Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 196(2): 655-667, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26643480

RESUMO

Hypercapnia, elevated partial pressure of CO2 in blood and tissue, develops in many patients with chronic severe obstructive pulmonary disease and other advanced lung disorders. Patients with advanced disease frequently develop bacterial lung infections, and hypercapnia is a risk factor for mortality in such individuals. We previously demonstrated that hypercapnia suppresses induction of NF-κB-regulated innate immune response genes required for host defense in human, mouse, and Drosophila cells, and it increases mortality from bacterial infections in both mice and Drosophila. However, the molecular mediators of hypercapnic immune suppression are undefined. In this study, we report a genome-wide RNA interference screen in Drosophila S2* cells stimulated with bacterial peptidoglycan. The screen identified 16 genes with human orthologs whose knockdown reduced hypercapnic suppression of the gene encoding the antimicrobial peptide Diptericin (Dipt), but did not increase Dipt mRNA levels in air. In vivo tests of one of the strongest screen hits, zinc finger homeodomain 2 (Zfh2; mammalian orthologs ZFHX3/ATBF1 and ZFHX4), demonstrate that reducing zfh2 function using a mutation or RNA interference improves survival of flies exposed to elevated CO2 and infected with Staphylococcus aureus. Tissue-specific knockdown of zfh2 in the fat body, the major immune and metabolic organ of the fly, mitigates hypercapnia-induced reductions in Dipt and other antimicrobial peptides and improves resistance of CO2-exposed flies to infection. Zfh2 mutations also partially rescue hypercapnia-induced delays in egg hatching, suggesting that Zfh2's role in mediating responses to hypercapnia extends beyond the immune system. Taken together, to our knowledge, these results identify Zfh2 as the first in vivo mediator of hypercapnic immune suppression.


Assuntos
Proteínas de Ligação a DNA/imunologia , Proteínas de Drosophila/imunologia , Hipercapnia/imunologia , Infecções Estafilocócicas/complicações , Animais , Western Blotting , Modelos Animais de Doenças , Drosophila , Técnicas de Silenciamento de Genes , Hipercapnia/microbiologia , Imunidade Inata/imunologia , Interferência de RNA , Infecções Estafilocócicas/imunologia , Staphylococcus aureus
2.
Anesthesiology ; 112(2): 462-72, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20068449

RESUMO

Acute respiratory distress syndrome is a devastating disease that causes substantial morbidity and mortality. Mechanical ventilation can worsen lung injury, whereas ventilatory strategies that reduce lung stretch, resulting in a "permissive" hypercapnic acidosis (HCA), improve outcome. HCA directly reduces nonsepsis-induced lung injury in preclinical models and, therefore, has therapeutic potential in these patients. These beneficial effects are mediated via inhibition of the host immune response, particularly cytokine signaling, phagocyte function, and the adaptive immune response. Of concern, these immunosuppressive effects of HCA may hinder the host response to microbial infection. Recent studies suggest that HCA is protective in the earlier phases of bacterial pneumonia-induced sepsis but may worsen injury in the setting of prolonged lung sepsis. In contrast, HCA is protective in preclinical models of early and prolonged systemic sepsis. Buffering of the HCA is not beneficial and may worsen pneumonia-induced injury.


Assuntos
Acidose/etiologia , Hipercapnia/etiologia , Sepse/complicações , Acidose/imunologia , Acidose/microbiologia , Estado Terminal , Humanos , Hipercapnia/imunologia , Hipercapnia/microbiologia , Pneumopatias/microbiologia , Pneumopatias/patologia , Pneumonia/microbiologia , Pneumonia/patologia , Sepse/imunologia , Sepse/microbiologia
3.
Anesthesiology ; 109(5): 837-48, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18946296

RESUMO

BACKGROUND: Hypercapnic acidosis protects against lung injury after ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. The effects of hypercapnic acidosis in the setting of established pulmonary sepsis are not known. The authors investigated whether hypercapnic acidosis -- induced by adding carbon dioxide to inspired gas -- would be beneficial or deleterious in established Escherichia coli pneumonia in an in vivo model, in the presence and absence of antibiotic therapy. METHODS: Adult male Sprague-Dawley rats were anesthetized and ventilated. In the first set of experiments, rats were anesthetized, E. coli (5-6.4 x 10(9)/ml colony-forming units) was instilled intratracheally, and the animals were allowed to recover. After 6 h, during which time a severe pneumonia developed, they were reanesthetized and randomly assigned to normocapnia (fraction of inspired carbon dioxide [Fico(2)] = 0.00, n = 10) or hypercapnic acidosis (Fico(2) = 0.05, n = 10). The second set of experiments was performed in a manner identical to that of series 1, but all rats (n = 10 per group) were given intravenous ceftriaxone (30 mg/kg) at randomization. All animals received normocapnia or hypercapnic acidosis for 6 h, and the severity of lung injury was assessed. RESULTS: In the absence of antibiotic therapy, hypercapnic acidosis reduced the pneumonia-induced increase in peak airway pressure and the decrease in static lung compliance compared with control conditions. In the presence of antibiotic therapy, which substantially reduced lung bacterial counts, hypercapnic acidosis significantly attenuated the extent of pneumonia-induced histologic injury. CONCLUSIONS: Hypercapnic acidosis reduced the magnitude of the lung injury induced by established E. coli pneumonia.


Assuntos
Acidose Respiratória/metabolismo , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/prevenção & controle , Hipercapnia/metabolismo , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/prevenção & controle , Acidose Respiratória/microbiologia , Animais , Infecções por Escherichia coli/microbiologia , Hipercapnia/microbiologia , Pulmão/metabolismo , Pulmão/microbiologia , Pneumopatias/metabolismo , Pneumopatias/microbiologia , Pneumopatias/prevenção & controle , Masculino , Pneumonia Bacteriana/microbiologia , Ratos , Ratos Sprague-Dawley
4.
Med Intensiva ; 30(7): 344, 2006 Oct.
Artigo em Espanhol | MEDLINE | ID: mdl-17067510
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA