Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.327
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Neurosci Lett ; 840: 137960, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39222834

RESUMO

Caffeine, a methylxanthine alkaloid, works as a nonselective adenosine receptor antagonist. It is the most widely used psychostimulant drug worldwide. However, caffeine overdose can lead to acute intoxication, posing a clinical problem. Hyperthermia and hyperactivity are associated issues with acute caffeine intoxication; however, no definitive treatment exists. This study aimed to assess the ability of risperidone to attenuate caffeine-induced hyperthermia and hyperactivity while elucidating the unknown mechanisms of caffeine intoxication. The rats received intraperitoneal injections of saline, risperidone (0.25 mg/kg, 0.5 mg/kg), WAY-100635, ketanserin, haloperidol, sulpiride, or SCH 23390, 5 min after the administration of caffeine (25 mg/kg). Subcutaneous temperature and activity counts were measured using nano tag ® for up to 90 min. In vivo microdialysis was used to determine the effect of risperidone on caffeine-induced elevation of dopamine (DA), serotonin (5-HT), and noradrenaline (NA) concentrations in the anterior hypothalamus. Rats were injected with caffeine (25 mg/kg), followed by saline or risperidone (0.5 mg/kg) 5 min later. The levels of DA, 5-HT, and noradrenaline were measured every 15 min for up to 90 min after caffeine administration. Risperidone and 5-HT2A receptor antagonist ketanserin attenuated caffeine-induced hyperthermia and hyperactivity. Haloperidol and dopamine D1 antagonist SCH-23390 exacerbated hyperthermia without any effect on the hyperactivity. In the microdialysis study, risperidone treatment further attenuated caffeine-induced 5-HT elevation, but not DA and NA. Our results indicate that risperidone attenuates caffeine-induced hyperthermia and hyperactivity by blocking 5-HT2A receptor activity and may be potentially useful for treating caffeine intoxication.


Assuntos
Cafeína , Hipertermia , Risperidona , Serotonina , Animais , Cafeína/farmacologia , Risperidona/farmacologia , Masculino , Hipertermia/induzido quimicamente , Serotonina/metabolismo , Ratos Sprague-Dawley , Dopamina/metabolismo , Ratos , Hipercinese/induzido quimicamente , Hipercinese/prevenção & controle , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/toxicidade , Norepinefrina/metabolismo
2.
J Atten Disord ; 28(12): 1589-1597, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39161237

RESUMO

OBJECTIVE: This study aimed to objectively assess signs of hyperactivity in adults suspected of having ADHD, addressing potential sex bias in diagnosis. METHODS: About 13,179 (49% female) adults with an average age of 33 years with ADHD and 1,910 (41% female) adults with an average age of 36 years without ADHD were included. Motor activity was measured using the Quantified Behavioral Test, analyzing "provoked," and "basal" activity. Sex by group differences were analyzed using analysis of variance. RESULTS: Results showed significant ADHD effects on the basal and provoked activity measures, while sex effects were only notable for provoked activity. Males, irrespective of diagnosis, exhibited higher provoked activity than females, while both sexes with ADHD displayed approximately twice the basal activity and about three times the provoked activity compared to their respective sex controls. CONCLUSION: These findings suggest that females with ADHD suffer equally from hyperactivity compared to males, challenging the notion of a sex-dependent presentation of hyperactivity. This may lead to more accurate and timely diagnoses, reducing ADHD-related burdens and comorbidities in females.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Feminino , Masculino , Adulto , Fatores Sexuais , Atividade Motora/fisiologia , Hipercinese/diagnóstico , Adulto Jovem
3.
J Neurosci ; 44(39)2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39168654

RESUMO

Growth-associated protein of 43 kDa (GAP43) is a key cytoskeleton-associated component of the presynaptic terminal that facilitates neuroplasticity. Downregulation of GAP43 expression has been associated to various psychiatric conditions in humans and evokes hippocampus-dependent memory impairments in mice. Despite the extensive studies conducted on hippocampal GAP43 in past decades, however, very little is known about its roles in modulating the excitatory versus inhibitory balance in other brain regions. We recently generated conditional knock-out mice in which the Gap43 gene was selectively inactivated in either telencephalic glutamatergic neurons (Gap43fl/fl ;Nex1Cre mice, hereafter Glu-GAP43-/- mice) or forebrain GABAergic neurons (Gap43fl/fl ;Dlx5/6Cre mice, hereafter GABA-GAP43-/- mice). Here, we show that Glu-GAP43-/- but not GABA-GAP43-/- mice of either sex show a striking hyperactive phenotype when exposed to a novel environment. This behavioral alteration of Glu-GAP43-/- mice was linked to a selective activation of dorsal-striatum neurons, as well as to an enhanced corticostriatal glutamatergic transmission and an abrogation of corticostriatal endocannabinoid-mediated long-term depression. In line with these observations, GAP43 was abundantly expressed in corticostriatal glutamatergic terminals of wild-type mice. The novelty-induced hyperactive phenotype of Glu-GAP43-/- mice was abrogated by chemogenetically inhibiting corticostriatal afferences with a Gi-coupled "designer receptor exclusively activated by designer drugs" (DREADDs), thus further supporting that novelty-induced activity is controlled by GAP43 at corticostriatal excitatory projections. Taken together, these findings show an unprecedented regulatory role of GAP43 in the corticostriatal circuitry and provide a new mouse model with a delimited neuronal-circuit alteration for studying novelty-induced hyperactivity, a phenotypic shortfall that occurs in diverse psychiatric diseases.


Assuntos
Corpo Estriado , Proteína GAP-43 , Camundongos Knockout , Animais , Camundongos , Masculino , Corpo Estriado/metabolismo , Feminino , Proteína GAP-43/metabolismo , Proteína GAP-43/genética , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Hipercinese/metabolismo , Hipercinese/genética , Terminações Pré-Sinápticas/metabolismo , Comportamento Exploratório/fisiologia , Camundongos Endogâmicos C57BL , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia
4.
J Neurosci ; 44(31)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38969506

RESUMO

Although hyperactivity is associated with a wide variety of neurodevelopmental disorders, the early embryonic origins of locomotion have hindered investigation of pathogenesis of these debilitating behaviors. The earliest motor output in vertebrate animals is generated by clusters of early-born motor neurons (MNs) that occupy distinct regions of the spinal cord, innervating stereotyped muscle groups. Gap junction electrical synapses drive early spontaneous behavior in zebrafish, prior to the emergence of chemical neurotransmitter networks. We use a genetic model of hyperactivity to gain critical insight into the consequences of errors in motor circuit formation and function, finding that Fragile X syndrome model mutant zebrafish are hyperexcitable from the earliest phases of spontaneous behavior, show altered sensitivity to blockade of electrical gap junctions, and have increased expression of the gap junction protein Connexin 34/35. We further show that this hyperexcitable behavior can be rescued by pharmacological inhibition of electrical synapses. We also use functional imaging to examine MN and interneuron (IN) activity in early embryogenesis, finding genetic disruption of electrical gap junctions uncouples activity between mnx1 + MNs and INs. Taken together, our work highlights the importance of electrical synapses in motor development and suggests that the origins of hyperactivity in neurodevelopmental disorders may be established during the initial formation of locomotive circuits.


Assuntos
Sinapses Elétricas , Síndrome do Cromossomo X Frágil , Neurônios Motores , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Síndrome do Cromossomo X Frágil/fisiopatologia , Síndrome do Cromossomo X Frágil/genética , Sinapses Elétricas/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Neurônios Motores/fisiologia , Modelos Animais de Doenças , Conexinas/genética , Conexinas/metabolismo , Animais Geneticamente Modificados , Hipercinese/fisiopatologia , Interneurônios/fisiologia , Interneurônios/metabolismo , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
5.
Biochem Biophys Res Commun ; 729: 150361, 2024 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972141

RESUMO

Carnosine, anserine, and homocarnosine are histidine-containing dipeptides (HCDs) abundant in the skeletal muscle and nervous system in mammals. To date, studies have extensively demonstrated effects of carnosine and anserine, the predominant muscular HCDs, on muscular functions and exercise performance. However, homocarnosine, the predominant brain HCD, is underexplored. Moreover, roles of homocarnosine and its related HCDs in the brain and behaviors remain poorly understood. Here, we investigated potential roles of endogenous brain homocarnosine and its related HCDs in behaviors by using carnosine synthase-1-deficient (Carns1-/-) mice. We found that old Carns1-/- mice (female 12 months old) exhibited hyperactivity- and depression-like behaviors with higher plasma corticosterone levels on light-dark transition and forced swimming tests, but had no defects in spontaneous locomotor activity, repetitive behavior, olfactory functions, and learning and memory abilities, as compared with their age-matched wild-type (WT) mice. We confirmed that homocarnosine and its related HCDs were deficient across brain areas of Carns1-/- mice. Homocarnosine deficiency exhibited small effects on its constituent γ-aminobutyric acid (GABA) in the brain, in which GABA levels in hypothalamus and olfactory bulb were higher in Carns1-/- mice than in WT mice. In WT mice, homocarnosine and GABA were highly present in hypothalamus, thalamus, and olfactory bulb, and their brain levels did not decrease in old mice when compared with younger mice (3 months old). Our present findings provide new insights into roles of homocarnosine and its related HCDs in behaviors and neurological disorders.


Assuntos
Comportamento Animal , Depressão , Dipeptídeos , Animais , Feminino , Dipeptídeos/metabolismo , Camundongos , Depressão/metabolismo , Depressão/genética , Encéfalo/metabolismo , Carnosina/análogos & derivados , Carnosina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipercinese/metabolismo , Hipercinese/genética , Envelhecimento/metabolismo , Histidina/análogos & derivados , Histidina/metabolismo , Histidina/deficiência
6.
Ann Afr Med ; 23(3): 512-513, 2024 Jul 01.
Artigo em Francês, Inglês | MEDLINE | ID: mdl-39034583

RESUMO

Hyperkinesias in a patient with complex-I deficiency due to the variant m.10191T>C in MT-ND3 have not been previously reported. The patient is a 32 years-old female with multisystem mitochondrial disease due to variant m.10191T>C in MT-ND3, who has been experiencing episodic, spontaneous or induced abnormal movements since age 23. The abnormal movements started as right hemi-athetosis, bilateral dystonia of the legs, or unilateral dystonia of the right arm and leg. They often progressed to severe ballism, involving the trunk, and limbs. The arms were more dystonic than the legs. In conclusion, complex-I deficiency due to the variant m.10191T>C in MT-ND3 may manifest as multisystem disease including hyperkinesias. Neurologists should be aware of hyperkinesias as a manifestation of complex-I deficiency.


RésuméL'hyperkinésie d'une patiente atteinte d'un déficit en complexe I dû à la variante m.10191T>C du gène MT-ND3 n'a jamais été rapportée auparavant. La patiente est une femme de 32 ans atteinte d'une maladie mitochondriale multisystémique due à la variante m.10191T>C du gène MT-ND3, qui présente des mouvements anormaux épisodiques, spontanés ou provoqués depuis l'âge de 18 ans. mouvements anormaux épisodiques, spontanés ou provoqués depuis l'âge de 23 ans. Les mouvements anormaux ont commencé par une hémiathétose droite, dystonie bilatérale des jambes ou dystonie unilatérale du bras et de la jambe droite. Ils ont souvent évolué vers un ballisme sévère, impliquant le tronc et les membres. le tronc et les membres. Les bras étaient plus dystoniques que les jambes. En conclusion, le déficit en complexe I dû à la variante m.10191T>C du gène MT-ND3 peut se manifester par une maladie multisystémique comprenant des hyperkinésies. Les neurologues doivent être conscients que l'hyperkinésie est une manifestation du déficit en complexe-I. de la déficience en complexe I.


Assuntos
Doença de Leigh , Humanos , Feminino , Adulto , Doença de Leigh/complicações , Doença de Leigh/diagnóstico , Hipercinese/etiologia , Complexo I de Transporte de Elétrons/deficiência , Doenças Mitocondriais/complicações , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Mutação
7.
Neurotoxicol Teratol ; 104: 107373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39025421

RESUMO

Non-coplanar polychlorinated biphenyl (PCB) mixture Aroclor 1254 and polybrominated diphenyl ether (PBDE) BDE-47 are known to impede neurogenesis and neuronal development. We previously reported that exposure to PCB and PBDE leads to increased embryonic movement in zebrafish by decreasing dopamine levels. In this study, we studied the connection between the melanin and dopamine synthesis pathways in this context. Both genetic and chemical inhibition of tyrosinase, the rate-limiting enzyme in melanin synthesis, not only led to reduced pigmentation but also inhibit PCB/PBDE-induced embryonic hyperactivity. Furthermore, PCB and PBDE rarely affected tyrosinase expression in the potential pigment cells, suggesting that these compounds reduce dopamine through enzymatic regulation, including a competitive interaction for the substrate tyrosine. Our results provide new insights into the interactions between melanogenesis and dopaminergic neuronal activity, which may contribute to understanding the mechanisms underlying PCB/PBDE toxicity in developing organisms.


Assuntos
Éteres Difenil Halogenados , Monofenol Mono-Oxigenase , Bifenilos Policlorados , Peixe-Zebra , Animais , Monofenol Mono-Oxigenase/metabolismo , Éteres Difenil Halogenados/toxicidade , Bifenilos Policlorados/toxicidade , Melaninas/metabolismo , Melaninas/biossíntese , Pigmentação/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Hipercinese/induzido quimicamente , Dopamina/metabolismo , Comportamento Animal/efeitos dos fármacos
8.
Curr Neuropharmacol ; 22(14): 2284-2297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38847380

RESUMO

Extrapyramidal hyperkinetic movement disorders comprise a broad range of phenotypic phenomena, including chorea, dystonia, and tics. Treatment is generally challenging and individualized, given the overlapping phenomenology, limited evidence regarding efficacy, and concerns regarding the tolerability and safety of most treatments. Over the past decade, the treatment has become even more intricate due to advancements in the field of deep brain stimulation as well as optimized dopamine- depleting agents. Here, we review the current evidence for treatment modalities of extrapyramidal hyperkinetic movement disorders and provide a comprehensive and practical overview to aid the choice of therapy. Mechanism of action and practical intricacies of each treatment modality are discussed, focusing on dosing and adverse effect management. Finally, future therapeutic developments are also discussed.


Assuntos
Doenças dos Gânglios da Base , Humanos , Doenças dos Gânglios da Base/terapia , Estimulação Encefálica Profunda/métodos , Hipercinese/terapia , Transtornos dos Movimentos/terapia , Animais
10.
J Pharmacol Exp Ther ; 390(2): 250-259, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38866563

RESUMO

Mutations in the GNAO1 gene, which encodes the abundant brain G-protein Gα o, result in neurologic disorders characterized by developmental delay, epilepsy, and movement abnormalities. There are over 50 mutant alleles associated with GNAO1 disorders; the R209H mutation results in dystonia, choreoathetosis, and developmental delay without seizures. Mice heterozygous for the human mutant allele (Gnao1 +/R209H) exhibit hyperactivity in open field tests but no seizures. We developed self-complementary adeno-associated virus serotype 9 (scAAV9) vectors expressing two splice variants of human GNAO1 Gα o isoforms 1 (GoA, GNAO1.1) and 2 (GoB, GNAO1.2). Bilateral intrastriatal injections of either scAAV9-GNAO1.1 or scAAV9-GNAO1.2 significantly reversed mutation-associated hyperactivity in open field tests. GNAO1 overexpression did not increase seizure susceptibility, a potential side effect of GNAO1 vector treatment. This represents the first report of successful preclinical gene therapy for GNAO1 encephalopathy applied in vivo. Further studies are needed to uncover the molecular mechanism that results in behavior improvements after scAAV9-mediated Gα o expression and to refine the vector design. SIGNIFICANCE STATEMENT: GNAO1 mutations cause a spectrum of developmental, epilepsy, and movement disorders. Here we show that intrastriatal delivery of scAAV9-GNAO1 to express the wild-type Gα o protein reduces the hyperactivity of the Gnao1 +/R209H mouse model, which carries one of the most common movement disorder-associated mutations. This is the first report of a gene therapy for GNAO1 encephalopathy applied in vivo on a patient-allele model.


Assuntos
Dependovirus , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Heterozigoto , Animais , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Camundongos , Dependovirus/genética , Humanos , Masculino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Hipercinese/genética , Mutação , Terapia Genética/métodos , Camundongos Endogâmicos C57BL , Locomoção/genética
12.
CNS Neurosci Ther ; 30(5): e14739, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38702935

RESUMO

AIMS: The hippocampus has been reported to be morphologically and neurochemically altered in schizophrenia (SZ). Hyperlocomotion is a characteristic SZ-associated behavioral phenotype, which is associated with dysregulated dopamine system function induced by hippocampal hyperactivity. However, the neural mechanism of hippocampus underlying hyperlocomotion remains largely unclear. METHODS: Mouse pups were injected with N-methyl-D-aspartate receptor antagonist (MK-801) or vehicle twice daily on postnatal days (PND) 7-11. In the adulthood phase, one cohort of mice underwent electrode implantation in field CA1 of the hippocampus for the recording local field potentials and spike activity. A separate cohort of mice underwent surgery to allow for calcium imaging of the hippocampus while monitoring the locomotion. Lastly, the effects of atypical antipsychotic (aripiprazole, ARI) were evaluated on hippocampal neural activity. RESULTS: We found that the hippocampal theta oscillations were enhanced in MK-801-treated mice, but the correlation coefficient between the hippocampal spiking activity and theta oscillation was reduced. Consistently, although the rate and amplitude of calcium transients of hippocampal neurons were increased, their synchrony and correlation to locomotion speed were disrupted. ARI ameliorated perturbations produced by the postnatal MK-801 treatment. CONCLUSIONS: These results suggest that the disruption of neural coordination may underly the neuropathological mechanism for hyperlocomotion of SZ.


Assuntos
Antipsicóticos , Aripiprazol , Modelos Animais de Doenças , Maleato de Dizocilpina , Hipocampo , Hipercinese , Esquizofrenia , Animais , Aripiprazol/farmacologia , Aripiprazol/uso terapêutico , Esquizofrenia/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Maleato de Dizocilpina/farmacologia , Camundongos , Hipercinese/tratamento farmacológico , Masculino , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Camundongos Endogâmicos C57BL , Animais Recém-Nascidos , Neurônios/efeitos dos fármacos , Ritmo Teta/efeitos dos fármacos , Ritmo Teta/fisiologia
13.
Mov Disord Clin Pract ; 11(6): 708-715, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38698576

RESUMO

BACKGROUND: Genetic syndromes of hyperkinetic movement disorders associated with epileptic encephalopathy and intellectual disability are becoming increasingly recognized. Recently, a de novo heterozygous NACC1 (nucleus accumbens-associated 1) missense variant was described in a patient cohort including one patient with a combined mitochondrial oxidative phosphorylation (OXPHOS) deficiency. OBJECTIVES: The objective is to characterize the movement disorder in affected patients with the recurrent c.892C>T NACC1 variant and study the NACC1 protein and mitochondrial function at the cellular level. METHODS: The movement disorder was analyzed on four patients with the NACC1 c.892C>T (p.Arg298Trp) variant. Studies on NACC1 protein and mitochondrial function were performed on patient-derived fibroblasts. RESULTS: All patients had a generalized hyperkinetic movement disorder with chorea and dystonia, which occurred cyclically and during sleep. Complex I was found altered, whereas the other OXPHOS enzymes and the mitochondria network seemed intact in one patient. CONCLUSIONS: The movement disorder is a prominent feature of NACC1-related disease.


Assuntos
Hipercinese , Criança , Feminino , Humanos , Masculino , Hipercinese/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação de Sentido Incorreto , Fosforilação Oxidativa , Proteínas Repressoras/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-38765932

RESUMO

Background: Subacute Sclerosing Panencephalitis (SSPE) typically presents with periodic myoclonus; however, a spectrum of movement disorders including dystonia, chorea, tremor, and parkinsonism have also been described. This review aims to evaluate the array of movement disorders in SSPE, correlating them with neuroimaging findings, disease stages, and patient outcomes. Methods: A comprehensive review of published case reports and case series was conducted on patients with SSPE exhibiting movement disorders other than periodic myoclonus. PRISMA guidelines were followed, and the protocol was registered with PROSPERO (2023 CRD42023434650). A comprehensive search of multiple databases yielded 37 reports detailing 39 patients. Dyken's criteria were used for SSPE diagnosis, and the International Movement Disorders Society definitions were applied to categorize movement disorders. Results: The majority of patients were male, with an average age of 13.8 years. Approximately, 80% lacked a reliable vaccination history, and 39% had prior measles infections. Dystonia was the most common movement disorder (49%), followed by parkinsonism and choreoathetosis. Rapid disease progression was noted in 64% of cases, with a disease duration of ≤6 months in 72%. Neuroimaging showed T2/FLAIR MR hyperintensities, primarily periventricular, with 26% affecting the basal ganglia/thalamus. Brain biopsies revealed inflammatory and neurodegenerative changes. Over half of the patients (56%) reached an akinetic mute state or died. Conclusion: SSPE is associated with diverse movement disorders, predominantly hyperkinetic. The prevalence of dystonia suggests basal ganglia dysfunction.


Assuntos
Transtornos dos Movimentos , Panencefalite Esclerosante Subaguda , Humanos , Coreia/fisiopatologia , Coreia/diagnóstico por imagem , Coreia/etiologia , Distonia/fisiopatologia , Distonia/etiologia , Hipercinese/fisiopatologia , Hipercinese/etiologia , Hipocinesia/fisiopatologia , Hipocinesia/etiologia , Transtornos dos Movimentos/fisiopatologia , Transtornos dos Movimentos/etiologia , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/fisiopatologia , Panencefalite Esclerosante Subaguda/fisiopatologia , Panencefalite Esclerosante Subaguda/diagnóstico por imagem , Panencefalite Esclerosante Subaguda/complicações , Relatos de Casos como Assunto , Masculino , Feminino , Adolescente
15.
HGG Adv ; 5(3): 100289, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38571311

RESUMO

Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by pathogenic variants in TCF4, leading to intellectual disability, specific morphological features, and autonomic nervous system dysfunction. Epigenetic dysregulation has been implicated in PTHS, prompting the investigation of a DNA methylation (DNAm) "episignature" specific to PTHS for diagnostic purposes and variant reclassification and functional insights into the molecular pathophysiology of this disorder. A cohort of 67 individuals with genetically confirmed PTHS and three individuals with intellectual disability and a variant of uncertain significance (VUS) in TCF4 were studied. The DNAm episignature was developed with an Infinium Methylation EPIC BeadChip array analysis using peripheral blood cells. Support vector machine (SVM) modeling and clustering methods were employed to generate a DNAm classifier for PTHS. Validation was extended to an additional cohort of 11 individuals with PTHS. The episignature was assessed in relation to other neurodevelopmental disorders and its specificity was examined. A specific DNAm episignature for PTHS was established. The classifier exhibited high sensitivity for TCF4 haploinsufficiency and missense variants in the basic-helix-loop-helix domain. Notably, seven individuals with TCF4 variants exhibited negative episignatures, suggesting complexities related to mosaicism, genetic factors, and environmental influences. The episignature displayed degrees of overlap with other related disorders and biological pathways. This study defines a DNAm episignature for TCF4-related PTHS, enabling improved diagnostic accuracy and VUS reclassification. The finding that some cases scored negatively underscores the potential for multiple or nested episignatures and emphasizes the need for continued investigation to enhance specificity and coverage across PTHS-related variants.


Assuntos
Metilação de DNA , Hiperventilação , Deficiência Intelectual , Fator de Transcrição 4 , Humanos , Fator de Transcrição 4/genética , Hiperventilação/genética , Hiperventilação/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Feminino , Masculino , Criança , Fácies , Adolescente , Epigenômica/métodos , Epigênese Genética , Hipercinese/genética , Pré-Escolar , Adulto , Adulto Jovem
16.
Nervenarzt ; 95(8): 697-703, 2024 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-38630301

RESUMO

Disorders of the gastrointestinal tract in patients suffering from hypokinetic movement disorders, and in particular Parkinson's disease, have increasingly been the subject of more intensive neuromedical research. So far, few data are available for patients with hyperkinetic movement disorders and ataxias. This review article summarizes the currently available and relevant publications on this topic. The particular focus is on essential tremor, restless legs syndrome, Huntington's disease and the group of hereditary ataxias. Further intensive research will be necessary in the future to collect detailed information also for these disease symptoms about specific disturbance patterns, in order to understand the underlying pathological pathways and to derive specific treatment approaches.


Assuntos
Gastroenteropatias , Transtornos dos Movimentos , Humanos , Gastroenteropatias/diagnóstico , Gastroenteropatias/terapia , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/fisiopatologia , Transtornos dos Movimentos/terapia , Hipercinese/diagnóstico , Ataxia/diagnóstico , Ataxia/terapia , Ataxia/fisiopatologia , Doença de Huntington/diagnóstico , Doença de Huntington/terapia , Doença de Huntington/fisiopatologia , Síndrome das Pernas Inquietas/diagnóstico , Síndrome das Pernas Inquietas/terapia , Tremor Essencial/diagnóstico , Tremor Essencial/fisiopatologia , Tremor Essencial/terapia
17.
Am J Med Genet A ; 194(9): e63636, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38655717

RESUMO

Biallelic pathogenic variations in the zinc finger protein 142 (ZNF142) gene are associated with neurodevelopmental disorder with impaired speech and hyperkinetic movements (NEDISHM). This disorder is characterized by developmental delay, intellectual disability, speech delay, and movement disorders such as dystonia, tremor, ataxia, and chorea. Here, we report a patient who exhibited common neurological features and rarely reported brain MRI findings. Exome sequencing identified a novel biallelic variant in ZNF142 (c.3528_3529delTG; p.C1176fs*5 (NM_001105537.4)). NEDISHM was first described by Khan et al. (2019) and has been reported in 39 patients to date. Furthermore, upon reviewing our in-house data covering 750 individuals, we identified three different pathogenic ZNF142 variants. It appears that the frequency of ZNF142 alleles is not as low as initially thought, suggesting that this gene should be included in new generation sequencing panels for similar clinical scenarios. Our goal is to compile and expand upon the clinical features observed in NEDISHM, providing novel insights and presenting a new variant to the literature. We also aim to demonstrate that ZNF142 pathogenic variants should be considered in neurodevelopmental diseases.


Assuntos
Alelos , Transtornos do Neurodesenvolvimento , Criança , Humanos , Masculino , Proteínas de Ligação a DNA/genética , Sequenciamento do Exoma , Predisposição Genética para Doença , Hipercinese/genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Distúrbios da Fala/genética , Distúrbios da Fala/patologia , Fatores de Transcrição/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-38617829

RESUMO

Background: Spinocerebellar ataxia 21 (SCA21) is a rare neurological disorder caused by heterozygous variants in TMEM240. A growing, yet still limited number of reports suggested that hyperkinetic movements should be considered a defining component of the disease. Case Series: We describe two newly identified families harboring the recurrent pathogenic TMEM240 p.Pro170Leu variant. Both index patients and the mother of the first proband developed movement disorders, manifesting as myoclonic dystonia and action-induced dystonia without co-occurring ataxia in one case, and pancerebellar syndrome complicated by action-induced dystonia in the other. We reviewed the literature on TMEM240 variants linked to hyperkinetic disorders, comparing our cases to described phenotypes. Discussion: Adding to prior preliminary observations, our series highlights the relevance of hyperkinetic movements as clinically meaningful features of SCA21. TMEM240 mutation should be included in the differential diagnosis of myoclonic dystonia and ataxia-dystonia syndromes.


Assuntos
Distonia , Distúrbios Distônicos , Mioclonia , Degenerações Espinocerebelares , Humanos , Distonia/diagnóstico , Distonia/genética , Mioclonia/diagnóstico , Mioclonia/genética , Hipercinese , Ataxia , Doenças Raras , Síndrome , Proteínas de Membrana
19.
Neuropediatrics ; 55(4): 217-223, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38442915

RESUMO

Cyclic nucleotide phosphodiesterase (PDE) enzymes catalyze the breakdown of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which act as intracellular second messengers for signal transduction pathways and modulate various processes in the central nervous system. Recent discoveries that mutations in genes encoding different PDEs, including PDE10A, are responsible for rare forms of chorea in children led to the recognition of an emerging role of PDEs in the field of pediatric movement disorders. A comprehensive literature review of all reported cases of PDE10A mutations in PubMed and Web of Science was performed in English. We included eight studies, describing 31 patients harboring a PDE10A mutation and exhibiting a hyperkinetic movement disorder with onset in infancy or childhood. Mutations in both GAF-A, GAF-B regulatory domains and outside the GAF domains of the PDE10A gene have been reported to cause hyperkinetic movement disorders. In general, patients with homozygous mutations in either GAF-A domain of PDE10A present with a more severe phenotype and at an earlier age but without any extensive abnormalities of the striata compared with patients with dominant variants in GAF-B domain, indicating that dominant and recessive mutations have different pathogenic mechanisms. PDE10A plays a key role in regulating control of striato-cortical movement. Comprehension of the molecular mechanisms within the cAMP and cGMP signaling systems caused by PDE10A mutations may inform novel therapeutic strategies that could alleviate symptoms in young patients affected by these rare movement disorders.


Assuntos
Hipercinese , Mutação , Diester Fosfórico Hidrolases , Humanos , Diester Fosfórico Hidrolases/genética , Hipercinese/genética , Criança
20.
Stem Cell Res ; 76: 103371, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452705

RESUMO

Autosomal dominant neurodevelopmental disorder with or without hyperkinetic movements and seizures (NDHMSD) is a rare neurological disorder characterized by neurodevelopmental disorder and hyperkinetic movement, with or without seizures. Heterozygous mutation in the GRIN1 encoding the subunit 1 of the N-methyl-D-aspartate receptor caused this disorder. We first established an induced pluripotent stem cell (iPSC) line from a male patient with c.389A > G mutation in the GRIN1, via reprogramming with KLF4, SOX2, OCT3/4, and c-MYC. Through identification examination, the iPSCs (GWCMCi006-A) stably expressed pluripotency-associated stem cell markers, maintained a normal karyotype, and showed proliferative potential for three-germ layers differentiation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Masculino , Células-Tronco Pluripotentes Induzidas/metabolismo , Hipercinese/metabolismo , Fator 4 Semelhante a Kruppel , Mutação/genética , Diferenciação Celular/genética , Convulsões , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA