Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 645
Filtrar
1.
J Microbiol Methods ; 224: 106989, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996925

RESUMO

Aspergillus niger is a well-known workhorse for the industrial production of enzymes and organic acids. This fungus can also cause postharvest diseases in fruits. Although Agrobacterium tumefaciens-mediated transformation (ATMT) based on antibiotic resistance markers has been effectively exploited for inspecting functions of target genes in wild-type fungi, it still needs to be further improved in A. niger. In the present study, we re-examined the ATMT in the wild-type A. niger strains using the hygromycin resistance marker and introduced the nourseothricin resistance gene as a new selection marker for this fungus. Unexpectedly, our results revealed that the ATMT method using the resistance markers in A. niger led to numerous small colonies as false-positive transformants on transformation plates. Using the top agar overlay technique to restrict false positive colonies, a transformation efficiency of 87 ± 18 true transformants could be achieved for 106 conidia. With two different selection markers, we could perform both the deletion and complementation of a target gene in a single wild-type A. niger strain. Our results also indicated that two key regulatory genes (laeA and veA) of the velvet complex are required for A. niger to infect apple fruits. Notably, we demonstrated for the first time that a laeA homologous gene from the citrus postharvest pathogen Penicillium digitatum was able to restore the acidification ability and pathogenicity of the A. niger ΔlaeA mutant. The dual resistance marker ATMT system from our work represents an improved genetic tool for gene function characterization in A. niger.


Assuntos
Agrobacterium tumefaciens , Aspergillus niger , Transformação Genética , Aspergillus niger/genética , Agrobacterium tumefaciens/genética , Malus/microbiologia , Farmacorresistência Fúngica/genética , Marcadores Genéticos , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Higromicina B/farmacologia , Frutas/microbiologia , Genes Fúngicos/genética
2.
Mol Biol (Mosk) ; 58(1): 154-156, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38943586

RESUMO

Murine gammaherpesvirus 68 (MHV68) establishes latency mainly in B cells and causes lymphomas reminiscent of human gammaherpesvirus diseases in laboratory mice. To study the molecular mechanism of virus infection and how the viral determinants control cell and eventually cause tumorigenesis, readily available latently infected cell lines are essential. For in vitro MHV68 latency studies, only two cell culture systems have been available. Gammaherpesviruses are known to infect developing B cells and macrophages, therefore we aimed to expand the MHV68 latently infected cell line repertoire. Here, several latently infected immature B cell and macrophage-like cell line clones were generated. Hygromycin-resistant recombinant MHV68 was isolated from a laboratory-made latent cell line, HE2.1, and propagated to develop stable cell lines that carry the viral genome under hygromycin selection. Subclones of these cells lines were analyzed for viral miRNA expression by TaqMan qPCR and assessed for expression of a lytic viral transcript M3. The cell lines maintain the viral genome as an episome shown by the digestion-circularization PCR assay. Latently infected cell lines generated here do not express viral miRNAs higher than the parental cell line. However, these cell lines may provide an alternative tool to study latency mechanisms and miRNA target identification studies.


Assuntos
Genoma Viral , Higromicina B , Macrófagos , MicroRNAs , RNA Viral , Rhadinovirus , Latência Viral , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Latência Viral/genética , Higromicina B/farmacologia , Higromicina B/análogos & derivados , Macrófagos/virologia , Macrófagos/metabolismo , Rhadinovirus/genética , RNA Viral/genética , RNA Viral/metabolismo , Linhagem Celular , Regulação Viral da Expressão Gênica , Células Precursoras de Linfócitos B/virologia , Células Precursoras de Linfócitos B/metabolismo , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Cinamatos
3.
mSphere ; 9(7): e0038824, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38940507

RESUMO

The adaptation of gene deletion methods based on the CRISPR-Cas9 system has facilitated the genetic manipulation of the pathogenic yeast Candida albicans, because homozygous mutants of this diploid fungus can now be generated in a single step, allowing the rapid screening of candidate genes for their involvement in a phenotype of interest. However, the Cas9-mediated double-strand breaks at the target site may result in an undesired loss of heterozygosity (LOH) on the affected chromosome and cause phenotypic alterations that are not related to the function of the investigated gene. In our present study, we harnessed Cas9-facilitated gene deletion to probe a set of genes that are constitutively overexpressed in strains containing hyperactive forms of the transcription factor Mrr1 for a possible contribution to the fluconazole resistance of such strains. To this aim, we used gene deletion cassettes containing two different dominant selection markers, caSAT1 and HygB, which confer resistance to nourseothricin and hygromycin, respectively, for simultaneous genomic integration in a single step, hypothesizing that this would minimize undesired LOH events at the target locus. We found that selection for resistance to both nourseothricin and hygromycin strongly increased the proportion of homozygous deletion mutants among the transformants compared with selection on media containing only one of the antibiotics, but it did not avoid undesired LOH events. Our results demonstrate that LOH on the target chromosome is a significant problem when using Cas9 for the generation of C. albicans gene deletion mutants, which demands a thorough examination of recombination events at the target site. IMPORTANCE: Candida albicans is one of the medically most important fungi and a model organism to study fungal pathogenicity. Investigating gene function in this diploid yeast has been facilitated by the adaptation of gene deletion methods based on the bacterial CRISPR-Cas9 system, because they enable the generation of homozygous mutants in a single step. We found that, in addition to increasing the efficiency of gene replacement by selection markers, the Cas9-mediated double-strand breaks also result in frequent loss of heterozygosity on the same chromosome, even when two different selection markers were independently integrated into the two alleles of the target gene. Since loss of heterozygosity for other genes can result in phenotypic alterations that are not caused by the absence of the target gene, these findings show that it is important to thoroughly analyze recombination events at the target locus when using Cas9 to generate gene deletion mutants in C. albicans.


Assuntos
Sistemas CRISPR-Cas , Candida albicans , Perda de Heterozigosidade , Recombinação Genética , Candida albicans/genética , Candida albicans/efeitos dos fármacos , Deleção de Genes , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Fluconazol/farmacologia , Higromicina B/farmacologia , Proteína 9 Associada à CRISPR/genética , Edição de Genes/métodos , Estreptotricinas/farmacologia , Marcadores Genéticos
4.
PLoS Negl Trop Dis ; 18(4): e0012092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578808

RESUMO

Madurella mycetomatis is the main cause of mycetoma, a chronic granulomatous infection for which currently no adequate therapy is available. To improve therapy, more knowledge on a molecular level is required to understand how M. mycetomatis is able to cause this disease. However, the genetic toolbox for M. mycetomatis is limited. To date, no method is available to genetically modify M. mycetomatis. In this paper, a protoplast-mediated transformation protocol was successfully developed for this fungal species, using hygromycin as a selection marker. Furthermore, using this method, a cytoplasmic-GFP-expressing M. mycetomatis strain was created. The reported methodology will be invaluable to explore the pathogenicity of M. mycetomatis and to develop reporter strains which can be useful in drug discovery as well as in genetic studies.


Assuntos
Higromicina B , Madurella , Protoplastos , Transformação Genética , Higromicina B/farmacologia , Higromicina B/análogos & derivados , Madurella/genética , Madurella/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Micetoma/microbiologia , Micetoma/tratamento farmacológico , Cinamatos/farmacologia
5.
FEBS J ; 291(10): 2191-2208, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431777

RESUMO

The essential yeast protein GPN-loop GTPase 1 (Npa3) plays a critical role in RNA polymerase II (RNAPII) assembly and subsequent nuclear import. We previously identified a synthetic lethal interaction between a mutant lacking the carboxy-terminal 106-amino acid tail of Npa3 (npa3ΔC) and a bud27Δ mutant. As the prefoldin-like Bud27 protein participates in ribosome biogenesis and translation, we hypothesized that Npa3 may also regulate these biological processes. We investigated this proposal by using Saccharomyces cerevisiae strains episomally expressing either wild-type Npa3 or hypomorphic mutants (Npa3ΔC, Npa3K16R, and Npa3G70A). The Npa3ΔC mutant fully supports RNAPII nuclear localization and activity. However, the Npa3K16R and Npa3G70A mutants only partially mediate RNAPII nuclear targeting and exhibit a higher reduction in Npa3 function. Cell proliferation in these strains displayed an increased sensitivity to protein synthesis inhibitors hygromycin B and geneticin/G418 (npa3G70A > npa3K16R > npa3ΔC > NPA3 cells) but not to transcriptional elongation inhibitors 6-azauracil, mycophenolic acid or 1,10-phenanthroline. In all three mutant strains, the increase in sensitivity to both aminoglycoside antibiotics was totally rescued by expressing NPA3. Protein synthesis, visualized by quantifying puromycin incorporation into nascent-polypeptide chains, was markedly more sensitive to hygromycin B inhibition in npa3ΔC, npa3K16R, and npa3G70A than NPA3 cells. Notably, high-copy expression of the TIF11 gene, that encodes the eukaryotic translation initiation factor 1A (eIF1A) protein, completely suppressed both phenotypes (of reduced basal cell growth and increased sensitivity to hygromycin B) in npa3ΔC cells but not npa3K16R or npa3G70A cells. We conclude that Npa3 plays a critical RNAPII-independent and previously unrecognized role in translation initiation.


Assuntos
Fator de Iniciação 1 em Eucariotos , Higromicina B , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Núcleo Celular/metabolismo , Núcleo Celular/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Higromicina B/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo
6.
J Vis Exp ; (200)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37955374

RESUMO

Agrobacterium tumefaciens-mediated transformation (AMT) serves as a widely employed tool for manipulating plant genomes. However, A. tumefaciens exhibit the capacity for gene transfer to a diverse array of species. Numerous microalgae species lack well-established methods for reliably integrating genes of interest into their nuclear genome. To harness the potential benefits of microalgal biotechnology, simple and efficient genome manipulation tools are crucial. Herein, an optimized AMT protocol is presented for the industrial microalgae species Chlorella vulgaris, utilizing the reporter green fluorescent protein (mGFP5) and the antibiotic resistance marker for Hygromycin B. Mutants are selected through plating on Tris-Acetate-Phosphate (TAP) media containing Hygromycin B and cefotaxime. Expression of mGFP5 is quantified via fluorescence after over ten generations of subculturing, indicating the stable transformation of the T-DNA cassette. This protocol allows for the reliable generation of multiple transgenic C. vulgaris colonies in under two weeks, employing the commercially available pCAMBIA1302 plant expression vector.


Assuntos
Chlorella vulgaris , Microalgas , Chlorella vulgaris/genética , Higromicina B/farmacologia , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Microalgas/genética , Engenharia Genética , Transformação Genética , Vetores Genéticos/genética
7.
Nat Commun ; 14(1): 4196, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452045

RESUMO

The ever-growing rise of antibiotic resistance among bacterial pathogens is one of the top healthcare threats today. Although combination antibiotic therapies represent a potential approach to more efficiently combat infections caused by susceptible and drug-resistant bacteria, only a few known drug pairs exhibit synergy/cooperativity in killing bacteria. Here, we discover that well-known ribosomal antibiotics, hygromycin A (HygA) and macrolides, which target peptidyl transferase center and peptide exit tunnel, respectively, can act cooperatively against susceptible and drug-resistant bacteria. Remarkably, HygA slows down macrolide dissociation from the ribosome by 60-fold and enhances the otherwise weak antimicrobial activity of the newest-generation macrolide drugs known as ketolides against macrolide-resistant bacteria. By determining a set of high-resolution X-ray crystal structures of drug-sensitive wild-type and macrolide-resistant Erm-methylated 70S ribosomes in complex with three HygA-macrolide pairs, we provide a structural rationale for the binding cooperativity of these drugs and also uncover the molecular mechanism of overcoming Erm-type resistance by macrolides acting together with hygromycin A. Altogether our structural, biochemical, and microbiological findings lay the foundation for the subsequent development of synergistic antibiotic tandems with improved bactericidal properties against drug-resistant pathogens, including those expressing erm genes.


Assuntos
Cetolídeos , Macrolídeos , Macrolídeos/farmacologia , Antibacterianos/química , Cinamatos/farmacologia , Higromicina B/farmacologia , Cetolídeos/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Bactérias/metabolismo , Farmacorresistência Bacteriana/genética
8.
J Biol Chem ; 299(8): 104939, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37331602

RESUMO

The relationship between lipid homeostasis and protein homeostasis (proteostasis) is complex and remains incompletely understood. We conducted a screen for genes required for efficient degradation of Deg1-Sec62, a model aberrant translocon-associated substrate of the endoplasmic reticulum (ER) ubiquitin ligase Hrd1, in Saccharomyces cerevisiae. This screen revealed that INO4 is required for efficient Deg1-Sec62 degradation. INO4 encodes one subunit of the Ino2/Ino4 heterodimeric transcription factor, which regulates expression of genes required for lipid biosynthesis. Deg1-Sec62 degradation was also impaired by mutation of genes encoding several enzymes mediating phospholipid and sterol biosynthesis. The degradation defect in ino4Δ yeast was rescued by supplementation with metabolites whose synthesis and uptake are mediated by Ino2/Ino4 targets. Stabilization of a panel of substrates of the Hrd1 and Doa10 ER ubiquitin ligases by INO4 deletion indicates ER protein quality control is generally sensitive to perturbed lipid homeostasis. Loss of INO4 sensitized yeast to proteotoxic stress, suggesting a broad requirement for lipid homeostasis in maintaining proteostasis. A better understanding of the dynamic relationship between lipid homeostasis and proteostasis may lead to improved understanding and treatment of several human diseases associated with altered lipid biosynthesis.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Lipídeos , Proteínas de Saccharomyces cerevisiae , Anti-Infecciosos/farmacologia , Farmacorresistência Fúngica/genética , Degradação Associada com o Retículo Endoplasmático/genética , Higromicina B/farmacologia , Lipídeos/biossíntese , Mutação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
J Antibiot (Tokyo) ; 75(3): 176-180, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35064242

RESUMO

On the basis of the one strain-many compounds (OSMAC) strategy, two new hygromycin A derivatives (3, 4), together with six known compounds were isolated from a medicinal plant inter rhizospheric Streptomyces in Pulsatilla chinensis. The structures of 3 and 4 were elucidated using NMR and HRESIMS analyses. A plausible biosynthetic pathway for these compounds was discussed. All the compounds were evaluated for their antimicrobial and cytotoxic activities. Compound 5 exhibited potent inhibitory activity against S. aureus and B. subtilis with the MICs of 16 and 8 µg ml-1, while 4 showed weak inhibitory activity against S. aureus.


Assuntos
Cinamatos/isolamento & purificação , Higromicina B/análogos & derivados , Pulsatilla/microbiologia , Solo/química , Streptomyces/metabolismo , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Cinamatos/farmacologia , Higromicina B/isolamento & purificação , Higromicina B/farmacologia , Testes de Sensibilidade Microbiana/métodos , Rizosfera , Microbiologia do Solo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética
10.
J Antibiot (Tokyo) ; 75(1): 1-8, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34819605

RESUMO

The ribosome-targeted antifungal agent hygromycin B (HygB) alters the secondary metabolite profiles of fungi. Hypoxylon truncatum NBRC 32353 fermented in the presence of hygromycin B in barley medium activated secondary metabolite synthesis. A new benzaldehyde derivative truncaaldehyde (1) was obtained, along with thirteen known compounds (2-14). The structures of the new compounds were revealed using NMR and single-crystal X-ray crystallography. The total synthesis of (±)-1 was achieved using a four-step sequence, and chiral separation was accomplished. The isolated compounds were tested for their monoamine oxidase (MAO) -A and -B inhibitory activities, with six compounds ((±)-1, 4, 5, 7, 8, and 10) showing inhibitory activity.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Benzaldeídos/isolamento & purificação , Benzaldeídos/farmacologia , Higromicina B/farmacologia , Cristalografia por Raios X , Fermentação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Monoaminoxidase , Inibidores da Monoaminoxidase/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade
11.
Cell ; 184(21): 5405-5418.e16, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34619078

RESUMO

Lyme disease is on the rise. Caused by a spirochete Borreliella burgdorferi, it affects an estimated 500,000 people in the United States alone. The antibiotics currently used to treat Lyme disease are broad spectrum, damage the microbiome, and select for resistance in non-target bacteria. We therefore sought to identify a compound acting selectively against B. burgdorferi. A screen of soil micro-organisms revealed a compound highly selective against spirochetes, including B. burgdorferi. Unexpectedly, this compound was determined to be hygromycin A, a known antimicrobial produced by Streptomyces hygroscopicus. Hygromycin A targets the ribosomes and is taken up by B. burgdorferi, explaining its selectivity. Hygromycin A cleared the B. burgdorferi infection in mice, including animals that ingested the compound in a bait, and was less disruptive to the fecal microbiome than clinically relevant antibiotics. This selective antibiotic holds the promise of providing a better therapeutic for Lyme disease and eradicating it in the environment.


Assuntos
Antibacterianos/uso terapêutico , Doença de Lyme/tratamento farmacológico , Animais , Borrelia burgdorferi/efeitos dos fármacos , Calibragem , Cinamatos/química , Cinamatos/farmacologia , Cinamatos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Fezes/microbiologia , Feminino , Células HEK293 , Células Hep G2 , Humanos , Higromicina B/análogos & derivados , Higromicina B/química , Higromicina B/farmacologia , Higromicina B/uso terapêutico , Doença de Lyme/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Microbiota/efeitos dos fármacos
12.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208268

RESUMO

Euglena gracilis (E. gracilis) is an attractive organism due to its evolutionary history and substantial potential to produce biochemicals of commercial importance. This study describes the establishment of an optimized protocol for the genetic transformation of E. gracilis mediated by Agrobacterium (A. tumefaciens). E. gracilis was found to be highly sensitive to hygromycin and zeocin, thus offering a set of resistance marker genes for the selection of transformants. A. tumefaciens-mediated transformation (ATMT) yielded hygromycin-resistant cells. However, hygromycin-resistant cells hosting the gus gene (encoding ß-glucuronidase (GUS)) were found to be GUS-negative, indicating that the gus gene had explicitly been silenced. To circumvent transgene silencing, GUS was expressed from the nuclear genome as transcriptional fusions with the hygromycin resistance gene (hptII) (encoding hygromycin phosphotransferase II) with the foot and mouth disease virus (FMDV)-derived 2A self-cleaving sequence placed between the coding sequences. ATMT of Euglena with the hptII-2A-gus gene yielded hygromycin-resistant, GUS-positive cells. The transformation was verified by PCR amplification of the T-DNA region genes, determination of GUS activity, and indirect immunofluorescence assays. Cocultivation factors optimization revealed that a higher number of transformants was obtained when A. tumefaciens LBA4404 (A600 = 1.0) and E. gracilis (A750 = 2.0) cultures were cocultured for 48 h at 19 °C in an organic medium (pH 6.5) containing 50 µM acetosyringone. Transformation efficiency of 8.26 ± 4.9% was achieved under the optimized cocultivation parameters. The molecular toolkits and method presented here can be used to bioengineer E. gracilis for producing high-value products and fundamental studies.


Assuntos
Agrobacterium tumefaciens/metabolismo , Biotecnologia , Euglena gracilis/genética , Microalgas/genética , Técnicas de Transferência Nuclear , Transformação Genética , Agrobacterium tumefaciens/efeitos dos fármacos , Antibacterianos/farmacologia , Cinamatos/farmacologia , Células Clonais , DNA Bacteriano/genética , Euglena gracilis/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Genes Reporter , Higromicina B/análogos & derivados , Higromicina B/farmacologia , Microalgas/efeitos dos fármacos , Mutagênese Insercional/genética , Transformação Genética/efeitos dos fármacos , Transgenes
13.
RNA ; 27(9): 981-990, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34117118

RESUMO

Many antibiotics that bind to the ribosome inhibit translation by blocking the movement of tRNAs and mRNA or interfering with ribosome dynamics, which impairs the formation of essential translocation intermediates. Here we show how translocation inhibitors viomycin (Vio), neomycin (Neo), paromomycin (Par), kanamycin (Kan), spectinomycin (Spc), hygromycin B (HygB), and streptomycin (Str, an antibiotic that does not inhibit tRNA movement), affect principal motions of the small ribosomal subunits (SSU) during EF-G-promoted translocation. Using ensemble kinetics, we studied the SSU body domain rotation and SSU head domain swiveling in real time. We show that although antibiotics binding to the ribosome can favor a particular ribosome conformation in the absence of EF-G, their kinetic effect on the EF-G-induced transition to the rotated/swiveled state of the SSU is moderate. The antibiotics mostly inhibit backward movements of the SSU body and/or the head domains. Vio, Spc, and high concentrations of Neo completely inhibit the backward movements of the SSU body and head domain. Kan, Par, HygB, and low concentrations of Neo slow down both movements, but their sequence and coordination are retained. Finally, Str has very little effect on the backward rotation of the SSU body domain, but retards the SSU head movement. The data underscore the importance of ribosome dynamics for tRNA-mRNA translocation and provide new insights into the mechanism of antibiotic action.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Subunidades Ribossômicas/efeitos dos fármacos , Transporte Biológico , Cinamatos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Higromicina B/análogos & derivados , Higromicina B/farmacologia , Canamicina/farmacologia , Cinética , Neomicina/farmacologia , Paromomicina/farmacologia , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA de Transferência/antagonistas & inibidores , RNA de Transferência/química , RNA de Transferência/genética , Subunidades Ribossômicas/genética , Subunidades Ribossômicas/metabolismo , Subunidades Ribossômicas/ultraestrutura , Espectinomicina/farmacologia , Estreptomicina/farmacologia , Viomicina/farmacologia
14.
Biosci Biotechnol Biochem ; 85(5): 1290-1293, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33784739

RESUMO

Dihydropyriculol is a major secondary metabolite of Pyricularia oryzae. However, the biological activity of dihydropyriculol has not been reported. Here, we showed that dihydropyriculol has inhibitory activity against Streptomyces griseus. Localization analysis of dihydropyriculol revealed that dihydropyriculol could reach to S. griseus under confrontation culture. These results suggest that dihydropyriculol can be used as a chemical weapon against S. griseus.


Assuntos
Antibacterianos/toxicidade , Ascomicetos/metabolismo , Benzaldeídos/toxicidade , Álcoois Graxos/toxicidade , Streptomyces griseus/efeitos dos fármacos , Toxinas Biológicas/toxicidade , Antibacterianos/biossíntese , Antibiose , Ascomicetos/efeitos dos fármacos , Ascomicetos/patogenicidade , Benzaldeídos/metabolismo , Cicloeximida/farmacologia , Álcoois Graxos/metabolismo , Gentamicinas/farmacologia , Higromicina B/farmacologia , Testes de Sensibilidade Microbiana , Metabolismo Secundário/efeitos dos fármacos , Streptomyces griseus/crescimento & desenvolvimento , Toxinas Biológicas/biossíntese
15.
J Microbiol Methods ; 184: 106197, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33713724

RESUMO

This is the first report describing the genetic transformation of Diaporthe caulivora, the soybean stem canker fungus. A simple and 100% efficient protocol of Agrobacterium tumefaciens-mediated transformation used mycelium as starting material and the hygromycin B resistance and green fluorescent protein (GFP) as a selection and reporter agents, respectively. All transgenic isolates were mitotically stable in two independent experiments and polymerase chain reaction with hygromycin B resistance primers confirmed successful T-DNA integration into the fungal genome. Plant-fungus interaction studies, including pathogenicity, latency, and endophytism, as well as further studies of random and targeted mutagenesis will be possible with GFP-expressing isolates of D. caulivora and other species in the Diaporthe / Phomopsis complex.


Assuntos
Agrobacterium tumefaciens/genética , Ascomicetos/genética , Técnicas de Transferência de Genes , Transformação Genética , Agrobacterium tumefaciens/metabolismo , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Genoma Fúngico , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Higromicina B/farmacologia , Phomopsis/genética , Doenças das Plantas/microbiologia , Glycine max/microbiologia
16.
FEMS Yeast Res ; 21(3)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33640956

RESUMO

The maintenance of K+ and Ca2+ homeostasis is crucial for many cellular functions. Potassium is accumulated in cells at high concentrations, while the cytosolic level of calcium, to ensure its signalling function, is kept at low levels and transiently increases in response to stresses. We examined Ca2+ homeostasis and Ca2+ signalling in Saccharomyces cerevisiae strains lacking plasma-membrane K+ influx (Trk1 and Trk2) or efflux (Tok1, Nha1 and Ena1-5) systems. The lack of K+ exporters slightly increased the cytosolic Ca2+, but did not alter the Ca2+ tolerance or Ca2+-stress response. In contrast, the K+-importers Trk1 and Trk2 play important and distinct roles in the maintenance of Ca2+ homeostasis. The presence of Trk1 was vital mainly for the growth of cells in the presence of high extracellular Ca2+, whilst the lack of Trk2 doubled steady-state intracellular Ca2+ levels. The absence of both K+ importers highly increased the Ca2+ response to osmotic or CaCl2 stresses and altered the balance between Ca2+ flux from external media and intracellular compartments. In addition, we found Trk2 to be important for the tolerance to high KCl and hygromycin B in cells growing on minimal media. All the data describe new interconnections between potassium and calcium homeostasis in S. cerevisiae.


Assuntos
Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Homeostase , Potássio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Cálcio/farmacologia , Proteínas de Transporte de Cátions/genética , Cinamatos/farmacologia , Higromicina B/análogos & derivados , Higromicina B/farmacologia , Cloreto de Potássio/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33452020

RESUMO

Fungal attacks on stored fruit and vegetables are responsible for losses of products. There is an active research field to develop alternative strategies for postharvest disease management, and the use of biocontrol agents represents a promising approach. Understanding the molecular bases of the biocontrol activity of these agents is crucial to potentiate their effectiveness. The yeast Papiliotrema terrestris is a biocontrol agent against postharvest pathogens. Phenotypic studies suggest that it exerts its antagonistic activity through competition for nutrients and space, which relies on its resistance to oxidative and other cellular stresses. In this study, we developed tools for genetic manipulation in P. terrestris to perform targeted gene replacement and functional complementation of the transcription factors Yap1 and Rim101. In vitro phenotypic analyses revealed a conserved role of Yap1 and Rim101 in broad resistance to oxidative stress and alkaline pH sensing, respectively. In vivo analyses revealed that P. terrestris yap1Δ and rim101Δ mutants display decreased ability to colonize wounded fruit compared to that of the parental wild-type (WT) strain; the yap1Δ mutant also displays reduced biocontrol activity against the postharvest pathogens Penicillium expansum and Monilinia fructigena, indicating an important role for resistance to oxidative stress in timely wound colonization and biocontrol activity of P. terrestris In conclusion, the availability of molecular tools developed in the present study provides a foundation to elucidate the genetic mechanisms underlying biocontrol activity of P. terrestris, with the goal of enhancing this activity for the practical use of P. terrestris in pest management programs based on biological and integrated control.IMPORTANCE The use of fungicides represents the most effective and widely used strategy for controlling postharvest diseases. However, their extensive use has raised several concerns, such as the emergence of plant pathogens' resistance as well as the health risks associated with the persistence of chemical residues in fruit, in vegetables, and in the environment. These factors have brought attention to alternative methods for controlling postharvest diseases, such as the utilization of biocontrol agents. In the present study, we developed genetic resources to investigate at the molecular level the mechanisms involved in the biocontrol activity of Papiliotrema terrestris, a basidiomycete yeast that is an effective biocontrol agent against widespread fungal pathogens, including Penicillium expansum, the etiological agent of blue mold disease of pome fruits. A deeper understanding of how postharvest biocontrol agents operate is the basic requirement to promote the utilization of biological (and integrated) control for the reduction of chemical fungicides.


Assuntos
Basidiomycota/genética , Agentes de Controle Biológico/metabolismo , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Fatores de Transcrição/genética , Ascomicetos/fisiologia , Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Marcadores Genéticos , Higromicina B/farmacologia , Malus/microbiologia , Penicillium/fisiologia , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Fatores de Transcrição/metabolismo
18.
Biotechnol Lett ; 43(1): 213-222, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32851464

RESUMO

OBJECTIVES: To determine the effect of sea salt on the resistance of Trichoderma harzianum LZDX-32-08 to hygromycin B and speculate the possible mechanisms involved via transcriptome analysis. RESULTS: Sea salt addition in media to simulate marine environment significantly increased the tolerance of marine-derived fungus Trichoderma harzianum LZDX-32-08 to hygromycin B from 40 to 500 µg/ml. Meanwhile, sea salt addition also elicited the hygromycin B resistance of 5 other marine or terrestrial fungi. Transcriptomic analyses of T. harzianum cultivated on PDA, PDA supplemented with sea salt and PDA with both sea salt and hygromycin B revealed that genes coding for P-type ATPases, multidrug resistance related transporters and acetyltransferases were up-regulated, while genes coding for Ca2+/H+ antiporter and 1,3-glucosidase were down-regulated, indicating probable increased efflux and inactivation of hygromycin B as well as enhanced biofilm formation, which could jointly contribute to the drug resistance. CONCLUSIONS: Marine environment or high ion concentration in the environment could be an importance inducer for antifungal resistance. Possible mechanisms and related key genes were proposed for understanding the molecular basis and overcoming this resistance.


Assuntos
Farmacorresistência Fúngica/efeitos dos fármacos , Higromicina B/farmacologia , Hypocreales/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Hypocreales/genética , Hypocreales/metabolismo , Transcriptoma/efeitos dos fármacos
19.
PLoS One ; 15(10): e0240480, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33079945

RESUMO

Global amphibian populations are being decimated by chytridiomycosis, a deadly skin infection caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal). Although ongoing efforts are attempting to limit the spread of these infections, targeted treatments are necessary to manage the disease. Currently, no tools for genetic manipulation are available to identify and test specific drug targets in these fungi. To facilitate the development of genetic tools in Bd and Bsal, we have tested five commonly used antibiotics with available resistance genes: Hygromycin, Blasticidin, Puromycin, Zeocin, and Neomycin. We have identified effective concentrations of each for selection in both liquid culture and on solid media. These concentrations are within the range of concentrations used for selecting genetically modified cells from a variety of other eukaryotic species.


Assuntos
Anfíbios/microbiologia , Antifúngicos/farmacologia , Batrachochytrium/efeitos dos fármacos , Batrachochytrium/crescimento & desenvolvimento , Micologia/métodos , Animais , Batrachochytrium/genética , Bleomicina/farmacologia , Cinamatos/farmacologia , Testes Diagnósticos de Rotina , Avaliação Pré-Clínica de Medicamentos , Higromicina B/análogos & derivados , Higromicina B/farmacologia , Testes de Sensibilidade Microbiana , Neomicina/farmacologia , Puromicina/farmacologia , Pirrolidinonas/farmacologia , Seleção Genética
20.
mBio ; 11(3)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430474

RESUMO

Antibiotics produced by bacteria play important roles in microbial interactions and competition Antibiosis can induce resistance mechanisms in target organisms, and at sublethal doses, antibiotics have been shown to globally alter gene expression patterns. Here, we show that hygromycin A from Streptomyces sp. strain 2AW. induces Chromobacterium violaceum ATCC 31532 to produce the purple antibiotic violacein. Sublethal doses of other antibiotics that similarly target the polypeptide elongation step of translation likewise induced violacein production, unlike antibiotics with different targets. C. violaceum biofilm formation and virulence against Drosophila melanogaster were also induced by translation-inhibiting antibiotics, and we identified an antibiotic-induced response (air) two-component regulatory system that is required for these responses. Genetic analyses indicated a connection between the Air system, quorum-dependent signaling, and the negative regulator VioS, leading us to propose a model for induction of violacein production. This work suggests a novel mechanism of interspecies interaction in which a bacterium produces an antibiotic in response to inhibition by another bacterium and supports the role of antibiotics as signal molecules.IMPORTANCE Secondary metabolites play important roles in microbial communities, but their natural functions are often unknown and may be more complex than appreciated. While compounds with antibiotic activity are often assumed to underlie microbial competition, they may alternatively act as signal molecules. In either scenario, microorganisms might evolve responses to sublethal concentrations of these metabolites, either to protect themselves from inhibition or to change certain behaviors in response to the local abundance of another species. Here, we report that violacein production by C. violaceum ATCC 31532 is induced in response to hygromycin A from Streptomyces sp. 2AW, and we show that this response is dependent on inhibition of translational polypeptide elongation and a previously uncharacterized two-component regulatory system. The breadth of the transcriptional response beyond violacein induction suggests a surprisingly complex metabolite-mediated microbe-microbe interaction and supports the hypothesis that antibiotics evolved as signal molecules. These novel insights will inform predictive models of soil community dynamics and the unintended effects of clinical antibiotic administration.


Assuntos
Antibacterianos/farmacologia , Antibiose/efeitos dos fármacos , Chromobacterium/efeitos dos fármacos , Cinamatos/farmacologia , Higromicina B/análogos & derivados , Indóis/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Chromobacterium/genética , Chromobacterium/patogenicidade , Drosophila melanogaster , Feminino , Regulação Bacteriana da Expressão Gênica , Higromicina B/farmacologia , Percepção de Quorum/efeitos dos fármacos , Streptomyces/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA