Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.666
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Cell Biol Toxicol ; 40(1): 32, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767703

RESUMO

BACKGROUND: Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH. METHODS: We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression. RESULTS: Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation. CONCLUSIONS: Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.


Assuntos
Exossomos , Integrina beta1 , MicroRNAs , Telócitos , Proteínas rac1 de Ligação ao GTP , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Exossomos/metabolismo , Exossomos/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Camundongos , Telócitos/metabolismo , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos Endogâmicos C57BL , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Hipóxia/metabolismo , Hipóxia/genética , Hipóxia/complicações , Proliferação de Células/genética , Movimento Celular/genética , Humanos , Remodelação Vascular/genética , Neuropeptídeos
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731946

RESUMO

Systemic sclerosis (SSc) is a heterogeneous disease characterized by autoimmunity, vasculopathy, and fibrosis which affects the skin and internal organs. One key aspect of SSc vasculopathy is pulmonary arterial hypertension (SSc-PAH) which represents a leading cause of morbidity and mortality in patients with SSc. The pathogenesis of pulmonary hypertension is complex, with multiple vascular cell types, inflammation, and intracellular signaling pathways contributing to vascular pathology and remodeling. In this review, we focus on shared molecular features of pulmonary hypertension and those which make SSc-PAH a unique entity. We highlight advances in the understanding of the clinical and translational science pertinent to this disease. We first review clinical presentations and phenotypes, pathology, and novel biomarkers, and then highlight relevant animal models, key cellular and molecular pathways in pathogenesis, and explore emerging treatment strategies in SSc-PAH.


Assuntos
Hipertensão Arterial Pulmonar , Escleroderma Sistêmico , Humanos , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/patologia , Animais , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Arterial Pulmonar/metabolismo , Biomarcadores , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Modelos Animais de Doenças , Pesquisa Translacional Biomédica , Transdução de Sinais
5.
Arq Bras Cardiol ; 121(4): e20230565, 2024.
Artigo em Português, Inglês | MEDLINE | ID: mdl-38695472

RESUMO

Pulmonary veno-occlusive disease (PVOD) and pulmonary capillary hemangiomatosis are rare types of histopathological substrates within the spectrum of pulmonary arterial hypertension (PAH) with a very poor prognosis. They are characterized by a widespread fibroproliferative process of the small caliber veins and/or capillaries with sparing of the larger veins, resulting in a pre-capillary pulmonary hypertension phenotype. Clinical presentation is unspecific and similar to other PAH etiologies. Definitive diagnosis is obtained through histological analysis, although lung biopsy is not advised due to a higher risk of complications. However, some additional findings may allow a presumptive clinical diagnosis of PVOD, particularly a history of smoking, chemotherapy drug use, exposure to organic solvents (particularly trichloroethylene), low diffusing capacity for carbon monoxide (DLCO), exercise induced desaturation, and evidence of venous congestion without left heart disease on imaging, manifested by a classical triad of ground glass opacities, septal lines, and lymphadenopathies. Lung transplant is the only effective treatment, and patients should be referred at the time of diagnosis due to the rapid progression of the disease and associated poor prognosis. We present a case of a 58-year-old man with PAH with features of venous/capillary involvement in which clinical suspicion, prompt diagnosis, and early referral for lung transplantation were determinant factors for the successful outcome.


A doença veno-oclusiva pulmonar (DVOP) e a hemangiomatose capilar pulmonar são tipos raros de substratos histopatológicos dentro do espectro da hipertensão arterial pulmonar (HAP) com prognóstico muito ruim. Caracterizam-se por um processo fibroproliferativo generalizado das veias e/ou capilares de pequeno calibre com preservação das veias maiores, resultando em um fenótipo de hipertensão pulmonar pré-capilar. A apresentação clínica é inespecífica e semelhante a outras etiologias de HAP. O diagnóstico definitivo é obtido por meio de análise histológica, embora a biópsia pulmonar não seja aconselhada devido ao maior risco de complicações. No entanto, alguns achados adicionais podem permitir um diagnóstico clínico presuntivo de DVOP, especialmente história de tabagismo, uso de drogas quimioterápicas, exposição a solventes orgânicos (particularmente tricloroetileno), baixa capacidade de difusão do monóxido de carbono (DLCO), dessaturação ao esforço e evidências de doença venosa sem doença cardíaca esquerda no exame de imagem, manifestada por uma tríade clássica de opacidades em vidro fosco, linhas septais, e linfadenopatias. O transplante pulmonar é o único tratamento eficaz e os pacientes devem ser encaminhados no momento do diagnóstico, devido à rápida progressão da doença e ao prognóstico ruim. Apresentamos o caso de um homem de 58 anos com HAP com características de envolvimento venoso/capilar em que a suspeita clínica, o pronto diagnóstico e o encaminhamento precoce para transplante pulmonar foram determinantes para um bom desfecho.


Assuntos
Pneumopatia Veno-Oclusiva , Humanos , Masculino , Pessoa de Meia-Idade , Pneumopatia Veno-Oclusiva/diagnóstico por imagem , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Pulmonar/etiologia
6.
BMC Pulm Med ; 24(1): 235, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745167

RESUMO

BACKGROUND: Emerging evidences have demonstrated that gut microbiota composition is associated with pulmonary arterial hypertension (PAH). However, the underlying causality between intestinal dysbiosis and PAH remains unresolved. METHOD: An analysis using the two-sample Mendelian randomization (MR) approach was conducted to examine the potential causal relationship between gut microbiota and PAH. To assess exposure data, genetic variants associated with 196 bacterial traits were extracted from the MiBioGen consortium, which included a sample size of 18,340 individuals. As for the outcomes, summary statistics for PAH were obtained from the NHGRI-EBI GWAS Catalog, which conducted a meta-analysis of four independent studies comprising a total of 11,744 samples. Causal effects were estimated employing various methods, including inverse variance weighted (IVW), MR-Egger, weighted median, weight mode and simple mode, with sensitivity analyses also being implemented with Cochran's Q test, MR-Egger intercept test, MR-PRESSO, leave-one-out analysis, and funnel plots. RESULTS: Following false discovery rate (FDR) correction, the genetically predicted genus Eubacterium fissicatena group (odds ratio (OR) 1.471, 95% confidence interval (CI) 1.178-1.837, q = 0.076) exhibited a causal association with PAH. In addition, the genus LachnospiraceaeUCG004 (OR 1.511, 95% CI 1.048-2.177) and genus RuminococcaceaeUCG002 (OR 1.407, 95% CI 1.040-1.905) showed a suggestive increased risk of PAH, while genus Eubacterium eligens group (OR 0.563, 95% CI 0.344-0.922), genus Phascolarctobacterium (OR 0.692, 95% CI 0.487-0.982), genus Erysipelatoclostridium (OR 0.757, 95% CI 0.579-0.989) and genus T-yzzerella3 (OR 0.768, 95% CI 0.624-0.945) were found to have nominal protective effect against PAH. CONCLUSION: The findings from our MR study have revealed a potential causal relationship between gut microbiota and PAH. Specifically, we have identified four types of gut microbiota that exhibit a protective effect on PAH, as well as three types that have a detrimental impact on PAH, thereby offering valuable insights for future mechanistic and clinical investigations in the field of PAH.


Assuntos
Microbioma Gastrointestinal , Análise da Randomização Mendeliana , Humanos , Microbioma Gastrointestinal/genética , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/microbiologia , Estudo de Associação Genômica Ampla , Disbiose/genética , Polimorfismo de Nucleotídeo Único
7.
Clin Respir J ; 18(5): e13771, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747117

RESUMO

BACKGROUND: Hypertension is a main contributing factor of cardiovascular diseases; deregulated circular RNAs are involved in the pathogenesis of pulmonary arterial hypertension (PAH). Herein, we evaluated the function and mechanism of circST6GAL1 in PAH process. METHODS: Human pulmonary artery smooth muscle cells (HPASMCs) were cultured in hypoxic environment for functional analysis. The cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, and flow cytometry assays were used to investigate cell proliferation, migration, and apoptosis. qRT-PCR and Western blotting analyses were used for level measurement of genes and proteins. The binding between miR-509-5p and circST6GAL1 or multiple C2 and transmembrane domain containing 2 (MCTP2) was analyzed by dual-luciferase reporter, RNA immunoprecipitation, and pull-down assays. The monocrotaline (MCT)-induced PAH mouse models were established for in vivo assay. RESULTS: CircST6GAL1 was highly expressed in PAH patients and hypoxia-induced HPASMCs. Functionally, circST6GAL1 deficiency reversed hypoxia-induced proliferation and migration, as well as apoptosis arrest in HPASMCs. Mechanistically, circST6GAL1 directly targeted miR-509-5p, and MCTP2 was a target of miR-509-5p. Rescue assays showed that the regulatory effects of circST6GAL1 deficiency on hypoxia-induced HPASMCs were abolished. Moreover, forced expression of miR-509-5p suppressed HPASMC proliferation and migration and induced cell apoptosis under hypoxia stimulation, while these effects were abolished by MCTP2 overexpression. Moreover, circST6GAL1 silencing improved MCT-induced pulmonary vascular remodeling and PAH. CONCLUSION: CircST6GAL1 deficiency reversed hypoxia-induced proliferation and migration, as well as apoptosis arrest in HPASMCs, and alleviated pulmonary vascular remodeling in MCT-induced PAH mouse models through the miR-509-5p/MCTP2 axis, indicating a potential therapeutic target for PAH.


Assuntos
Apoptose , Proliferação de Células , MicroRNAs , Hipertensão Arterial Pulmonar , RNA Circular , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos , Animais , RNA Circular/genética , RNA Circular/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Modelos Animais de Doenças , Miócitos de Músculo Liso/metabolismo , Masculino , Movimento Celular/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Células Cultivadas , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia
11.
Respir Res ; 25(1): 192, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702687

RESUMO

This review examines how single-cell omics technologies, particularly single-cell RNA sequencing (scRNAseq), enhance our understanding of pulmonary arterial hypertension (PAH). PAH is a multifaceted disorder marked by pulmonary vascular remodeling, leading to high morbidity and mortality. The cellular pathobiology of this heterogeneous disease, involving various vascular and non-vascular cell types, is not fully understood. Traditional PAH studies have struggled to resolve the complexity of pathogenic cell populations. scRNAseq offers a refined perspective by detailing cellular diversity within PAH, identifying unique cell subsets, gene networks, and molecular pathways that drive the disease. We discuss significant findings from recent literature, summarizing how scRNAseq has shifted our understanding of PAH in human, rat, and mouse models. This review highlights the insights gained into cellular phenotypes, gene expression patterns, and novel molecular targets, and contemplates the challenges and prospective paths for research. We propose ways in which single-cell omics could inform future research and translational efforts to combat PAH.


Assuntos
Análise de Célula Única , Humanos , Animais , Análise de Célula Única/métodos , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/patologia , Análise de Sequência de RNA/métodos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia
13.
Eur J Med Res ; 29(1): 209, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561801

RESUMO

BACKGROUND: Pathologic variants in the bone morphogenetic protein receptor-2 (BMPR2) gene cause a pulmonary arterial hypertension phenotype in an autosomal-dominant pattern with incomplete penetrance. Straight back syndrome is one of the causes of pseudo-heart diseases. To date, no cases of idiopathic or heritable pulmonary arterial hypertension with straight back syndrome have been reported. CASE PRESENTATION: A 30-year-old female was diagnosed with pulmonary arterial hypertension by right heart catheterization. Computed tomography revealed a decreased anteroposterior thoracic space with heart compression, indicating a straight back syndrome. Genetic analysis by whole exome sequencing identified a novel c.2423_2424delGT (p.G808Gfs*4) germline frameshift variant within BMPR2 affecting the cytoplasmic tail domain. CONCLUSIONS: This is the first report of different straight back characteristics in heritable pulmonary arterial hypertension with a novel germline BMPR2 variant. This finding may provide a new perspective on the variable penetrance of the pulmonary arterial hypertension phenotype.


Assuntos
Hipertensão Arterial Pulmonar , Feminino , Humanos , Adulto , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Arterial Pulmonar/genética , Fenótipo , Mutação , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo
16.
Sci Rep ; 14(1): 8670, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622371

RESUMO

Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Humanos , Animais , Hipertensão Pulmonar/tratamento farmacológico , Osteopontina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Artéria Pulmonar/metabolismo , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , RNA Interferente Pequeno/metabolismo , Autofagia/genética , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Remodelação Vascular
17.
Circulation ; 149(20): 1549-1564, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38606558

RESUMO

BACKGROUND: Among patients with pulmonary arterial hypertension (PAH), acute vasoreactivity testing during right heart catheterization may identify acute vasoresponders, for whom treatment with high-dose calcium channel blockers (CCBs) is recommended. However, long-term outcomes in the current era remain largely unknown. We sought to evaluate the implications of acute vasoreactivity response for long-term response to CCBs and other outcomes. METHODS: Patients diagnosed with PAH between January 1999 and December 2018 at 15 pulmonary hypertension centers were included and analyzed retrospectively. In accordance with current guidelines, acute vasoreactivity response was defined by a decrease of mean pulmonary artery pressure by ≥10 mm Hg to reach <40 mm Hg, without a decrease in cardiac output. Long-term response to CCBs was defined as alive with unchanged initial CCB therapy with or without other initial PAH therapy and World Health Organization functional class I/II and/or low European Society of Cardiology/European Respiratory Society risk status at 12 months after initiation of CCBs. Patients were followed for up to 5 years; clinical measures, outcome, and subsequent treatment patterns were captured. RESULTS: Of 3702 patients undergoing right heart catheterization for PAH diagnosis, 2051 had idiopathic, heritable, or drug-induced PAH, of whom 1904 (92.8%) underwent acute vasoreactivity testing. A total of 162 patients fulfilled acute vasoreactivity response criteria and received an initial CCB alone (n=123) or in combination with another PAH therapy (n=39). The median follow-up time was 60.0 months (interquartile range, 30.8-60.0), during which overall survival was 86.7%. At 12 months, 53.2% remained on CCB monotherapy, 14.7% on initial CCB plus another initial PAH therapy, and the remaining patients had the CCB withdrawn and/or PAH therapy added. CCB long-term response was found in 54.3% of patients. Five-year survival was 98.5% in long-term responders versus 73.0% in nonresponders. In addition to established vasodilator responder criteria, pulmonary artery compliance at acute vasoreactivity testing, low risk status and NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels at early follow-up correlated with long-term response and predicted survival. CONCLUSIONS: Our data display heterogeneity within the group of vasoresponders, with a large subset failing to show a sustained satisfactory clinical response to CCBs. This highlights the necessity for comprehensive reassessment during early follow-up. The use of pulmonary artery compliance in addition to current measures may better identify those likely to have a good long-term response.


Assuntos
Bloqueadores dos Canais de Cálcio , Cateterismo Cardíaco , Hipertensão Arterial Pulmonar , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/mortalidade , Resultado do Tratamento , Bloqueadores dos Canais de Cálcio/uso terapêutico , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/efeitos dos fármacos , Adulto , Idoso , Anti-Hipertensivos/uso terapêutico
18.
Circ Heart Fail ; 17(5): e011227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38572639

RESUMO

BACKGROUND: This study aims to assess the impact of sotatercept on exercise tolerance, exercise capacity, and right ventricular function in pulmonary arterial hypertension. METHODS: SPECTRA (Sotatercept Phase 2 Exploratory Clinical Trial in PAH) was a phase 2a, single-arm, open-label, multicenter exploratory study that evaluated the effects of sotatercept by invasive cardiopulmonary exercise testing in participants with pulmonary arterial hypertension and World Health Organization functional class III on combination background therapy. The primary end point was the change in peak oxygen uptake from baseline to week 24. Cardiac magnetic resonance imaging was performed to assess right ventricular function. RESULTS: Among the 21 participants completing 24 weeks of treatment, there was a significant improvement from baseline in peak oxygen uptake, with a mean change of 102.74 mL/min ([95% CIs, 27.72-177.76]; P=0.0097). Sotatercept demonstrated improvements in secondary end points, including resting and peak exercise hemodynamics, and 6-minute walk distance versus baseline measures. Cardiac magnetic resonance imaging showed improvements from baseline at week 24 in right ventricular function. CONCLUSIONS: The clinical efficacy and safety of sotatercept demonstrated in the SPECTRA study emphasize the potential of this therapy as a new treatment option for patients with pulmonary arterial hypertension. Improvements in right ventricular structure and function underscore the potential for sotatercept as a disease-modifying agent with reverse-remodeling capabilities. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03738150.


Assuntos
Tolerância ao Exercício , Hipertensão Arterial Pulmonar , Função Ventricular Direita , Humanos , Tolerância ao Exercício/efeitos dos fármacos , Masculino , Feminino , Função Ventricular Direita/efeitos dos fármacos , Pessoa de Meia-Idade , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/fisiopatologia , Adulto , Resultado do Tratamento , Teste de Esforço , Proteínas Recombinantes de Fusão/uso terapêutico , Idoso , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Consumo de Oxigênio/efeitos dos fármacos , Teste de Caminhada , Receptores de Activinas Tipo II/uso terapêutico , Recuperação de Função Fisiológica
19.
JCI Insight ; 9(10)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652537

RESUMO

NKX2-5 is a member of the homeobox-containing transcription factors critical in regulating tissue differentiation in development. Here, we report a role for NKX2-5 in vascular smooth muscle cell phenotypic modulation in vitro and in vascular remodeling in vivo. NKX2-5 is upregulated in scleroderma patients with pulmonary arterial hypertension. Suppression of NKX2-5 expression in smooth muscle cells halted vascular smooth muscle proliferation and migration, enhanced contractility, and blocked the expression of extracellular matrix genes. Conversely, overexpression of NKX2-5 suppressed the expression of contractile genes (ACTA2, TAGLN, CNN1) and enhanced the expression of matrix genes (COL1) in vascular smooth muscle cells. In vivo, conditional deletion of NKX2-5 attenuated blood vessel remodeling and halted the progression to hypertension in a mouse chronic hypoxia model. This study revealed that signals related to injury such as serum and low confluence, which induce NKX2-5 expression in cultured cells, is potentiated by TGF-ß and further enhanced by hypoxia. The effect of TGF-ß was sensitive to ERK5 and PI3K inhibition. Our data suggest a pivotal role for NKX2-5 in the phenotypic modulation of smooth muscle cells during pathological vascular remodeling and provide proof of concept for therapeutic targeting of NKX2-5 in vasculopathies.


Assuntos
Proteína Homeobox Nkx-2.5 , Músculo Liso Vascular , Remodelação Vascular , Animais , Camundongos , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Remodelação Vascular/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Masculino , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/etiologia , Feminino , Fator de Crescimento Transformador beta/metabolismo , Modelos Animais de Doenças , Proliferação de Células/genética , Pessoa de Meia-Idade , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia
20.
Int J Cardiol ; 406: 132003, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561109

RESUMO

Quality of life of patients suffering from chronic diseases is inevitably conditioned by the number of pills taken during the day. To improve patients' tolerability, compliance and quality of life and reduce healthcare costs, pharmaceutical companies are focusing on the commercialization of fixed-dose combination (FDC) therapies. The last ESC/ERS guidelines for the treatment of pulmonary arterial hypertension (PAH) recommend initial dual combination therapy for newly diagnosed patients at low or intermediate mortality risk. In this regard, polypills including an endothelin receptor antagonist (ERA) and a phosphodiesterase 5 inhibitor (PDE5-i) could represent an useful therapeutic strategy, although with some limitations. To date, evidence about the use of FDCs in PAH is limited but future studies evaluating their safety and efficacy are welcome.


Assuntos
Anti-Hipertensivos , Combinação de Medicamentos , Hipertensão Arterial Pulmonar , Humanos , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/uso terapêutico , Hipertensão Arterial Pulmonar/tratamento farmacológico , Antagonistas dos Receptores de Endotelina/administração & dosagem , Inibidores da Fosfodiesterase 5/administração & dosagem , Quimioterapia Combinada , Hipertensão Pulmonar/tratamento farmacológico , Qualidade de Vida , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA