Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.854
Filtrar
1.
PLoS One ; 19(5): e0297137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722851

RESUMO

BACKGROUND: Inhaled nitric oxide (iNO) has a beneficial effect on hypoxemic respiratory failure. The increased use of concurrent iNO and milrinone was observed. We aimed to report the trends of iNO use in the past 15 years in Taiwan and compare the first-year outcomes of combining iNO and milrinone to the iNO alone in very low birth weight preterm (VLBWP) infants under mechanical ventilation. METHODS: This nationwide cohort study enrolled preterm singleton infants with birth weight <1500g treated with iNO from 2004 to 2019. Infants were divided into two groups, with a combination of intravenous milrinone (Group 2, n = 166) and without milrinone (Group 1, n = 591). After propensity score matching (PSM), each group's sample size is 124. The primary outcomes were all-cause mortality and the respiratory condition, including ventilator use and duration. The secondary outcomes were preterm morbidities within one year after birth. RESULTS: After PSM, more infants in Group 2 needed inotropes. The mortality rate was significantly higher in Group 2 than in Group 1 from one month after birth till 1 year of age (55.1% vs. 13.5%) with the adjusted hazard ratio of 4.25 (95%CI = 2.42-7.47, p <0.001). For infants who died before 36 weeks of postmenstrual age (PMA), Group 2 had longer hospital stays compared to Group 1. For infants who survived after 36 weeks PMA, the incidence of moderate and severe bronchopulmonary dysplasia (BPD) was significantly higher in Group 2 than in Group 1. For infants who survived until one year of age, the incidence of pneumonia was significantly higher in Group 2 (28.30%) compared to Group 1 (12.62%) (p = 0.0153). CONCLUSION: Combined treatment of iNO and milrinone is increasingly applied in VLBWP infants in Taiwan. This retrospective study did not support the benefits of combining iNO and milrinone on one-year survival and BPD prevention. A future prospective study is warranted.


Assuntos
Recém-Nascido de muito Baixo Peso , Milrinona , Óxido Nítrico , Humanos , Milrinona/administração & dosagem , Milrinona/uso terapêutico , Recém-Nascido , Óxido Nítrico/administração & dosagem , Óxido Nítrico/uso terapêutico , Masculino , Administração por Inalação , Feminino , Estudos Retrospectivos , Taiwan/epidemiologia , Recém-Nascido Prematuro , Insuficiência Respiratória/tratamento farmacológico , Insuficiência Respiratória/mortalidade , Lactente , Respiração Artificial , Resultado do Tratamento , Hipóxia/tratamento farmacológico
2.
Nihon Yakurigaku Zasshi ; 159(3): 160-164, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38692880

RESUMO

The 2019 Nobel Prize in Physiology or Medicine was awarded to Dr. William G. Kaelin Jr, Dr. Peter J. Ratcliffe, and Dr. Gregg L. Semenza for their elucidation of new physiological mechanisms "How cells sense and adapt to oxygen availability". Moreover, two different drugs, HIF-PH inhibitors and HIF-2 inhibitors were also developed based on the discovery. Interestingly, those three doctors have different backgrounds as a medical oncologist, a nephrologist, and a pediatrician, respectively. They have started the research based on their own unique perspectives and eventually merged as "the elucidation of the response mechanism of living organisms to hypoxic environments". In this review, we will explain how the translational research that has begun to solve unmet clinical needs successfully contributed to the development of innovative therapeutic drugs.


Assuntos
Hipóxia , Humanos , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Animais , Desenvolvimento de Medicamentos , Terapia de Alvo Molecular , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
3.
Ren Fail ; 46(1): 2338565, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38622926

RESUMO

Background: Renal hypoxia plays a key role in the progression of chronic kidney disease (CKD). Shen Shuai II Recipe (SSR) has shown good results in the treatment of CKD as a common herbal formula. This study aimed to explore the effect of SSR on renal hypoxia and injury in CKD rats. Methods: Twenty-five Wistar rats underwent 5/6 renal ablation/infarction (A/I) surgery were randomly divided into three groups: 5/6 (A/I), 5/6 (A/I) + losartan (LOS), and 5/6 (A/I) + SSR groups. Another eight normal rats were used as the Sham group. After 8-week corresponding interventions, blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) was performed to evaluate renal oxygenation in all rats, and biochemical indicators were used to measure kidney and liver function, hemoglobin, and proteinuria. The expression of fibrosis and hypoxia-related proteins was analyzed using immunoblotting examination. Results: Renal oxygenation, evaluated by BOLD-fMRI as cortical and medullary T2* values (COT2* and MET2*), was decreased in 5/6 (A/I) rats, but increased after SSR treatment. SSR also downregulated the expression of hypoxia-inducible factor-1α (HIF-1α) in 5/6 (A/I) kidneys. With the improvement of renal hypoxia, renal function and fibrosis were improved in 5/6 (A/I) rats, accompanied by reduced proteinuria. Furthermore, the COT2* and MET2* were significantly positively correlated with the levels of creatinine clearance rate (Ccr) and hemoglobin, but negatively associated with the levels of serum creatinine (SCr), blood urea nitrogen (BUN), serum cystatin C (CysC), serum uric acid (UA), 24-h urinary protein (24-h Upr), and urinary albumin:creatinine ratio (UACR). Conclusion: The degree of renal oxygenation reduction is correlated with the severity of renal injury in CKD. SSR can improve renal hypoxia to attenuate renal injury in 5/6 (A/I) rats of CKD.


Assuntos
Insuficiência Renal Crônica , Ácido Úrico , Ratos , Animais , Creatinina/metabolismo , Ácido Úrico/farmacologia , Ratos Sprague-Dawley , Ratos Wistar , Rim , Isquemia , Infarto/metabolismo , Infarto/patologia , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Hipóxia/patologia , Fibrose , Proteinúria/patologia , Imageamento por Ressonância Magnética/métodos , Hemoglobinas/metabolismo
4.
Med Sci Monit ; 30: e943784, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594896

RESUMO

BACKGROUND We compared the effect of remimazolam and propofol intravenous anesthesia on postoperative delirium in elderly patients undergoing laparoscopic radical resection of colon cancer. MATERIAL AND METHODS One hundred patients undergoing elective radical operation of colon cancer under general anesthesia were divided into a remimazolam group (group R) and propofol group (group P) by a random number table method. During anesthesia induction and maintenance, group R was intravenously injected with remimazolam to exert sedation; however, in group P, propofol was injected instead of remimazolam. The occurrence of postoperative delirium was assessed with the Confusion Assessment Method for the Intensive Care Unit scale and postoperative pain was assessed with the visual analogue score (VAS). The primary outcome measures were the incidence and duration of delirium within 7 days following surgery. Secondary outcome measures included postoperative VAS scores, intraoperative anesthetic drug dosage, and adverse reactions, including nausea and vomiting, hypoxemia, and respiratory depression. RESULTS There was no significant difference in baseline data between the 2 groups (P>0.05). There was no statistically significant difference in the incidence and duration of postoperative delirium between the 2 groups (P>0.05). There were no significant differences in VAS scores, remifentanil consumption, and adverse reactions, including nausea and vomiting, hypoxemia, and respiratory depression between the 2 groups (P>0.05). CONCLUSIONS In elderly patients undergoing radical colon cancer surgery, remimazolam administration did not improve or aggravate the incidence and duration of delirium, compared with propofol.


Assuntos
Benzodiazepinas , Neoplasias do Colo , Delírio , Delírio do Despertar , Propofol , Insuficiência Respiratória , Humanos , Idoso , Delírio do Despertar/induzido quimicamente , Estudos Prospectivos , Delírio/etiologia , Delírio/tratamento farmacológico , Vômito/induzido quimicamente , Neoplasias do Colo/cirurgia , Neoplasias do Colo/tratamento farmacológico , Náusea/induzido quimicamente , Hipóxia/tratamento farmacológico
5.
PLoS One ; 19(4): e0302407, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38640125

RESUMO

Xinnaotongluo liquid has been used to improve the clinical symptoms of patients with myocardial infarction. However, the molecular mechanism of Xinnaotongluo liquid is not completely understood. H9c2 cells exposed to hypoxia/reoxygenation (H/R) was used to simulate damage to cardiomyocytes in myocardial infarction in vitro. The biological indicators of H9c2 cells were measured by cell counting kit-8, enzyme linked immunoabsorbent assay, and western blot assay. In H/R-induced H9c2 cells, a markedly reduced murine double minute 2 (MDM2) was observed. However, the addition of Xinnaotongluo liquid increased MDM2 expression in H/R-induced H9c2 cells. And MDM2 overexpression strengthened the beneficial effects of Xinnaotongluo liquid on H9c2 cells from the perspective of alleviating oxidative damage, cellular inflammation, apoptosis and ferroptosis of H/R-induced H9c2 cells. Moreover, MDM2 overexpression reduced the protein expression of p53 and Six-Transmembrane Epithelial Antigen of Prostate 3 (STEAP3). Whereas, STEAP3 overexpression hindered the function of MDM2-overexpression in H/R-induced H9c2 cells. Our results insinuated that Xinnaotongluo liquid could protect H9c2 cells from H/R-induced damage by regulating MDM2/STEAP3, which provide a potential theoretical basis for further explaining the working mechanism of Xinnaotongluo liquid.


Assuntos
Medicamentos de Ervas Chinesas , Hipóxia , Infarto do Miocárdio , Animais , Masculino , Apoptose/efeitos dos fármacos , Hipóxia Celular , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ratos , Medicamentos de Ervas Chinesas/farmacologia
6.
Pharmacogenomics J ; 24(2): 8, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485921

RESUMO

BACKGROUND: Tibetan medicine Gaoyuan'an capsule (GYAC) is widely used to prevent pulmonary edema at high altitude, but the specific mechanism has not been explored. In this study, we analyzed the mechanism of GYAC in hypoxia tolerance, and provided a new idea for the prevention and treatment of altitude disease. METHODS: The effective components and corresponding targets of GYAC were screened out by the Chinese herbal medicine network database, and the key targets of hypoxia tolerance were retrieved by Genecards, OMIM and PubMed database. Cytoscape 3.7.2 was used to construct GYAC ingredient-target-hypoxia tolerance-related target network. GO function annotation and KEGG enrichment analysis were performed to predict the pathways in which target genes may be involved, and molecular docking was used to verify the binding ability of the compound to target genes. In vitro, the above results were further verified by molecular experiment. RESULTS: We found that GYAC can improve hypoxia tolerance by regulating various target genes, including IL6, IFNG, etc. The main regulatory pathways were HIF-1 signaling pathway. Molecular docking showed that the affinity between luteolin and target genes (IL6, IFNG) were better. In vitro, we observed that hypoxia can inhibit cell viability and promote apoptosis of H9C2 cell. And hypoxia can promote the expression of LDH. After the addition of luteolin, the decrease of cell viability, the increase of cell apoptosis, LDH release and the decrease of mitochondrial membrane potential were inhibited. Besides, inflammatory related factors (IL-6, IL-10, IL-2, IFNG and VEGFA) expression were also inhibited hypoxic cell models. CONCLUSIONS: The results of network pharmacology and molecular docking showed that luteolin, a monomeric component of GYAC, played a role in hypoxia tolerance through a variety of target genes, such as IL6, IFNG. What's more, we have discovered that luteolin can reduce the inflammatory response in cardiac myocytes, thereby alleviating mitochondrial damage, and ultimately enhancing the hypoxia tolerance of H9C2 cardiomyocytes.


Assuntos
Medicamentos de Ervas Chinesas , Interleucina-6 , Humanos , Simulação de Acoplamento Molecular , Luteolina , Farmacologia em Rede , Hipóxia/tratamento farmacológico , Hipóxia/genética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
7.
Sci Rep ; 14(1): 6416, 2024 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494527

RESUMO

Neonatal hypoxia has a negative impact on the developing brain during the sensitive period. Inflammation plays a key role in the physiological response to hypoxic stress. Considering the anti-inflammatory properties of alpha-pinene, which has received a lot of attention in recent years, in this research we focused on the impact of alpha-pinene on the behavioral responses and proinflammatory factors in rats subjected to the neonatal hypoxia. This study involved Wistar rats (7-day-old) that were divided into six experimental groups, including a control group, groups receiving different doses of alpha-pinene (5 and 10 mg/kg), a hypoxia group receiving 7% O2 and 93% N2, 90 min duration for 7 days, and groups receiving alpha-pinene 30 min before hypoxia. All injections were done intraperitoneally. The rats were evaluated for proinflammatory factors 24 h after exposure to hypoxia (PND14) and at the end of the behavioral test (PND54). The results showed that hypoxia led to decreased motor activity, coordination, and memory, as well as increased inflammation. However, the rats that received alpha-pinene showed improved behavioral responses and reduced inflammation compared to the hypoxia group (all cases p < 0.05). This suggests that alpha-pinene may have a protective effect via anti-inflammatory properties against the negative impacts of hypoxia on the developing brain.


Assuntos
Monoterpenos Bicíclicos , Hipóxia-Isquemia Encefálica , Ratos , Animais , Ratos Wistar , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia/tratamento farmacológico , Inflamação/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Animais Recém-Nascidos
8.
J Nanobiotechnology ; 22(1): 123, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38504272

RESUMO

BACKGROUND: Photodynamic therapy (PDT) efficacy of bismuth sulfide (Bi2S3) semiconductor has been severely restricted by its electron-hole pairs (e--h+) separation inefficiency and oxygen (O2) deficiency in tumors, which greatly hinders reactive oxygen species (ROS) generation and further clinical application of Bi2S3 nanoparticles (NPs) in biomedicine. RESULTS: Herein, novel Bi2S3/titanium carbide (Ti3C2) two-dimensional nano-heterostructures (NHs) are designed to realize multimode PDT of synchronous O2 self-supply and ROS generation combined with highly efficient photothermal tumor elimination for hypoxic tumor therapy. Bi2S3/Ti3C2 NHs were synthesized via the in situ synthesis method starting from Ti3C2 nanosheets (NSs), a classical type of MXene nanostructure. Compared to simple Bi2S3 NPs, Bi2S3/Ti3C2 NHs significantly extend the absorption to the near-infrared (NIR) region and enhance the photocatalytic activity owing to the improved photogenerated carrier separation, where the hole on the valence band (VB) of Bi2S3 can react with water to supply O2 for the electron on the Ti3C2 NSs to generate ·O2- and ·OH through electron transfer. Furthermore, they also achieve 1O2 generation through energy transfer due to O2 self-supply. After the modification of triphenylphosphium bromide (TPP) on Bi2S3/Ti3C2 NHs, systematic in vitro and in vivo evaluations were conducted, revealing that the synergistic-therapeutic outcome of this nanoplatform enables complete eradication of the U251 tumors without recurrence by NIR laser irradiation, and it can be used for computed tomography (CT) imaging because of the strong X-ray attenuation ability. CONCLUSION: This work expands the phototherapeutic effect of Bi2S3-based nanoplatforms, providing a new strategy for hypoxic tumor theranostics.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Brometos/uso terapêutico , Terapia Fototérmica , Espécies Reativas de Oxigênio , Titânio/farmacologia , Neoplasias/tratamento farmacológico , Oxigênio , Hipóxia/tratamento farmacológico , Raios Infravermelhos , Linhagem Celular Tumoral
9.
PLoS One ; 19(3): e0287390, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507417

RESUMO

OBJECTIVE: To determine the effective dose and therapeutic potential of maropitant using through expression of mediators of oxidative stress, inflammatory and of the unfolded protein response (UPR) (bio) markers on spinal cord using a model of neuropathic pain induced through chronic constriction injury (CCI) in rats. STUDY DESIGN: Randomized, blinded, prospective experimental study. ANIMALS: 98 male Wistar rats. METHODS: Rats were anesthetized with sevoflurane and after CCI, they were randomly assigned to the following groups that received: vehicle, 3, 6, 15, 30 e 50 mg/kg/24q of maropitant. The effect on inflammatory mediators (IL10, TNFα), oxidative stress (GPx, CAT, SOD), microglial (IBA-1) and neuronal (NeuN, TACR1) markers was evaluated though immunohistochemistry and expression levels of markers of hypoxia (HIF1α, Nrf2), antioxidant enzymes (Catalse, Sod1 and GPx1), and endoplasmic reticulum stress mediators (GRP78, CHOP and PERK) through qRT-PCR. RESULTS: Intraperitoneal injection (IP) of maropitant inhibited nociception with ID50 values of 4,1 mg/kg (5,85-19,36) in a neuropathic pain model through CCI. A dose of 30 mg/kg/24q was significantly effective in reducing mechanical allodynia 1 to 4h after treatment with nociception inhibition (145,83%). A reduction in the expression of hypoxia factors (HIF1α, Nrf2) was observed, along with an increase in antioxidant activity (CAT, SOD and GPX). Additionally, there was a reduction in inflammatory markes (IL10, TNFα), microglial (IBA-1), and neuronal markers (NeuN, TACR1). CONCLUSION AND CLINICAL RELEVANCE: These findings demonstrate that the determined dose, administered daily for seven days, had an antinociceptive effect, as well as anti-inflammatory and antioxidant activity.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Quinuclidinas , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Ratos Wistar , Doenças Neuroinflamatórias , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-10/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estudos Prospectivos , Estresse Oxidativo , Hiperalgesia/tratamento farmacológico , Estresse do Retículo Endoplasmático , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Superóxido Dismutase/metabolismo , Hipóxia/tratamento farmacológico
10.
J Basic Clin Physiol Pharmacol ; 35(1-2): 53-60, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38484469

RESUMO

OBJECTIVES: Empagliflozin, a sodium-dependent glucose co-transporter 2 (SGLT2) inhibitor, and liraglutide, a GLP-1 receptor (GLP-1R) agonist, are commonly recognized for their cardiovascular benefits in individuals with type 2 diabetes (T2D). In prior studies, we have demonstrated that both drugs, alone or in combination, were able to protect cardiomyocytes from injury induced by diabetes. Mechanistic investigations also suggested that the cardioprotective effect may be independent of diabetes In this study, we utilized a hypoxia-reoxygenation (H/R) model to investigate the cardiovascular benefits of SGLT2 inhibitor empagliflozin and GLP-1 receptor (GLP-1R) agonist liraglutide, both alone and in combination, in the absence of T2D. Our hypothesis was that empagliflozin and liraglutide, either individually or in combination, would demonstrate cardioprotective properties against H/R-induced injury, with an additive and/or synergistic effect anticipated from combination therapy. METHODS: In this study, the cardiac muscle cell line, HL-1 cells, were treated with vehicle, empagliflozin, liraglutide, or a combination of the two drugs. The cells were then subjected to a hypoxia-reoxygenation (H/R) protocol, consisting of 1 h of hypoxia followed by 24 h of reoxygenation. The effects of the treatments on cytotoxicity, oxidative stress, endothelial nitric oxide synthase (eNOS) activity, phospho-protein kinase C (PKC) beta and phospho-eNOS (Thr495) expression were subsequently evaluated at the end of the treatments. RESULTS: We found that H/R increased cytotoxicity and reduces eNOS activity, empagliflozin, liraglutide or combination treatment attenuated some or all of these effects with the combination therapy showing the greatest improvement. CONCLUSIONS: Empagliflozin, liraglutide or combination of these two have cardioprotective effect regardless of diabetes. Cardioprotective effects of SGLT2 inhibitor and GLP-1R agonist is additive and synergistic.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Tipo 2 , Glucosídeos , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Liraglutida/farmacologia , Liraglutida/metabolismo , Miócitos Cardíacos/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/metabolismo , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo
11.
Epilepsy Res ; 201: 107318, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430668

RESUMO

BACKGROUND: Many anti-seizure medications (ASMs) trigger neuronal cell death when administered during a confined period of early life in rodents. Prototypical ASMs used to treat early-life seizures such as phenobarbital induce this effect, whereas levetiracetam does not. However, most prior studies have examined the effect of ASMs in naïve animals, and the degree to which underlying brain injury interacts with these drugs to modify cell death is poorly studied. Moreover, the degree to which drug-induced neuronal cell death differs as a function of sex is unknown. METHODS: We treated postnatal day 7 Sprague Dawley rat pups with vehicle, phenobarbital (75 mg/kg) or levetiracetam (200 mg/kg). Separate groups of pups were pre-exposed to either normoxia or graded global hypoxia. Separate groups of males and females were used. Twenty-four hours after drug treatment, brains were collected and processed for markers of cell death. RESULTS: Consistent with prior studies, phenobarbital, but not levetiracetam, increased cell death in cortical regions, basal ganglia, hippocampus, septum, and lateral thalamus. Hypoxia did not modify basal levels of cell death. Females - collapsed across treatment and hypoxia status, displayed a small but significant increase in cell death as compared to males in the cingulate cortex, somatosensory cortex, and the CA1 and CA3 hippocampus; these effects were not modulated by hypoxia or drug treatment. CONCLUSION: We found that a history of graded global hypoxia does not alter the neurotoxic profile of phenobarbital. Levetiracetam, which does not induce cell death in normal developing animals, maintained a benign profile on the background of neonatal hypoxia. We found a sex-based difference, as female animals showed elevated levels of cell death across all treatment conditions. Together, these data address several long-standing gaps in our understanding of the neurotoxic profile of antiseizure medications during early postnatal development.


Assuntos
Anticonvulsivantes , Fenobarbital , Masculino , Animais , Ratos , Feminino , Anticonvulsivantes/farmacologia , Animais Recém-Nascidos , Levetiracetam/farmacologia , Ratos Sprague-Dawley , Fenobarbital/farmacologia , Morte Celular , Hipóxia/tratamento farmacológico
12.
J Am Chem Soc ; 146(11): 7543-7554, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38469664

RESUMO

Hypoxia is characteristic of the tumor microenvironment, which is correlated with resistance to photodynamic therapy (PDT), radiotherapy, chemotherapy, and immunotherapy. Catalase is potentially useful to catalyze the conversion of endogenous H2O2 to O2 for hypoxia reversion. However, the efficient delivery of catalase into the hypoxia regions of tumors is a huge challenge. Here, we report the self-assembly of ultra-acid-sensitive polymer conjugates of catalase and albumin into nanomicelles that are responsive to the acidic tumor microenvironment. The immunogenicity of catalase is mitigated by the presence of albumin, which reduces the cross-linking of catalase with B cell receptors, resulting in improved pharmacokinetics. The ultra acid sensitivity of the nanomicelles makes it possible to efficiently escape the lysosomal degradation after endocytosis and permeate into the interior of tumors to reverse hypoxia in vitro and in vivo. In mice bearing triple-negative breast cancer, the nanomicelles loaded with a photosensitizer effectively accumulate and penetrate into the whole tumors to generate a sufficient amount of O2 to reverse hypoxia, leading to enhanced efficacy of PDT without detectable side effects. These findings provide a general strategy of self-assembly to design low-immunogenic ultra-acid-sensitive comicelles of protein-polymer conjugates to reverse tumor hypoxia, which sensitizes tumors to PDT.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Fotoquimioterapia/métodos , Catalase , Polímeros/farmacologia , Peróxido de Hidrogênio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Hipóxia/tratamento farmacológico , Neoplasias/tratamento farmacológico , Albuminas , Linhagem Celular Tumoral , Microambiente Tumoral
13.
J Colloid Interface Sci ; 665: 188-203, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38522159

RESUMO

Anti-tumor therapies reliant on reactive oxygen species (ROS) as primary therapeutic agents face challenges due to a limited oxygen substrate. Photodynamic therapy (PDT) is particularly hindered by inherent hypoxia, while chemodynamic therapy (CDT) encounters obstacles from insufficient endogenous hydrogen peroxide (H2O2) levels. In this study, we engineered biodegradable tumor microenvironment (TME)-activated hollow mesoporous MnO2-based nanotheranostic agents, designated as HAMnO2A. This construct entails loading artemisinin (ART) into the cavity and surface modification with a mussel-inspired polymer ligand, namely hyaluronic acid-linked poly(ethylene glycol)-diethylenetriamine-conjugated (3,4-dihydroxyphenyl) acetic acid, and the photosensitizer Chlorin e6 (mPEG-HA-Dien-(Dhpa/Ce6)), facilitating dual-modal imaging-guided PDT/CDT synergistic therapy. In vitro experimentation revealed that HAMnO2A exhibited ideal physiological stability and enhanced cellular uptake capability via CD44-mediated endocytosis. Additionally, it was demonstrated that accelerated endo-lysosomal escape through the pH-dependent protonation of Dien. Within the acidic and highly glutathione (GSH)-rich TME, the active component of HAMnO2A, MnO2, underwent decomposition, liberating oxygen and releasing both Mn2+ and ART. This process alleviates hypoxia within the tumor region and initiates a Fenton-like reaction through the combination of ART and Mn2+, thereby enhancing the effectiveness of PDT and CDT by generating increased singlet oxygen (1O2) and hydroxyl radicals (•OH). Moreover, the presence of Mn2+ ions enabled the activation of T1-weighted magnetic resonance imaging. In vivo findings further validated that HAMnO2A displayed meaningful tumor-targeting capabilities, prolonged circulation time in the bloodstream, and outstanding efficacy in restraining tumor growth while inducing minimal damage to normal tissues. Hence, this nanoplatform serves as an efficient all-in-one solution by facilitating the integration of multiple functions, ultimately enhancing the effectiveness of tumor theranostics.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Compostos de Manganês/farmacologia , Compostos de Manganês/química , Microambiente Tumoral , Nanomedicina Teranóstica/métodos , Peróxido de Hidrogênio/química , Óxidos/química , Fármacos Fotossensibilizantes/química , Neoplasias/tratamento farmacológico , Oxigênio , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral , Nanopartículas/química
14.
Int Heart J ; 65(2): 318-328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556339

RESUMO

This study investigated the effects of hydroxycitric acid tripotassium hydrate on right ventricular function, myocardial and pulmonary vascular remodeling in rats with pulmonary hypertension, and possible mechanisms. METHODS: Pulmonary hypertension was induced in male Sprague-Dawley rats by a single subcutaneous injection of monocrotaline or hypoxic chamber. In vivo, inflammatory cytokine (including TNF-α, IL-1ß, IL-6, and TGF-ß, the level of SOD) expression, superoxide dismutase and hydrogen peroxide levels, and p-IκBα and p65 expressions were detected. In vitro, pulmonary artery smooth muscle cell proliferation and migration, ROS production, and hypoxia-inducible factor-1 expression were also studied. RESULTS: Hydroxycitric acid tripotassium hydrate decreased right ventricular systolic pressure and reduced right ventricular fibrosis and pulmonary vascular remodeling in rats with two kinds of pulmonary hypertension. Moreover, the expression of both inflammatory and oxidative stress factors was effectively reduced, and the p65 signaling pathway was found to be inhibited in this study. Additionally, hydroxycitric acid tripotassium hydrate inhibited human pulmonary artery smooth cell proliferation and migration in vitro. CONCLUSIONS: This study shows that hydroxycitric acid tripotassium hydrate can alleviate pulmonary hypertension caused by hypoxia and monocycloline in rats, improve remodeling of the right ventricle and pulmonary artery, and inhibit pulmonary artery smooth muscle cell proliferation and migration. The protective effects may be achieved by regulating inflammation and oxidative stress through the p65 signaling pathway.


Assuntos
Citratos , Hipertensão Pulmonar , Ratos , Animais , Masculino , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/induzido quimicamente , Monocrotalina/efeitos adversos , Ratos Sprague-Dawley , Remodelação Vascular , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Artéria Pulmonar , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Modelos Animais de Doenças
15.
Phytomedicine ; 128: 155376, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503152

RESUMO

BACKGROUND: The apoptosis of pulmonary artery endothelial cells (PAECs) is an important factor contributing to the development of pulmonary hypertension (PH), a serious cardio-pulmonary vascular disorder. Salidroside (SAL) is a bioactive compound derived from an herb Rhodiola, but the potential protective effects of SAL on PAECs and the underlying mechanisms remain elusive. PURPOSE: The objective of this study was to determine the role of SAL in the hypoxia-induced apoptosis of PAECs and to dissect the underlying mechanisms. STUDY DESIGN: Male Sprague-Dawley (SD) rats were subjected to hypoxia (10% O2) for 4 weeks to establish a model of PH. Rats were intraperitoneally injected daily with SAL (2, 8, and 32 mg/kg/d) or vehicle. To define the molecular mechanisms of SAL in PAECs, an in vitro model of hypoxic cell injury was also generated by exposed PAECs to 1% O2 for 48 h. METHODS: Various techniques including hematoxylin and eosin (HE) staining, immunofluorescence, flow cytometry, CCK-8, Western blot, qPCR, molecular docking, and surface plasmon resonance (SPR) were used to determine the role of SAL in rats and in PAECs in vitro. RESULTS: Hypoxia stimulation increases AhR nuclear translocation and activates the NF-κB signaling pathway, as evidenced by upregulated expression of CYP1A1, CYP1B1, IL-1ß, and IL-6, resulting in oxidative stress and inflammatory response and ultimately apoptosis of PAECs. SAL inhibited the activation of AhR and NF-κB, while promoted the nuclear translocation of Nrf2 and increased the expression of its downstream antioxidant proteins HO-1 and NQO1 in PAECs, ameliorating the hypoxia-induced oxidative stress in PAECs. Furthermore, SAL lowered right ventricular systolic pressure, and decreased pulmonary vascular remodeling and right ventricular hypertrophy in hypoxia-exposed rats. CONCLUSIONS: SAL may attenuate the apoptosis of PAECs by suppressing NF-κB and activating Nrf2/HO-1 pathways, thereby delaying the progressive pathology of PH.


Assuntos
Apoptose , Células Endoteliais , Glucosídeos , Heme Oxigenase (Desciclizante) , Fator 2 Relacionado a NF-E2 , NF-kappa B , Fenóis , Artéria Pulmonar , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Glucosídeos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Apoptose/efeitos dos fármacos , Masculino , Células Endoteliais/efeitos dos fármacos , NF-kappa B/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Fenóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ratos , Hipertensão Pulmonar/tratamento farmacológico , Receptores de Hidrocarboneto Arílico/metabolismo , Hipóxia/tratamento farmacológico , Rhodiola/química , Estresse Oxidativo/efeitos dos fármacos
16.
Phytomedicine ; 128: 155529, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503156

RESUMO

BACKGROUND/PURPOSE: Rhodiola crenulata (Hook. f. et Thoms.) H. Ohba (R. crenulate), a famous and characteristic Tibetan medicine, has been demonstrated to exert an outstanding brain protection role in the treatment of high-altitude hypoxia disease. However, the metabolic effects of R. crenulate on high-altitude hypoxic brain injury (HHBI) are still incompletely understood. Herein, the anti-hypoxic effect and associated mechanisms of R. crenulate were explored through both in vivo and in vitro experiments. STUDY DESIGN/METHODS: The mice model of HHBI was established using an animal hypobaric and hypoxic chamber. R. crenulate extract (RCE, 0.5, 1.0 and 2.0 g/kg) and salidroside (Sal, 25, 50 and 100 mg/kg) was given by gavage for 7 days. Pathological changes and neuronal apoptosis of mice hippocampus and cortex were evaluated using H&E and TUNEL staining, respectively. The effects of RCE and Sal on the permeability of blood brain barrier (BBB) were detected by Evans blue staining and NIR-II fluorescence imaging. Meanwhile, the ultrastructural BBB and cerebrovascular damages were observed using a transmission electron microscope (TEM). The levels of tight junction proteins Claudin-1, ZO-1 and occludin were detected by immunofluorescence. Additionally, the metabolites in mice serum and brain were determined using UHPLC-MS and MALDI-MSI analysis. The cell viability of Sal on hypoxic HT22 cells induced by CoCl2 was investigated by cell counting kit-8. The contents of LDH, MDA, SOD, GSH-PX and SDH were detected by using commercial biochemical kits. Meanwhile, intracellular ROS, Ca2+ and mitochondrial membrane potential were determined by corresponding specific labeled probes. The intracellular metabolites of HT22 cells were performed by the targeted metabolomics analysis of the Q300 kit. The cell apoptosis and necrosis were examined by YO-PRO-1/PI, Annexin V/PI and TUNEL staining. In addition, mitochondrial morphology was tested by Mito-tracker red with confocal microscopy and TEM. Real-time ATP production, oxygen consumption rate, and proton efflux rate were measured using a Seahorse analyzer. Subsequently, MCU, OPA1, p-Drp1ser616, p-AMPKα, p-AMPKß and Sirt1 were determined by immunofluorescent and western blot analyses. RESULTS: The results demonstrated that R. crenulate and Sal exert anti-hypoxic brain protection from inhibiting neuronal apoptosis, maintaining BBB integrity, increasing tight junction protein Claudin-1, ZO-1 and occludin and improving mitochondrial morphology and function. Mechanistically, R. crenulate and Sal alleviated HHBI by enhancing the tricarboxylic acid cycle to meet the demand of energy of brain. Additionally, experiments in vitro confirmed that Sal could ameliorate the apoptosis of HT22 cells, improve mitochondrial morphology and energy metabolism by enhancing mitochondrial respiration and glycolysis. Meanwhile, Sal-mediated MCU inhibited the activation of Drp1 and enhanced the expression of OPA1 to maintain mitochondrial homeostasis, as well as activation of AMPK and Sirt1 to enhance ATP production. CONCLUSION: Collectively, the findings suggested that RCE and Sal may afford a protective intervention in HHBI through maintaining BBB integrity and improving energy metabolism via balancing MCU-mediated mitochondrial homeostasis by activating the AMPK/Sirt1 signaling pathway.


Assuntos
Barreira Hematoencefálica , Metabolismo Energético , Extratos Vegetais , Rhodiola , Animais , Rhodiola/química , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Camundongos , Extratos Vegetais/farmacologia , Metabolismo Energético/efeitos dos fármacos , Masculino , Apoptose/efeitos dos fármacos , Glucosídeos/farmacologia , Modelos Animais de Doenças , Fenóis/farmacologia , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Linhagem Celular , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doença da Altitude/tratamento farmacológico , Doença da Altitude/metabolismo , Hipóxia/tratamento farmacológico
17.
Int J Nanomedicine ; 19: 2057-2070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482522

RESUMO

Purpose: Photodynamic therapy (PDT) has been an attractive strategy for skin tumor treatment. However, the hypoxic microenvironment of solid tumors and further O2 consumption during PDT would diminish its therapeutic effect. Herein, we developed a strategy using the combination of PDT and hypoxia-activated bioreductive drug tirapazamine (TPZ). Methods: TPZ was linked to DSPE-PEG-NHS forming DSPE-PEG-TPZ to solve leakage of water-soluble TPZ and serve as an antitumor agent and monomer molecule further forming the micellar. Chlorin e6 (Ce6) was loaded in DSPE-PEG-TPZ forming DSPE-PEG-TPZ@Ce6 (DPTC). To further improve tumor infiltration and accumulation, hyaluronic acid was adopted to make DPTC-containing microneedles (DPTC-MNs). Results: Both in vitro and in vivo studies consistently demonstrated the synergistic antitumor effect of photodynamic therapy and TPZ achieved by DPTC-MNs. With laser irradiation, overexpressions of PDT tolerance factors NQO1 and HIF-1α were inhibited by this PDT process. Conclusion: The synergistic effect of PDT and TPZ significantly improved the performance of DPTC-MNs in the treatment of melanoma and cutaneous squamous cell carcinoma and has good biocompatibility.


Assuntos
Carcinoma de Células Escamosas , Nanopartículas , Compostos Organometálicos , Fenantrolinas , Fotoquimioterapia , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Tirapazamina/farmacologia , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes , Microambiente Tumoral
18.
Int J Clin Pharmacol Ther ; 62(4): 162-168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431829

RESUMO

OBJECTIVE: To examine the mitochondrial protective effects of icariin, naringenin, kaempferol, and formononetin, potentially active agents in Bu-Shen-Jian-Pi formula (BSJP) identified using network pharmacology analysis. MATERIALS AND METHODS: Mitochondrial protection activity was determined using a hypoxia-reoxygenation in vitro model based on the neuroblastoma cell line SH-SY5Y and measurements of anti-ferroptotic activity. RESULTS: Icariin, naringenin, kaempferol, and formononetin showed mitochondrial protective activity involving diverse signaling pathways. The cytoprotective effects of formononetin depended on the inhibition of ferroptosis. Hypoxia-reoxygenation stimulation induced ferroptosis in SH-SY5Y cells. DISCUSSION: Ferroptosis is a key mechanism in nervous system diseases and is associated with hypoxia-reoxygenation injury. Naringenin and kaempferol were devoid of anti-ferroptotic activity. CONCLUSION: Evidence has been obtained showing that the core components: icariin, naringenin, kaempferol, and formononetin in BSJP formula have anti-hypoxic and mitochondrial protective activity of potential clinical importance in the treatment of amyotrophic lateral sclerosis and patients with symptoms of hypoxia.


Assuntos
Medicina Tradicional Chinesa , Neuroblastoma , Humanos , Quempferóis/farmacologia , Linhagem Celular Tumoral , Farmacologia em Rede , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Oxirredução , Hipóxia/tratamento farmacológico , Resultado do Tratamento
19.
J Control Release ; 368: 691-702, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492860

RESUMO

Host-guest drug delivery systems (HGDDSs) provided a facile method for incorporating biomedical functions, including efficient drug-loading, passive targeting, and controlled drug release. However, developing HGDDSs with active targeting is hindered by the difficult functionalization of popular macrocycles. Herein, we report an active targeting HGDDS based on biotin-modified sulfonated azocalix[4]arene (Biotin-SAC4A) to efficiently deliver drug into cancer cells for improving anti-tumor effect. Biotin-SAC4A was synthesized by amide condensation and azo coupling. Biotin-SAC4A demonstrated hypoxia responsive targeting and active targeting through azo and biotin groups, respectively. DOX@Biotin-SAC4A, which was prepared by loading doxorubicin (DOX) in Biotin-SAC4A, was evaluated for tumor targeting and therapy in vitro and in vivo. DOX@Biotin-SAC4A formulation effectively killed cancer cells in vitro and more efficiently delivered DOX to the lesion than the similar formulation without active targeting. Therefore, DOX@Biotin-SAC4A significantly improved the in vivo anti-tumor effect of free DOX. The facilely prepared Biotin-SAC4A offers strong DOX complexation, active targeting, and hypoxia-triggered release, providing a favorable host for effective breast cancer chemotherapy in HGDDSs. Moreover, Biotin-SAC4A also has potential to deliver agents for other therapeutic modalities and diseases.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Biotina , Sistemas de Liberação de Medicamentos/métodos , Doxorrubicina , Neoplasias da Mama/tratamento farmacológico , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral , Liberação Controlada de Fármacos
20.
Int J Pharm ; 654: 123943, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38432451

RESUMO

Hypoxia as an inherent feature in tumors is firmly associated with unsatisfactory clinical outcomes of photodynamic therapy (PDT) since the lack of oxygen leads to ineffective reactive oxygen species (ROS) productivity for tumor eradication. In this study, an oxidative phosphorylation (OXPHOS) targeting nanoplatform was fabricated to alleviate hypoxia and enhance the performance of PDT by encapsulating IR780 and OXPHOS inhibitor atovaquone (ATO) in triphenylphosphine (TPP) modified poly(ethylene glycol) methyl ether-block-poly(L-lactide-co-glycolide) (mPEG-PLGA) nanocarriers (TNPs/IA). ATO by interrupting the electron transfer in OXPHOS could suppress mitochondrial respiration of tumor cells, economising on oxygen for the generation of ROS. Benefiting from the mitochondrial targeting function of TPP, ATO was directly delivered to its site of action to obtain highlighted effect at a lower dosage. Furthermore, positioning the photosensitizer IR780 to mitochondria, a more vulnerable organelle to ROS, was a promising method to attenuate the spatiotemporal limitation of ROS caused by its short half-life and narrow diffusion radius. As a result, TNPs/IA exhibited accurate subcellular localization, lead to the collapse of ATP production by damaging mitochondrion and elicited significant antitumor efficacy via oxygen-augmented PDT in the HeLa subcutaneous xenograft model. Overall, TNPs/IA was a potential strategy in photodynamic eradication of tumors.


Assuntos
Nanopartículas , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio , Fosforilação Oxidativa , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Nanopartículas/ultraestrutura , Oxigênio , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA