6TF, encoding a Rab guanine nucleotide exchange factor and a Zn(II)2Cys6 transcription factor, respectively. Inversely, expression of a let-7 sponge (anti-let-7) or a miR-100 sponge (anti-miR-100) in the fungus efficiently sequesters the corresponding translocated host miRNA. Notably, B. bassiana strains expressing anti-let-7 and anti-miR-100 are markedly more virulent to mosquitoes. Our findings reveal an insect defense strategy that employs miRNAs to induce cross-kingdom silencing of pathogen virulence-related genes, conferring resistance to infection.


Assuntos
Anopheles/genética , Beauveria/genética , Perfilação da Expressão Gênica/métodos , Resistência a Inseticidas/genética , MicroRNAs/genética , Animais , Anopheles/microbiologia , Sequência de Bases , Beauveria/patogenicidade , Feminino , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno/genética , Hifas/genética , Hifas/patogenicidade , Mutação , Homologia de Sequência do Ácido Nucleico , Esporos Fúngicos/genética , Esporos Fúngicos/patogenicidade , Virulência/genética
9.
Nat Commun ; 12(1): 2560, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963193

RESUMO

The commensal fungus Candida albicans often causes life-threatening infections in patients who are immunocompromised with high mortality. A prominent but poorly understood risk factor for the C. albicans commensal‒pathogen transition is the use of broad-spectrum antibiotics. Here, we report that ß-lactam antibiotics cause bacteria to release significant quantities of peptidoglycan fragments that potently induce the invasive hyphal growth of C. albicans. We identify several active peptidoglycan subunits, including tracheal cytotoxin, a molecule produced by many Gram-negative bacteria, and fragments purified from the cell wall of Gram-positive Staphylococcus aureus. Feeding mice with ß-lactam antibiotics causes a peptidoglycan storm that transforms the gut from a niche usually restraining C. albicans in the commensal state to promoting invasive growth, leading to systemic dissemination. Our findings reveal a mechanism underlying a significant risk factor for C. albicans infection, which could inform clinicians regarding future antibiotic selection to minimize this deadly disease incidence.


Assuntos
Candida albicans/patogenicidade , Candidíase/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Peptidoglicano/toxicidade , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , beta-Lactamas/efeitos adversos , Animais , Antibacterianos/efeitos adversos , Candida albicans/crescimento & desenvolvimento , Candidíase/complicações , Candidíase/tratamento farmacológico , Candidíase/patologia , Parede Celular/química , Parede Celular/efeitos dos fármacos , Cromatografia Líquida , Feminino , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/metabolismo , Humanos , Hifas/crescimento & desenvolvimento , Hifas/patogenicidade , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Peptidoglicano/química , Infecções Estafilocócicas/complicações , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876755

RESUMO

Innate immunity provides essential protection against life-threatening fungal infections. However, the outcomes of individual skirmishes between immune cells and fungal pathogens are not a foregone conclusion because some pathogens have evolved mechanisms to evade phagocytic recognition, engulfment, and killing. For example, Candida albicans can escape phagocytosis by activating cellular morphogenesis to form lengthy hyphae that are challenging to engulf. Through live imaging of C. albicans-macrophage interactions, we discovered that macrophages can counteract this by folding fungal hyphae. The folding of fungal hyphae is promoted by Dectin-1, ß2-integrin, VASP, actin-myosin polymerization, and cell motility. Folding facilitates the complete engulfment of long hyphae in some cases and it inhibits hyphal growth, presumably tipping the balance toward successful fungal clearance.


Assuntos
Candida albicans/patogenicidade , Hifas/citologia , Macrófagos/metabolismo , Fagocitose , Quinases Proteína-Quinases Ativadas por AMP , Actomiosina/metabolismo , Animais , Antígenos CD18/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Humanos , Hifas/patogenicidade , Lectinas Tipo C/metabolismo , Macrófagos/microbiologia , Camundongos , Proteínas Quinases/metabolismo , Células RAW 264.7
11.
Int J Mol Sci ; 22(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800043

RESUMO

Nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD), induces disease resistance to the Fusarium head blight fungus Fusarium graminearum in Arabidopsis and barley, but it is unknown at which stage of the infection it acts. Since the rate of haustorial formation of an obligate biotrophic barley powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) was significantly reduced in NMN-treated coleoptile epidermal cells, the possibility that NMN induces resistance to the biotrophic stage of F. graminearum was investigated. The results show that NMN treatment caused the wandering of hyphal growth and suppressed the formation of appressoria-like structures. Furthermore, we developed an experimental system to monitor the early stage of infection in real-time and analyzed the infection behavior. We observed that the hyphae elongated windingly by NMN treatment. These results suggest that NMN potentiates resistance to the biotrophic invasion of F. graminearum as well as Bgh.


Assuntos
Ascomicetos/patogenicidade , Fusarium/patogenicidade , Hordeum/microbiologia , Mononucleotídeo de Nicotinamida/farmacologia , Doenças das Plantas/microbiologia , Resistência à Doença , Fusarium/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Hordeum/efeitos dos fármacos , Hordeum/genética , Interações Hospedeiro-Patógeno/fisiologia , Hifas/efeitos dos fármacos , Hifas/patogenicidade , Plantas Geneticamente Modificadas
12.
Yeast ; 38(4): 243-250, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33533498

RESUMO

The yeast Candida albicans is primarily a commensal of humans that colonizes the mucosal surfaces of the gastrointestinal and genital tracts. Yet, C. albicans can under certain circumstances undergo a shift from commensalism to pathogenicity. This transition is governed by fungal factors such as morphological transitions, environmental cues for instance relationships with gut microbiota and the host immune system. C. albicans utilizes distinct sets of regulatory programs to colonize or infect its host and to evade the host defense systems. Moreover, an orchestrated iron acquisition mechanism operates to adapt to specific niches with variable iron availability. Studies on regulatory networks and morphogenesis of these two distinct modes of C. albicans growth, suggest that both yeast and hyphal forms exist in both growth patterns and the regulatory circuits are inter-connected. Here, we summarize current knowledge about C. albicans commensal-to-pathogen shift, its regulatory elements and their contribution to human disease.


Assuntos
Candida albicans/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Hifas/genética , Simbiose/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/imunologia , Candida albicans/patogenicidade , Candidíase/microbiologia , Trato Gastrointestinal/microbiologia , Humanos , Hifas/crescimento & desenvolvimento , Hifas/patogenicidade
13.
BMC Plant Biol ; 21(1): 49, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461490

RESUMO

BACKGROUND: Dwarf bunt, which is caused by Tilletia controversa Kühn, is a soilborne and seedborne disease that occurs worldwide and can lead to 70% or even total losses of wheat crops. However, very little information is available about the histological changes that occur in dwarf bunt-resistant and dwarf bunt-susceptible wheat plants at the tillering stage (Z21). In this study, we used scanning electron microscopy and transmission electron microscopy to characterize the histological changes at this stage in resistant and susceptible wheat cultivars infected by T. controversa. RESULTS: Using scanning electron microscopy, the root, stem, and leaf structures of resistant and susceptible cultivars were examined after T. controversa infection. The root epidermal and vascular bundles were more severely damaged in the susceptible T. controversa-infected plants than in the resistant plants. The stem cell and longitudinal sections were much more extensively affected in susceptible plants than in resistant plants after pathogen infection. However, slightly deformed mesophyll cells were observed in the leaves of susceptible plants. With transmission electron microscopy, we found that the cortical bundle cells and the cell contents and nuclei in the roots were more severely affected in the susceptible plants than in the resistant plants; in the stems and leaves, the nuclei, chloroplasts, and mesophyll cells changed significantly in the susceptible plants after fungal infection. Moreover, we found that infected susceptible and resistant plants were affected much more severely at the tillering stage (Z21) than at the seedling growth stage (Z13). CONCLUSION: Histological changes in the wheat roots, stems and leaves were much more severe in T. controversa-infected susceptible plants than in infected resistant plants at the tillering stage (Z21).


Assuntos
Basidiomycota/patogenicidade , Doenças das Plantas/microbiologia , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Interpretação Estatística de Dados , Resistência à Doença , Suscetibilidade a Doenças , Hifas/patogenicidade , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Células Vegetais/microbiologia , Células Vegetais/ultraestrutura , Folhas de Planta/citologia , Folhas de Planta/microbiologia , Raízes de Plantas/citologia , Raízes de Plantas/microbiologia , Caules de Planta/citologia , Caules de Planta/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Triticum/citologia
14.
Nat Microbiol ; 6(3): 313-326, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33462434

RESUMO

Fungi of the order Mucorales cause mucormycosis, a lethal infection with an incompletely understood pathogenesis. We demonstrate that Mucorales fungi produce a toxin, which plays a central role in virulence. Polyclonal antibodies against this toxin inhibit its ability to damage human cells in vitro and prevent hypovolemic shock, organ necrosis and death in mice with mucormycosis. Inhibition of the toxin in Rhizopus delemar through RNA interference compromises the ability of the fungus to damage host cells and attenuates virulence in mice. This 17 kDa toxin has structural and functional features of the plant toxin ricin, including the ability to inhibit protein synthesis through its N-glycosylase activity, the existence of a motif that mediates vascular leak and a lectin sequence. Antibodies against the toxin inhibit R. delemar- or toxin-mediated vascular permeability in vitro and cross react with ricin. A monoclonal anti-ricin B chain antibody binds to the toxin and also inhibits its ability to cause vascular permeability. Therefore, we propose the name 'mucoricin' for this toxin. Not only is mucoricin important in the pathogenesis of mucormycosis but our data suggest that a ricin-like toxin is produced by organisms beyond the plant and bacterial kingdoms. Importantly, mucoricin should be a promising therapeutic target.


Assuntos
Mucorales/patogenicidade , Mucormicose/patologia , Micotoxinas/metabolismo , Ricina/metabolismo , Animais , Antitoxinas/imunologia , Antitoxinas/farmacologia , Antitoxinas/uso terapêutico , Apoptose , Permeabilidade Capilar , Células Cultivadas , Reações Cruzadas , Humanos , Hifas/química , Hifas/patogenicidade , Lectinas/metabolismo , Camundongos , Mucorales/química , Mucorales/classificação , Mucorales/genética , Mucormicose/microbiologia , Mucormicose/prevenção & controle , Micotoxinas/química , Micotoxinas/genética , Micotoxinas/imunologia , Necrose , Interferência de RNA , Rhizopus/química , Rhizopus/genética , Rhizopus/patogenicidade , Proteínas Inativadoras de Ribossomos/metabolismo , Ricina/química , Ricina/imunologia , Virulência/efeitos dos fármacos , Virulência/genética
15.
Am J Dermatopathol ; 43(7): 489-492, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481375

RESUMO

ABSTRACT: Epidermal barrier disruption caused by atypical squamous proliferations of the lip (SOL) creates an ideal environment for fungal growth. Histologic features of SOL include parakeratosis overlying partial- or full-thickness keratinocyte atypia with or without invasion of the dermis, dermal solar elastosis, and scattered inflammatory cells which are predominantly lymphocytes. Histologic features of SOL with fungal superinfections overlap those seen in primary fungal cheilitis with reactive atypia, creating a diagnostic challenge. One-hundred seventy SOL cases were examined for the presence of fungal elements, and the histological features associated with superinfection were identified. Cases diagnosed as actinic cheilitis with fungal superinfection were carefully examined to rule out the possibility of misdiagnosed primary fungal cheilitis with reactive atypia. Histopathological characteristics commonly present with fungal hyphae included intraepidermal or intradermal neutrophils, bacterial colonies, and erosion or ulceration. Medical record review of those patients treated conservatively with topical antifungals revealed persistent clinical neoplasm and histological evidence of residual SOL on repeat biopsy. Thus, when biopsies exhibit histological overlap between these 2 entities, clinicians should keep a high index of suspicion for underlying SOL and carefully follow these patients if conservative antifungal therapy is initially trialed.


Assuntos
Proliferação de Células , Queilite/patologia , Fungos/patogenicidade , Hifas/patogenicidade , Neoplasias Labiais/patologia , Micoses/patologia , Lesões Pré-Cancerosas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antifúngicos/uso terapêutico , Biópsia , Queilite/tratamento farmacológico , Queilite/microbiologia , Diagnóstico Diferencial , Feminino , Fungos/isolamento & purificação , Interações Hospedeiro-Patógeno , Humanos , Hifas/isolamento & purificação , Neoplasias Labiais/tratamento farmacológico , Neoplasias Labiais/microbiologia , Masculino , Pessoa de Meia-Idade , Micoses/tratamento farmacológico , Micoses/microbiologia , Lesões Pré-Cancerosas/tratamento farmacológico , Lesões Pré-Cancerosas/microbiologia , Valor Preditivo dos Testes , Resultado do Tratamento
16.
Fungal Genet Biol ; 146: 103472, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980454

RESUMO

The arrangement of the nuclear envelope in the rice blast fungus, Magnaporthe oryzae, was previously undetermined. Here, we identified two conserved components of the nuclear envelope, a core nucleoporin, Nup84, and an inner nuclear membrane protein, Src1. Live-cell super-resolution structured illumination microscopy revealed that Nup84-tdTomato and Src1-EGFP colocalized within the nuclear envelope during interphase and that Nup84-tdTomato remained associated with the dividing nucleus. We also found that appressorium development involved a mitotic nuclear migration event through the germ tube.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Mitose/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Ascomicetos/patogenicidade , Transporte Biológico/genética , Hifas/genética , Hifas/patogenicidade , Membrana Nuclear/genética , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
17.
PLoS One ; 15(12): e0243418, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33290412

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that can cause a variety of diseases especially in the hospital environment. However, this pathogen also exhibits antimicrobial activity against Gram-positive bacteria and fungi. This study aimed to characterize different virulence factors, secreted metabolites and to study their role in the suppression of Candida growth. Fifteen P. aeruginosa isolates were tested for their anticandidal activity against 3 different Candida spp. by the cross-streak method. The effect on hyphae production was tested microscopically using light and scanning electron microscopy (SEM). Polymerase chain reaction was used in the detection of some virulence genes. Lipopolysaccharide profile was performed using SDS-polyacrylamide gel stained with silver. Fatty acids were analyzed by GC-MS as methyl ester derivatives. It was found that 5 P. aeruginosa isolates inhibited all tested Candida spp. (50-100% inhibition), one isolate inhibited C. glabrata only and 3 isolates showed no activity against the tested Candida spp. The P. aeruginosa isolates inhibiting all Candida spp. were positive for all virulence genes. GC-Ms analysis revealed that isolates with high anticandidal activity showed spectra for several compounds, each known for their antifungal activity in comparison to those with low or no anticandidal activity. Hence, clinical isolates of P. aeruginosa showed Candida species-specific interactions by different means, giving rise to the importance of studying microbial interaction in polymicrobial infections and their contribution to causing disease.


Assuntos
Candida/crescimento & desenvolvimento , Coinfecção/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Candida/genética , Candida/patogenicidade , Candidíase/complicações , Candidíase/genética , Candidíase/microbiologia , Coinfecção/genética , Coinfecção/patologia , Humanos , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/patogenicidade , Lipopolissacarídeos/genética , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Especificidade da Espécie , Fatores de Virulência/genética
18.
Fungal Genet Biol ; 145: 103474, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33007450

RESUMO

The chromatin modulator Set5 plays important regulatory roles in both cell growth and stress responses of Saccharomyces cerevisiae. However, its function in filamentous fungi remains poorly understood. Here, we report the pathogenicity-related gene CgSET5 discovered in a T-DNA insertional mutant M285 of Colletotrichum gloeosporioides. Bioinformatic analysis revealed that CgSET5 encodes a SET domain-containing protein that is a homolog of the budding yeast S. cerevisiae Set5. CgSET5 is important for hyphae growth and conidiation and is necessary for appressorium formation and pathogenicity. CgSet5 regulates appressorium formation in a mitogen-activated protein kinase-independent manner. Inactivation of CgSET5 resulted in a significant reduction in chitin content within the cell wall, indicating CgSet5 plays a vital role in cell wall integrity. CgSet5 is involved in peroxisome biogenesis. We identified CgSet5 as the histone H4 methyltransferase, which methylates the critical H4 lysine residues 5 and 8 in C. gloeosporioides. We carried out a yeast two-hybrid screen to find CgSet5 interacting partners. We found CgSet5 putatively interacts with an inorganic pyrophosphatase named CgPpa1, which co-localized in the cytoplasm with CgSet5. Finally, CgPpa1 was found to strongly interact with CgSet5 in vivo during appressorium formation by bimolecular fluorescence complementation assays. These data corroborate a complex control function of CgSet5 acting as a core pathogenic regulator, which connects cell wall integrity and peroxisome biogenesis in C. gloeosporioides.


Assuntos
Colletotrichum/genética , Metiltransferases/genética , Morfogênese/genética , Doenças das Plantas/microbiologia , Proteínas de Saccharomyces cerevisiae/genética , Parede Celular/genética , Colletotrichum/patogenicidade , Proteínas Fúngicas/genética , Fungos/genética , Fungos/patogenicidade , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/patogenicidade , Mutagênese Insercional/genética , Biogênese de Organelas , Domínios PR-SET/genética , Peroxissomos/genética , Doenças das Plantas/genética , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética
19.
Mol Plant Microbe Interact ; 33(12): 1405-1410, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33104446

RESUMO

The black mold Alternaria alternata causes dramatic losses in agriculture due to postharvest colonization and mycotoxin formation and is a weak pathogen on living plants. Fungal signaling processes are crucial for successful colonization of a host plant. Because the mitogen-activated protein kinase HogA is important for the expression of stress-associated genes, we tested a ∆hogA-deletion strain for pathogenicity. When conidia were used as inoculum, the ∆hogA-deletion strain was largely impaired in colonizing tomato and apple. In comparison, hyphae as inoculum colonized the fruit very well. Hence, HogA appears to be important only in the initial stages of plant colonization. A similar difference between conidial inoculum and hyphal inoculum was observed on artificial medium in the presence of different stress agents. Whereas wild-type conidia adapted well to different stresses, the ∆hogA-deletion strain failed to grow under the same conditions. With hyphae as inoculum, the wild type and the ∆hogA-deletion strain grew in a very similar way. At the molecular level, we observed upregulation of several catalase (catA, -B, and -D) and superoxide dismutase (sodA, -B, and -E) genes in germlings but not in hyphae after exposure to 4 mM hydrogen peroxide. The upregulation required the high osmolarity glycerol (HOG) pathway. In contrast, in mycelia, catD, sodA, sodB, and sodE were upregulated upon stress in the absence of HogA. Several other stress-related genes behaved in a similar way.


Assuntos
Alternaria , Proteínas Fúngicas , Hifas , Transdução de Sinais , Esporos Fúngicos , Virulência , Alternaria/genética , Alternaria/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifas/genética , Hifas/patogenicidade , Solanum lycopersicum/microbiologia , Malus/microbiologia , Transdução de Sinais/fisiologia , Esporos Fúngicos/genética , Esporos Fúngicos/patogenicidade , Virulência/genética
20.
Environ Microbiol ; 22(12): 5414-5432, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33073491

RESUMO

Ustilaginoidea virens is an economically important fungus causing a devastating grain disease, rice false smut. An insertional mutagenesis screen was used to explore biological mechanisms underlying infection process of U. virens. T184, a new mutant was identified, with abnormal conidial morphology and deficient virulence. Analysis of the T-DNA inserted gene UvPal1 in the mutant confirmed it as a putative homologue of a cellular morphogenetic protein in yeast, Pal1, whose function has not been well characterized. Deletion of UvPal1 affected hyphal growth, cell morphology, stress adaptation and virulence. UvPal1 could interact with the endocytic proteins, UvEde1 and UvSla2, but was not required for receptor-mediated endocytosis. A yeast two-hybrid (Y2H) analysis was further carried out to screen the UvPal1-interacting proteins, resulting in the identification of 16 putative interacting proteins. Interestingly, UvPal1 interacted with a septin protein, UvCdc11 in vivo and in vitro, and also affected subcellular localization of UvCdc11 protein. Deletion of the four core septins impaired the growth, morphogenesis, stress response and virulence. Collectively, effects on cell morphology, oxidative stress response and virulence are similar to those of UvPal1, suggesting that UvPal1 physically interacts with UvCdc11 to mediate the septin complex to maintain the cellular morphology and virulence of U. virens.


Assuntos
Proteínas Fúngicas/metabolismo , Hypocreales/crescimento & desenvolvimento , Hypocreales/patogenicidade , Proteínas Fúngicas/genética , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/patogenicidade , Hypocreales/citologia , Hypocreales/genética , Mutação , Oryza/microbiologia , Estresse Oxidativo , Doenças das Plantas/microbiologia , Ligação Proteica , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA