Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Expert Opin Drug Metab Toxicol ; 17(2): 171-178, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33215946

RESUMO

INTRODUCTION: Hyperoxic lung injury is a condition that can occur in patients in need of supplemental oxygen, such as premature infants with bronchopulmonary dysplasia or adults with acute respiratory distress syndrome. Cytochrome P450 (CYP) enzymes play critical roles in the metabolism of endogenous and exogenous compounds. AREAS COVERED: Through their complex pathways, some subfamilies of these enzymes may contribute to or protect against hyperoxic lung injury. Oxidative stress from reactive oxygen species (ROS) production is most likely a major contributor of hyperoxic lung injury. CYP1A enzymes have been shown to protect against hyperoxic lung injury while CYP1B enzymes seem to contribute to it. CYP2J2 enzymes help protect against hyperoxic lung injury by triggering EET production, thereby, increasing antioxidant enzymes. The metabolism of arachidonic acid to ω-terminal hydroxyeicosatetraenoic acid (20-HETEs) by CYP4A and CYP4F enzymes could impact hyperoxic lung injury via the vasodilating effects of 20-HETE. CYP2E1 and CYP2A enzymes may contribute to the oxidative stress in the lungs caused by ethanol- and nicotine-metabolism, respectively. EXPERT OPINION: Overall, the CYP enzymes, depending upon the isoform, play a contributory or protective role in hyperoxic lung injury, and are, therefore, ideal candidates for developing drugs that can treat oxygen-mediated lung injury.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Hiperóxia/complicações , Lesão Pulmonar/etiologia , Adulto , Animais , Displasia Broncopulmonar/enzimologia , Displasia Broncopulmonar/fisiopatologia , Humanos , Hiperóxia/enzimologia , Recém-Nascido , Recém-Nascido Prematuro , Lesão Pulmonar/enzimologia , Lesão Pulmonar/fisiopatologia , Estresse Oxidativo/fisiologia , Síndrome do Desconforto Respiratório/enzimologia , Síndrome do Desconforto Respiratório/fisiopatologia
2.
Oxid Med Cell Longev ; 2020: 2908271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32587658

RESUMO

Thioredoxin reductase-1 (TXNRD1) inhibition activates nuclear factor (erythroid-derived 2)-like 2 (Nrf2) responses and prevents acute lung injury (ALI). Heme oxygenase-1 (HO-1) induction following TXNRD1 inhibition is Nrf2-dependent in airway epithelial (club) cells in vitro. The influence of club cell HO-1 on lung development and lung injury responses is poorly understood. The present studies characterized the effects of hyperoxia on club cell-specific HO-1 knockout (KO) mice. These mice were generated by crossing Hmox1 flox mice with transgenic mice expressing cre recombinase under control of the club cell-specific Scgb1a1 promoter. Baseline analyses of lung architecture and function performed in age-matched adult wild-type and KO mice indicated an increased alveolar size and airway resistance in HO-1 KO mice. In subsequent experiments, adult wild-type and HO-1 KO mice were either continuously exposed to >95% hyperoxia or room air for 72 h or exposed to >95 hyperoxia for 48 h followed by recovery in room air for 48 h. Injury was quantitatively assessed by calculating right lung/body weight ratios (g/kg). Analyses indicated an independent effect of hyperoxia but not genotype on right lung/body weight ratios in both wild-type and HO-1 KO mice. The magnitude of increases in right lung/body weight ratios was similar in mice of both genotypes. In the recovery model, an independent effect of hyperoxia but not genotype was also detected. In contrast to the continuous exposure model, right lung/body weight ratio mice were significantly elevated in HO-1 KO but not wild-type mice. Though club cell HO-1 does not alter hyperoxic sensitivity in adult mice, it significantly influences lung development and resolution of lung injury following acute hyperoxic exposure.


Assuntos
Envelhecimento/patologia , Células Epiteliais/enzimologia , Deleção de Genes , Heme Oxigenase-1/metabolismo , Hiperóxia/enzimologia , Hiperóxia/patologia , Animais , Animais Recém-Nascidos , Cruzamentos Genéticos , Células Epiteliais/patologia , Feminino , Genótipo , Integrases/metabolismo , Pulmão/embriologia , Lesão Pulmonar/enzimologia , Lesão Pulmonar/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Recombinação Genética/genética , Uteroglobina/metabolismo
3.
Toxicol Sci ; 165(2): 462-474, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29939353

RESUMO

Supplemental oxygen is a life-saving intervention administered to individuals suffering from respiratory distress, including adults with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Despite the clinical benefit, supplemental oxygen can create a hyperoxic environment that increases reactive oxygen species, oxidative stress, and lung injury. We have previously shown that cytochrome P450 (CYP)1A enzymes decrease susceptibility to hyperoxia-induced lung injury. In this investigation, we determined the role of CYP1B1 in hyperoxic lung injury in vivo. Eight- to ten-week old C57BL/6 wild type (WT) and Cyp1b1-/- mice were exposed to hyperoxia (>95% O2) for 24-72 h or maintained in room air (21% O2). Lung injury was assessed by histology and lung weight to body weight (LW/BW) ratios. Extent of inflammation was determined by assessing pulmonary neutrophil infiltration and cytokine levels. Lipid peroxidation markers were quantified by gas chromatography mass spectrometry, and oxidative DNA adducts were quantified by 32P-postlabeling as markers of oxidative stress. We found that Cyp1b1-/- mice displayed attenuation of lung weight and pulmonary edema, particularly after 48-72 h of hyperoxia compared with WT controls. Further, Cyp1b1-/- mice displayed decreased levels of pulmonary oxidative DNA adducts and pulmonary isofurans after 24 h of hyperoxia. Cyp1b1-/- mice also showed increased pulmonary CYP1A1 and 1A2 and mRNA expression. In summary, our results support the hypothesis that Cyp1b1-/- mice display decreased hyperoxic lung injury than wild type counterparts and that CYP1B1 may act as a pro-oxidant during hyperoxia exposure, contributing to increases in oxidative DNA damage and accumulation of lipid hydroperoxides.


Assuntos
Lesão Pulmonar Aguda/etiologia , Citocromo P-450 CYP1B1/genética , Dano ao DNA , Hiperóxia/complicações , Estresse Oxidativo , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/patologia , Animais , Modelos Animais de Doenças , Hiperóxia/enzimologia , Hiperóxia/patologia , Peroxidação de Lipídeos/genética , Peróxidos Lipídicos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/genética
4.
Am J Physiol Lung Cell Mol Physiol ; 313(1): L115-L125, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28385808

RESUMO

Supplemental oxygen (O2) increases the risk of lung injury in preterm infants, owing to an immature antioxidant system. Our objective was to determine whether impairing antioxidant defense by decreasing glutathione peroxidase 1 (GPx1) gene expression increases the injurious effects of hyperoxia (Hyp). GPx1+/+ and GPx1-/- C57Bl/6J mice were exposed to 21% O2 (Air) or 40% O2 (Hyp) from birth to postnatal day 7 (P7d); they were euthanized on P7d or maintained in air until adulthood [postnatal day 56 (P56d)] to assess short-term and long-term effects, respectively. We assessed lung architecture, three markers of pulmonary oxidative stress (P7d, P56d), macrophages in lung tissue (P7d), immune cells in bronchoalveolar lavage fluid (BALF; P56d), and GPx1-4 and catalase gene expression in lung tissue (P7d, P56d). On P7d, macrophages were decreased by lack of GPx1 expression and further decreased by hyperoxia. GPx1 expression was increased in GPx1+/+Hyp mice and decreased in both GPx1-/- groups. On P56d, heme oxygenase-1 was increased by hyperoxia when GPx1 was absent. There were significantly more immune cells from Hyp groups than from the GPx1+/+Air group and a greater proportion of lymphocytes in GPx1-/-Hyp mice. GPx1 expression was significantly decreased in GPx1-/- mice; GPx2-4 and catalase expression was increased in GPx1-/-Hyp mice compared with other groups. Tissue fraction was decreased in GPx1-/-Air mice; bronchiolar smooth muscle was decreased in GPx1-/- mice. GPx1 does not clearly exacerbate hyperoxia-induced increases in oxidative stress or lung injury but may alter pulmonary immune function. Increased expression of GPx2-4 and catalase in GPx1-/-Hyp mice suggests gene redundancy within the model.


Assuntos
Progressão da Doença , Regulação Enzimológica da Expressão Gênica , Glutationa Peroxidase/genética , Hiperóxia/enzimologia , Hiperóxia/genética , Lesão Pulmonar/enzimologia , Lesão Pulmonar/genética , Aldeídos/metabolismo , Animais , Animais Recém-Nascidos , Antioxidantes/metabolismo , Feminino , Glutationa Peroxidase/metabolismo , Heme Oxigenase-1/metabolismo , Pulmão/imunologia , Pulmão/patologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/patologia , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Tirosina/análogos & derivados , Tirosina/metabolismo , Glutationa Peroxidase GPX1
5.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L586-L598, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213471

RESUMO

Rodent pups exposed to hyperoxia develop lung changes similar to bronchopulmonary dysplasia (BPD) in extremely premature infants. Oxidative stress from hyperoxia can injure developing lungs through endoplasmic reticulum (ER) stress. Early caffeine treatment decreases the rate of BPD, but the mechanisms remain unclear. We hypothesized that caffeine attenuates hyperoxia-induced lung injury through its chemical chaperone property. Sprague-Dawley rat pups were raised either in 90 (hyperoxia) or 21% (normoxia) oxygen from postnatal day 1 (P1) to postnatal day 10 (P10) and then recovered in 21% oxygen until P21. Caffeine (20 mg/kg) or normal saline (control) was administered intraperitoneally daily starting from P2. Lungs were inflation-fixed for histology or snap-frozen for immunoblots. Blood caffeine levels were measured in treated pups at euthanasia and were found to be 18.4 ± 4.9 µg/ml. Hyperoxia impaired alveolar formation and increased ER stress markers and downstream effectors; caffeine treatment attenuated these changes at P10. Caffeine also attenuated the hyperoxia-induced activation of cyclooxygenase-2 and markers of apoptosis. In conclusion, hyperoxia-induced alveolar growth impairment is mediated, in part, by ER stress. Early caffeine treatment protects developing lungs from hyperoxia-induced injury by attenuating ER stress.


Assuntos
Cafeína/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hiperóxia/complicações , Hiperóxia/patologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Animais , Apoptose/efeitos dos fármacos , Cafeína/sangue , Ciclo-Oxigenase 2/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Proteínas de Choque Térmico/metabolismo , Hiperóxia/enzimologia , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Pulmão/patologia , Lesão Pulmonar/enzimologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Neovascularização Fisiológica/efeitos dos fármacos , Biogênese de Organelas , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Pneumonia/complicações , Pneumonia/patologia , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia , Ratos Sprague-Dawley , Resposta a Proteínas não Dobradas/efeitos dos fármacos
6.
Am J Physiol Lung Cell Mol Physiol ; 311(2): L337-51, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27343196

RESUMO

Hyperoxia-induced lung injury adversely affects ICU patients and neonates on ventilator assisted breathing. The underlying culprit appears to be reactive oxygen species (ROS)-induced lung damage. The major contributor of hyperoxia-induced ROS is activation of the multiprotein enzyme complex NADPH oxidase. Sphingosine-1-phosphate (S1P) signaling is known to be involved in hyperoxia-mediated ROS generation; however, the mechanism(s) of S1P-induced NADPH oxidase activation is unclear. Here, we investigated various steps in the S1P signaling pathway mediating ROS production in response to hyperoxia in lung endothelium. Of the two closely related sphingosine kinases (SphKs)1 and 2, which synthesize S1P from sphingosine, only Sphk1(-/-) mice conferred protection against hyperoxia-induced lung injury. S1P is metabolized predominantly by S1P lyase and partial deletion of Sgpl1 (Sgpl1(+/-)) in mice accentuated lung injury. Hyperoxia stimulated S1P accumulation in human lung microvascular endothelial cells (HLMVECs), and downregulation of S1P transporter spinster homolog 2 (Spns2) or S1P receptors S1P1&2, but not S1P3, using specific siRNA attenuated hyperoxia-induced p47(phox) translocation to cell periphery and ROS generation in HLMVECs. These results suggest a role for Spns2 and S1P1&2 in hyperoxia-mediated ROS generation. In addition, p47(phox) (phox:phagocyte oxidase) activation and ROS generation was also reduced by PF543, a specific SphK1 inhibitor in HLMVECs. Our data indicate a novel role for Spns2 and S1P1&2 in the activation of p47(phox) and production of ROS involved in hyperoxia-mediated lung injury in neonatal and adult mice.


Assuntos
Células Endoteliais/enzimologia , Hiperóxia/enzimologia , NADPH Oxidases/metabolismo , Aldeído Liases/metabolismo , Animais , Proteínas de Transporte de Ânions/metabolismo , Células Cultivadas , Endotélio Vascular/patologia , Ativação Enzimática , Feminino , Humanos , Pulmão/irrigação sanguínea , Lisofosfolipídeos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/patologia , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
7.
Am J Respir Cell Mol Biol ; 55(3): 419-28, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27089175

RESUMO

Oxygen toxicity and antioxidant deficiencies contribute to the development of bronchopulmonary dysplasia. Aurothioglucose (ATG) and auranofin potently inhibit thioredoxin reductase-1 (TrxR1), and TrxR1 disruption activates nuclear factor E2-related factor 2 (Nrf2), a regulator of endogenous antioxidant responses. We have shown previously that ATG safely and effectively prevents lung injury in adult murine models, likely via Nrf2-dependent mechanisms. The current studies tested the hypothesis that ATG would attenuate hyperoxia-induced lung developmental deficits in newborn mice. Newborn C3H/HeN mice were treated with a single dose of ATG or saline within 12 hours of birth and were exposed to either room air or hyperoxia (85% O2). In hyperoxia, ATG potently inhibited TrxR1 activity in newborn murine lungs, attenuated decreases in body weight, increased the transcription of Nrf2-regulated genes nicotinamide adenine dinucleotide phosphate reduced quinone oxidoreductase-1 (NQO1) and heme oxygenase 1, and attenuated alterations in alveolar development. To determine the impact of TrxR1 inhibition on Nrf2 activation in vitro, murine alveolar epithelial-12 cells were treated with auranofin, which inhibited TrxR1 activity, enhanced Nrf2 nuclear levels, and increased NQO1 and heme oxygenase 1 transcription. Our novel data indicate that a single injection of the TrxR1 inhibitor ATG attenuates hyperoxia-induced alterations in alveolar development in newborn mice. Furthermore, our data support a model in which the effects of ATG treatment likely involve Nrf2 activation, which is consistent with our findings in other lung injury models. We conclude that TrxR1 represents a novel therapeutic target to prevent oxygen-mediated neonatal lung injury.


Assuntos
Hiperóxia/complicações , Hiperóxia/enzimologia , Lesão Pulmonar/complicações , Lesão Pulmonar/enzimologia , Fator 2 Relacionado a NF-E2/metabolismo , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Auranofina/farmacologia , Aurotioglucose/farmacologia , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Hiperóxia/patologia , Lesão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos C3H , Morfogênese/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/crescimento & desenvolvimento , Alvéolos Pulmonares/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
8.
Antioxid Redox Signal ; 24(17): 991-1012, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-26905942

RESUMO

AIMS: Oxidants play a critical role in the pathogenesis of acute lung injury (ALI). Nox3 is a novel member of the NADPH oxidase (Nox) family of oxidant-generating enzymes, which our laboratory had previously identified to be induced in the lungs of TLR4(-/-) mice. However, the physiologic role of Nox3 induction in lungs and its precise relationship to TLR4 are unknown. Furthermore, the cell compartment involved and the signaling mechanisms of Nox3 induction are unknown. RESULTS: We identified that Nox3 is regulated by heat shock protein 70 (Hsp70) signaling via a TLR4-Trif-signal transducer and activator of transcription 3 (Stat3) pathway and that Nox3 induction leads to increased oxidant injury and death in mice and lung endothelial cells. We generated Nox3(-/-)/TLR4(-/-) double knockout mice, endothelial-targeting lentiviral silencing constructs, and endothelial-targeted Stat3(-/-) mice to specifically demonstrate that Nox3 induction is responsible for the pro-oxidant, proapoptotic phenotype of TLR4(-/-) mice. We also show that an endothelial Hsp70-TLR4-Trif-Stat3 axis is required to suppress deleterious Nox3 induction. INNOVATION: To date, a physiologic role for Nox3 in oxidant-induced ALI has not been identified. In addition, we generated unique double knockout mice and endothelial-targeted lentiviral silencing constructs to specifically demonstrate the role of a TLR4 signaling pathway in regulating pro-oxidant generation. CONCLUSIONS: We identified an endothelial TLR4-Trif antioxidant pathway that leads to the inhibition of a novel NADPH oxidase, Nox3, in lungs and lung endothelial cells. We also identified the role of a TLR4 ligand, Hsp70, in suppressing Nox3 in basal and pro-oxidant conditions. These studies identify potentially new therapeutic targets in oxidant-induced ALI. Antioxid. Redox Signal. 24, 991-1012.


Assuntos
Lesão Pulmonar Aguda/enzimologia , Proteínas de Choque Térmico HSP70/metabolismo , NADPH Oxidases/metabolismo , Receptor 4 Toll-Like/metabolismo , Células Epiteliais Alveolares/enzimologia , Animais , Apoptose , Sequência de Bases , Sítios de Ligação , Repressão Enzimática , Expressão Gênica , Hiperóxia/enzimologia , Pulmão/enzimologia , Pulmão/patologia , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/genética , Regiões Promotoras Genéticas , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/genética
9.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 31(12): 1669-72, 1676, 2015 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-26648302

RESUMO

OBJECTIVE: To explore the relationship between deacetylase sirtuin 1 (SIRT1) and reactive oxygen species (ROS) after oxygen therapy in the peripheral blood mononuclear cells (PBMCs) of the premature infants. METHODS: According to the fraction of inspired O2 (FiO2), premature infants diagnosed with respiratory distress syndrome (RDS) (gestational age <32 weeks), were divided into three groups: low dosage oxygen group (FiO2 <300 mL/L), moderate dosage oxygen group (FiO2; 300 mL/L-400 mL/L), high dosage oxygen group (FiO2 >400 mL/L). After 48 hours of oxygen treatment, PBMCs and serum were collected from the peripheral blood. Then the intracellular ROS level was detected by MitoSOX(TM) Red labeling combined with confocal laser scanning microscopy; the malondialdehyde (MDA) content in the serum was determined by the whole spectrum spectrophotometer; the SIRT1 localization was observed by immunofluorescence staining; and the SIRT1 levels in PBMCs were examined by Western blotting. RESULTS: With the increase of FiO2, the ROS, MDA content and the rate of SIRT1 nucleocytoplasmic shuttling of PBMCs gradually increased and SIRT1 protein expression was significantly lowered. CONCLUSION: Hyperoxia induces ROS production in premature infants, promotes SIRT1 to cross from nucleus to cytoplasm, inhibits the resistant ability of SIRT1 to oxidative stress.


Assuntos
Hiperóxia/enzimologia , Recém-Nascido Prematuro/metabolismo , Leucócitos Mononucleares/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Transporte Ativo do Núcleo Celular , Feminino , Humanos , Hiperóxia/genética , Hiperóxia/metabolismo , Recém-Nascido , Masculino , Sirtuína 1/genética
11.
Am J Physiol Lung Cell Mol Physiol ; 309(6): L537-42, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26254425

RESUMO

Exposure to moderate hyperoxia in prematurity contributes to subsequent airway dysfunction and increases the risk of developing recurrent wheeze and asthma. The nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic GMP (cGMP) axis modulates airway tone by regulating airway smooth muscle (ASM) intracellular Ca(2+) ([Ca(2+)]i) and contractility. However, the effects of hyperoxia on this axis in the context of Ca(2+)/contractility are not known. In developing human ASM, we explored the effects of novel drugs that activate sGC independent of NO on alleviating hyperoxia (50% oxygen)-induced enhancement of Ca(2+) responses to bronchoconstrictor agonists. Treatment with BAY 41-2272 (sGC stimulator) and BAY 60-2770 (sGC activator) increased cGMP levels during exposure to 50% O2. Although 50% O2 did not alter sGCα1 or sGCß1 expression, BAY 60-2770 did increase sGCß1 expression. BAY 41-2272 and BAY 60-2770 blunted Ca(2+) responses to histamine in cells exposed to 50% O2. The effects of BAY 41-2272 and BAY 60-2770 were reversed by protein kinase G inhibition. These novel data demonstrate that BAY 41-2272 and BAY 60-2770 stimulate production of cGMP and blunt hyperoxia-induced increases in Ca(2+) responses in developing ASM. Accordingly, sGC stimulators/activators may be a useful therapeutic strategy in improving bronchodilation in preterm infants.


Assuntos
Benzoatos/farmacologia , Compostos de Bifenilo/farmacologia , Guanilato Ciclase/antagonistas & inibidores , Hidrocarbonetos Fluorados/farmacologia , Hiperóxia/tratamento farmacológico , Miócitos de Músculo Liso/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Brônquios/patologia , Sinalização do Cálcio , Células Cultivadas , GMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Guanilato Ciclase/metabolismo , Humanos , Hiperóxia/enzimologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/embriologia , Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Oxigênio/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Guanilil Ciclase Solúvel , Traqueia/patologia
12.
Crit Care Med ; 43(10): e412-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26035408

RESUMO

OBJECTIVES: To investigate mechanisms involved in the regulation of epithelial ion channels and alveolar fluid clearance in hyperoxia-induced lung injury. DESIGN: Laboratory animal experiments. SETTING: Animal care facility procedure room in a medical center. SUBJECTS: Wild-type, STE20/SPS1-related proline/alanine-rich kinase knockout (SPAK(-/-)), and with-no-lysine kinase 4 knockin (WNK4(D561A/+)) mice. INTERVENTIONS: Mice were exposed to room air or 95% hyperoxia for 60 hours. MEASUREMENTS AND MAIN RESULTS: Exposure to hyperoxia for 60 hours increased the lung expression of with-no-lysine kinase 4 and led to STE20/SPS1-related proline/alanine-rich kinase and sodium-potassium-chloride cotransporter phosphorylation, which resulted in the suppression of alveolar fluid clearance and increase of lung edema. WNK4(D561A/+) mice at the baseline presented an abundance of epithelium sodium channel and high levels of STE20/SPS1-related proline/alanine-rich kinase and sodium-potassium-chloride cotransporter phosphorylation. Compared with the wild-type group, hyperoxia caused greater epithelium sodium channel expression in WNK4(D561A/+) mice, but no significant difference in STE20/SPS1-related proline/alanine-rich kinase and sodium-potassium-chloride cotransporter phosphorylation. The functional inactivation of sodium-potassium-chloride cotransporter by gene knockout in SPAK(-/-) mice yielded a lower severity of lung injury and longer animal survival, whereas constitutive expression of with-no-lysine kinase 4 exacerbated the hyperoxia-induced lung injury. Pharmacologic inhibition of sodium-potassium-chloride cotransporter by inhaled furosemide improved animal survival in WNK4(D561A/+) mice. By contrast, inhibition of epithelium sodium channel exacerbated the hyperoxia-induced lung injury and animal death. CONCLUSIONS: With-no-lysine kinase 4 plays a crucial role in the regulation of epithelial ion channels and alveolar fluid clearance, mainly via phosphorylation and activation of STE20/SPS1-related proline/alanine-rich kinase and sodium-potassium-chloride cotransporter.


Assuntos
Hiperóxia/enzimologia , Hiperóxia/fisiopatologia , Lesão Pulmonar/enzimologia , Lesão Pulmonar/fisiopatologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Hiperóxia/complicações , Hiperóxia/genética , Lesão Pulmonar/etiologia , Lesão Pulmonar/genética , Masculino , Camundongos , Fosforilação
13.
Am J Physiol Lung Cell Mol Physiol ; 309(4): L369-77, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26092998

RESUMO

Animal models demonstrate that exposure to supraphysiological oxygen during the neonatal period compromises both lung and pulmonary vascular development, resulting in a phenotype comparable to bronchopulmonary dysplasia (BPD). Our prior work in murine models identified postnatal maturation of antioxidant enzyme capacities as well as developmental regulation of mitochondrial oxidative stress in hyperoxia. We hypothesize that consequences of hyperoxia may also be developmentally regulated and mitochondrial reactive oxygen species (ROS) dependent. To determine whether age of exposure impacts the effect of hyperoxia, neonatal mice were placed in 75% oxygen for 72 h at either postnatal day 0 (early postnatal) or day 4 (late postnatal). Mice exposed to early, but not late, postnatal hyperoxia demonstrated decreased alveolarization and septation, increased muscularization of resistance pulmonary arteries, and right ventricular hypertrophy (RVH) compared with normoxic controls. Treatment with a mitochondria-specific antioxidant, (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (mitoTEMPO), during early postnatal hyperoxia protected against compromised alveolarization and RVH. In addition, early, but not late, postnatal hyperoxia resulted in induction of NOX1 expression that was mitochondrial ROS dependent. Because early, but not late, exposure resulted in compromised lung and cardiovascular development, we conclude that the consequences of hyperoxia are developmentally regulated and decrease with age. Attenuated disease in mitoTEMPO-treated mice implicates mitochondrial ROS in the pathophysiology of neonatal hyperoxic lung injury, with potential for amplification of ROS signaling through NOX1 induction. Furthermore, it suggests a potential role for targeted antioxidant therapy in the prevention or treatment of BPD.


Assuntos
Displasia Broncopulmonar/enzimologia , Hiperóxia/enzimologia , Animais , Indução Enzimática , Hipertrofia Ventricular Direita/enzimologia , Hipertrofia Ventricular Direita/etiologia , Pulmão/enzimologia , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
14.
Redox Biol ; 4: 321-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25637741

RESUMO

Lung injury associated with hyperoxia reflects in part the secondary effects of pulmonary inflammation and the associated production of reactive oxygen species due to activation of NADPH oxidase, type 2 (NOX2). Activation of NOX2 requires the phospholipase A2 (PLA2) activity of peroxiredoxin 6 (Prdx6). Therefore, we evaluated whether blocking Prdx6 PLA2 activity using the inhibitor MJ33 would be protective in a mouse model of acute lung injury resulting from hyperoxic exposure. Mice were treated with an intraperitoneal injection of MJ33 (2.5nmol/g body weight) at the start of exposure (zero time) and at 48h during continuous exposure to 100% O2 for 80h. Treatment with MJ33 reduced the number of neutrophils and the protein content in the fluid obtained by bronchoalveolar lavage, inhibited the increase in lipid peroxidation products in lung tissue, decreased the number of apoptotic cells in the lung, and decreased the perivascular edema associated with the 80h exposure to hyperoxia. Thus, blocking Prdx6 PLA2 activity by MJ33 significantly protected lungs against damage from hyperoxia, presumably by preventing the activation of NOX2 and the amplification of lung injury associated with inflammation. These findings demonstrate that MJ33, a potent inhibitor of Prdx6 PLA2 activity, can protect mouse lungs against the manifestations of acute lung injury due to oxidative stress.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Glicerofosfatos/farmacologia , Hiperóxia/tratamento farmacológico , Peroxirredoxina VI/genética , Inibidores de Fosfolipase A2/farmacologia , Fosfolipases A2/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/genética , Animais , Apoptose/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar/química , Regulação da Expressão Gênica , Hiperóxia/induzido quimicamente , Hiperóxia/enzimologia , Hiperóxia/genética , Injeções Intraperitoneais , Peroxidação de Lipídeos/efeitos dos fármacos , Pulmão , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Neutrófilos/patologia , Estresse Oxidativo , Oxigênio/toxicidade , Peroxirredoxina VI/antagonistas & inibidores , Peroxirredoxina VI/metabolismo , Fosfolipases A2/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
15.
Exp Lung Res ; 41(1): 12-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25275819

RESUMO

The aim of the study was to investigate the effects of substance P (SP) in hyperoxia-induced lung injury in newborn rats. Thirty-two rat pups were randomly divided into four groups: normoxia/saline, normoxia/SP, hyperoxia/saline and hyperoxia/SP. In a separate set of experiments, the neonatal rat pups were exposed to 21% or >95% O2 for 14 days with or without intraperitoneal administration of SP. On day 14, the animals were sacrificed and the lungs were processed for histology and biochemical analysis. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used for the detection of apoptosis. Antioxidant capacity was assessed by glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), oxidative stress was assessed by determining the extent of formation of malondialdehyde (MDA), activities of NADPH oxidase activity, and formation of reactive oxygen species (ROS). The activity of phospho-p38 (p-p38) and -ERK1/2 (p-ERK1/2) proteins and expression of NF-E2-related factor 2 (NRF2) were detected by Western blot, and the expression of p-p38 was detected by immunofluorescence analysis. Compared with the hyperoxia treatment, the lung damage was significantly ameliorated following the SP treatment. Furthermore, the lungs from the pups exposed to hyperoxia TUNEL-positive nuclei increased markedly and decreased significantly after SP treatment. The levels of MDA decreased and that of GSH-Px and SOD increased following the SP treatment. The SP treatment significantly suppressed the activity of NADPH oxidase and reduced ROS production. SP stimulation may result in blocking p38 MAPK and ERK signaling pathways, and the activities of p-p38 and p-ERK, and expression of NRF2 decreased following the SP treatment. These findings indicate that SP can ameliorate hyperoxic lung injury through decreasing cell apoptosis, elevating antioxidant activities, and attenuating oxidative stress.


Assuntos
Displasia Broncopulmonar/prevenção & controle , Hiperóxia/complicações , Neurotransmissores/uso terapêutico , Substância P/uso terapêutico , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/enzimologia , Displasia Broncopulmonar/etiologia , Avaliação Pré-Clínica de Medicamentos , Edema/etiologia , Edema/prevenção & controle , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Glutationa Peroxidase/metabolismo , Hiperóxia/enzimologia , Pulmão/enzimologia , Malondialdeído/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neurotransmissores/farmacologia , Gravidez , Distribuição Aleatória , Ratos Sprague-Dawley , Substância P/farmacologia , Superóxido Dismutase/metabolismo
16.
Respir Physiol Neurobiol ; 209: 106-14, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25485998

RESUMO

Exposure to supraphysiological concentrations of oxygen is often applied in clinical practice to enhance oxygenation in acute or chronic lung injury. However, hyperoxic exposure is associated with increased reactive oxygen species production, which can be toxic to pulmonary endothelial and alveolar epithelial cells. Oxidative stress activates the pathways of the mitogen-activated protein kinases family: extracellular signal-regulated kinase (ERK1/2), C-Jun-terminal protein kinase (JNK1/2), and p38 kinase. Several studies have suggested that ERK activation in lung cells has a protective effect in response to hyperoxia, through stimulation of DNA repair and antioxidant mechanisms, and prolonged cell survival. Conversely, JNK1/2 and p38 kinase have been most frequently reported to have roles in induction of apoptotic responses. Moreover, exogenous factors, such as ATP, retinoic acid, substance P, thioredoxin, inosine and laminin, can have cytoprotective effects against hyperoxia-induced cell damage, through promotion of ERK activation and/or limiting JNK and p38 involvement.


Assuntos
Hiperóxia/enzimologia , Pulmão/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Humanos , Estresse Oxidativo/fisiologia
17.
Toxicol Sci ; 141(1): 68-77, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24893714

RESUMO

Hyperoxia contributes to acute lung injury in diseases such as acute respiratory distress syndrome in adults and bronchopulmonary dysplasia in premature infants. Cytochrome P450 (CYP)1A1 has been shown to modulate hyperoxic lung injury. The mechanistic role(s) of CYP1A1 in hyperoxic lung injury in vivo is not known. In this investigation, we hypothesized that Cyp1a1(-/-) mice would be more susceptible to hyperoxic lung injury than wild-type (WT) mice, and that the protective role of CYP1A1 is in part due to CYP1A1-mediated decrease in the levels of reactive oxygen species-mediated lipid hydroperoxides, e.g., F2-isoprostanes/isofurans, leading to attenuation of oxidative damage. Eight- to ten-week-old male WT (C57BL/6J) or Cyp1a1(-/-) mice were exposed to hyperoxia (>95% O2) or room air for 24-72 h. The Cyp1a1(-/-) mice were more susceptible to oxygen-mediated lung damage and inflammation than WT mice, as evidenced by increased lung weight/body weight ratio, lung injury, neutrophil infiltration, and augmented expression of IL-6. Hyperoxia for 24-48 h induced CYP1A expression at the mRNA, protein, and enzyme levels in liver and lung of WT mice. Pulmonary F2-isoprostane and isofuran levels were elevated in WT mice after hyperoxia for 24 h. On the other hand, Cyp1a1(-/-) mice showed higher levels after 48-72 h of hyperoxia exposure compared to WT mice. Our results support the hypothesis that CYP1A1 protects against hyperoxic lung injury by decreasing oxidative stress. Future research could lead to the development of novel strategies for prevention and/or treatment of acute lung injury.


Assuntos
Lesão Pulmonar Aguda/genética , Citocromo P-450 CYP1A1/genética , Hiperóxia/genética , Estresse Oxidativo/genética , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Animais , Western Blotting , Peso Corporal , Hiperóxia/enzimologia , Hiperóxia/patologia , Peroxidação de Lipídeos/genética , Pulmão/enzimologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/genética , Tamanho do Órgão
18.
PLoS One ; 9(3): e90936, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24599172

RESUMO

Premature infants exposed to hyperoxia suffer acute and long-term pulmonary consequences. Nevertheless, neonates survive hyperoxia better than adults. The factors contributing to neonatal hyperoxic tolerance are not fully elucidated. In contrast to adults, heme oxygenase (HO)-1, an endoplasmic reticulum (ER)-anchored protein, is abundant in the neonatal lung but is not inducible in response to hyperoxia. The latter may be important, because very high levels of HO-1 overexpression are associated with significant oxygen cytotoxicity in vitro. Also, in contrast to adults, HO-1 localizes to the nucleus in neonatal mice exposed to hyperoxia. To understand the mechanisms by which HO-1 expression levels and subcellular localization contribute to hyperoxic tolerance in neonates, lung-specific transgenic mice expressing high or low levels of full-length HO-1 (cytoplasmic, HO-1-FL(H) or HO-1-FL(L)) or C-terminally truncated HO-1 (nuclear, Nuc-HO-1-TR) were generated. In HO-1-FL(L), the lungs had a normal alveolar appearance and lesser oxidative damage after hyperoxic exposure. In contrast, in HO-1-FL(H), alveolar wall thickness with type II cell hyperproliferation was observed as well worsened pulmonary function and evidence of abnormal lung cell hyperproliferation in recovery from hyperoxia. In Nuc-HO-1-TR, the lungs had increased DNA oxidative damage, increased poly (ADP-ribose) polymerase (PARP) protein expression, and reduced poly (ADP-ribose) (PAR) hydrolysis as well as reduced pulmonary function in recovery from hyperoxia. These data indicate that low cytoplasmic HO-1 levels protect against hyperoxia-induced lung injury by attenuating oxidative stress, whereas high cytoplasmic HO-1 levels worsen lung injury by increasing proliferation and decreasing apoptosis of alveolar type II cells. Enhanced lung nuclear HO-1 levels impaired recovery from hyperoxic lung injury by disabling PAR-dependent regulation of DNA repair. Lastly both high cytoplasmic and nuclear expression of HO-1 predisposed to long-term abnormal lung cellular proliferation. To maximize HO-1 cytoprotective effects, therapeutic strategies must account for the specific effects of its subcellular localization and expression levels.


Assuntos
Citoproteção , Heme Oxigenase-1/metabolismo , Lesão Pulmonar/enzimologia , Lesão Pulmonar/patologia , Animais , Animais Recém-Nascidos , Apoptose , Carcinogênese/patologia , Proliferação de Células , DNA/metabolismo , Dano ao DNA , Modelos Animais de Doenças , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Humanos , Hidrólise , Hiperóxia/enzimologia , Hiperóxia/patologia , Hiperóxia/fisiopatologia , Pulmão/enzimologia , Pulmão/patologia , Pulmão/fisiopatologia , Lesão Pulmonar/fisiopatologia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Transgênicos , Oxirredução , Estresse Oxidativo , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Alvéolos Pulmonares/enzimologia , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologia , Testes de Função Respiratória , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia
19.
Cell Death Dis ; 5: e1075, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24556690

RESUMO

Hyperoxia treatment has been known to induce neuronal and glial death in the developing central nervous system. Retinopathy of prematurity (ROP) is a devastating disease in premature infants and a major cause of childhood vision impairment. Studies indicate that, in addition to vascular injury, retinal neurons are also affected in ROP. Using an oxygen-induced retinopathy (OIR) mouse model for ROP, we have previously shown that deletion of the arginase 2 (A2) significantly reduced neuro-glial injury and improved retinal function. In the current study, we investigated the mechanism of A2 deficiency-mediated neuroprotection in the OIR retina. Hyperoxia treatment has been known to induce neuronal death in neonates. During the hyperoxia phase of OIR, a significant increase in the number of apoptotic cells was observed in the wild-type (WT) OIR retina compared with A2-deficient OIR. Mass spectrometric analysis showed alterations in polyamine metabolism in WT OIR retina. Further, increased expression level of spermine oxidase was observed in WT OIR retina, suggesting increased oxidation of polyamines in OIR retina. These changes were minimal in A2-deficient OIR retina. Treatment using the polyamine oxidase inhibitor, N, N'-bis (2, 3-butadienyl)-1, 4-butanediamine dihydrochloride, significantly improved neuronal survival during OIR treatment. Our data suggest that retinal arginase is involved in the hyperoxia-induced neuronal degeneration in the OIR model, through the regulation of polyamine metabolism.


Assuntos
Apoptose , Arginase/metabolismo , Hiperargininemia/complicações , Hiperóxia/complicações , Poliaminas/metabolismo , Degeneração Retiniana/prevenção & controle , Neurônios Retinianos/enzimologia , Retinopatia da Prematuridade/prevenção & controle , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Arginase/genética , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Hiperargininemia/enzimologia , Hiperargininemia/genética , Hiperóxia/enzimologia , Hiperóxia/genética , Camundongos , Camundongos Knockout , Fármacos Neuroprotetores/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Degeneração Retiniana/enzimologia , Degeneração Retiniana/etiologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Neurônios Retinianos/efeitos dos fármacos , Neurônios Retinianos/patologia , Retinopatia da Prematuridade/enzimologia , Retinopatia da Prematuridade/etiologia , Retinopatia da Prematuridade/genética , Retinopatia da Prematuridade/patologia , Transdução de Sinais , Fatores de Tempo , Poliamina Oxidase
20.
Int J Clin Exp Pathol ; 7(2): 537-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24551274

RESUMO

Reactive oxygen species (ROS) contribute to alveolar cell death in acute respiratory distress syndrome (ARDS) and we previously demonstrated that NOX1-derived ROS contributed to hyperoxia-induced alveolar cell death in mice. The study investigates whether NOX1 expression is modulated in epithelial cells concomitantly to cell death and associated to STAT3 signaling in the exudative phase of ARDS. In addition, the role of STAT3 activation in NOX1-dependent epithelial cell death was confirmed by using a lung epithelial cell line and in mice exposed to hyperoxia. NOX1 expression, cell death and STAT3 staining were evaluated in the lungs of control and ARDS patients by immunohistochemistry. In parallel, a stable NOX1-silenced murine epithelial cell line (MLE12) and NOX1-deficient mice were used to characterize signalling pathways. In the present study, we show that NOX1 is detected in alveolar epithelial cells of ARDS patients in the exudative stage. In addition, increased alveolar epithelial cell death and phosphorylated STAT3 are observed in ARDS patients and associated with NOX1 expression. Phosphorylated STAT3 is also correlated with TUNEL staining. We also confirmed that NOX1-dependent STAT3 activation participates to alveolar epithelial cell death. Silencing and acute inhibition of NOX1 in MLE12 led to decreased cell death and cleaved-caspase 3 induced by hyperoxia. Additionally, hyperoxia-induced STAT3 phosphorylation is dependent on NOX1 expression and associated with cell death in MLE12 and mice. This study demonstrates that NOX1 is involved in human ARDS pathophysiology and is responsible for the damage occurring in alveolar epithelial cells at least in part via STAT3 signalling pathways.


Assuntos
Células Epiteliais/enzimologia , Hiperóxia/enzimologia , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidases/metabolismo , Alvéolos Pulmonares/enzimologia , Síndrome do Desconforto Respiratório/enzimologia , Fator de Transcrição STAT3/metabolismo , Animais , Estudos de Casos e Controles , Caspase 3/metabolismo , Morte Celular , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/patologia , Feminino , Humanos , Hiperóxia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADH NADPH Oxirredutases/deficiência , NADH NADPH Oxirredutases/genética , NADPH Oxidase 1 , Fosforilação , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Alvéolos Pulmonares/patologia , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/patologia , Transdução de Sinais , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA