Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.532
Filtrar
1.
Front Immunol ; 15: 1362642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745649

RESUMO

Hyperuricaemia (HUA) is a metabolic disorder characterised by high blood uric acid (UA) levels; moreover, HUA severity is closely related to the gut microbiota. HUA is also a risk factor for renal damage, diabetes, hypertension, and dyslipidaemia; however, current treatments are associated with detrimental side effects. Alternatively, Fangyukangsuan granules are a natural product with UA-reducing properties. To examine their efficacy in HUA, the binding of small molecules in Fangyukangsuan granules to xanthine oxidase (XOD), a key factor in UA metabolism, was investigated via molecular simulation, and the effects of oral Fangyukangsuan granule administration on serum biochemical indices and intestinal microorganisms in HUA-model rats were examined. Overall, 24 small molecules in Fangyukangsuan granules could bind to XOD. Serum UA, creatinine, blood urea nitrogen, and XOD levels were decreased in rats treated with Fangyukangsuan granules compared to those in untreated HUA-model rats. Moreover, Fangyukangsuan granules restored the intestinal microbial structure in HUA-model rats. Functional analysis of the gut microbiota revealed decreased amino acid biosynthesis and increased fermentation of pyruvate into short-chain fatty acids in Fangyukangsuan granule-treated rats. Together, these findings demonstrate that Fangyukangsuan granules have anti-hyperuricaemic and regulatory effects on the gut microbiota and may be a therapeutic candidate for HUA.


Assuntos
Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Hiperuricemia , Ácido Úrico , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Masculino , Ácido Úrico/sangue , Xantina Oxidase/metabolismo , Ratos Sprague-Dawley
2.
Ann Med ; 56(1): 2332956, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38738384

RESUMO

PURPOSE: It is unknown whether febuxostat can delay the progression of kidney dysfunction and reduce kidney endpoint events. The aim was to evaluate the renoprotective effect of febuxostat in patients with hyperuricemia or gout by performing a meta-analysis of randomized controlled trials (RCTs). METHODS: MEDLINE, Web of science, EMBASE, ClinicalTrials.gov, and the Cochrane Central Register for Randomized Controlled Trials were searched. The main outcomes included kidney events (serum creatinine doubling or progression to end-stage kidney disease or dialysis). The secondary outcomes were the rate of change in the estimated glomerular filtration rate (eGFR) and changes in the urine protein or urine albumin to creatinine ratio from baseline to the end of follow-up. We used random-effects models to calculate the pooled risk estimates and 95% CIs. RESULTS: A total of 16 RCTs were included in the meta-analysis. In comparison with the control group, the patients who received febuxostat showed a reduced risk of kidney events (RR = 0.56, 95% CI 0.37-0.84, p = 0.006) and a slower decline in eGFR (WMD = 0.90 mL/min/1.73 m2, 95% CI 0.31-1.48, p = 0.003). The pooled results also revealed that febuxostat use reduced the urine albumin to creatinine ratio (SMD = -0.21, 95% CI -0.41 to -0.01, p = 0.042). CONCLUSION: Febuxostat use is associated with a reduced risk of kidney events and a slow decline in eGFR. In addition, the urine albumin to creatinine ratio decreased in febuxostat users. Accordingly, it is an effective drug for delaying the progression of kidney function deterioration in patients with gout.Systematic review registration: PROSPERO CRD42021272591.


Assuntos
Febuxostat , Taxa de Filtração Glomerular , Supressores da Gota , Gota , Hiperuricemia , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Creatinina/urina , Creatinina/sangue , Progressão da Doença , Febuxostat/uso terapêutico , Febuxostat/farmacologia , Taxa de Filtração Glomerular/efeitos dos fármacos , Gota/tratamento farmacológico , Gota/complicações , Supressores da Gota/uso terapêutico , Hiperuricemia/tratamento farmacológico , Hiperuricemia/complicações , Rim/fisiopatologia , Rim/efeitos dos fármacos , Falência Renal Crônica/prevenção & controle , Falência Renal Crônica/complicações
3.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 217-224, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678602

RESUMO

This study aimed to experimentally compare the uric acid-lowering effect and renal protection of Yiqing Fang in a rat model of hyperuricemia. Additionally, we used network pharmacology to predict the potential active components, targets, and pathways of Yiqing Fang. Male SD rats were randomly divided into control, model, Yiqing Fang, allopurinol, and probenecid groups. Serum creatinine (Scr), blood urea nitrogen (BUN), serum uric acid (UA), alanine transaminase (ALT), complete blood count, and urinary NAG enzyme levels were measured. Standard pathology and electron microscopy samples were prepared from the left kidney to observe renal pathological changes, renal fibrosis, and collagen III expression levels. In addition, we employed network pharmacology to investigate the molecular mechanisms and pathways of Yiqing Fang. The Yiqing Fang group showed significantly lower levels of Scr, BUN, UA, ALT, urinary NAG enzyme, complete blood count, and liver function tests compared to the model group (P < 0.05). Furthermore, both the Yiqing Fang and allopurinol groups exhibited significant reductions in renal pathological changes compared to the model group, along with decreased expression of collagen III. Network pharmacology analysis identified a total of 27 specific sites related to hyperuricemia. The main active components were predicted to include quercetin, berberine, beta-sitosterol, epimedin C, and dioscin. The primary target sites were predicted to include TNF, IL-6, IL-17, IL-1B, and VEGFA. Yiqing Fang may exert its effects through regulation of drug response, urate metabolism, purine compound absorption, inflammation response, lipopolysaccharide response, cytokine activity, and antioxidant activity. These effects may be mediated through signaling pathways such as IL-17, HIF-1, and AGE-RAGE. Yiqing Fang offers potential as a treatment for hyperuricemia due to its multiple active components, targeting of various sites, and engagement of multiple pathways.


Assuntos
Medicamentos de Ervas Chinesas , Hiperuricemia , Rim , Ratos Sprague-Dawley , Ácido Úrico , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Masculino , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Ácido Úrico/sangue , Ratos , Modelos Animais de Doenças , Farmacologia em Rede/métodos , Creatinina/sangue , Nitrogênio da Ureia Sanguínea
4.
Eur J Med Chem ; 271: 116407, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663283

RESUMO

Xanthine oxidoreductase (XOR) and uric acid transporter 1 (URAT1) are two most widely studied targets involved in production and reabsorption of uric acid, respectively. Marketed drugs almost target XOR or URAT1, but sometimes, single agents might not achieve aim of lowering uric acid to ideal value in clinic. Thus, therapeutic strategies of combining XOR inhibitors with uricosuric drugs were proposed and implemented. Based on our initial work of virtual screening, A and B were potential hits for dual-targeted inhibitors on XOR/URAT1. By docking A/B with XOR/URAT1 respectively, compounds I1-7 were designed to get different degree of inhibition effect on XOR and URAT1, and I7 showed the best inhibitory effect on XOR (IC50 = 0.037 ± 0.001 µM) and URAT1 (IC50 = 546.70 ± 32.60 µM). Further docking research on I7 with XOR/URAT1 led to the design of compounds II with the significantly improved inhibitory activity on XOR and URAT1, such as II11 and II15. Especially, for II15, the IC50 of XOR is 0.006 ± 0.000 µM, superior to that of febuxostat (IC50 = 0.008 ± 0.000 µM), IC50 of URAT1 is 12.90 ± 2.30 µM, superior to that of benzbromarone (IC50 = 27.04 ± 2.55 µM). In acute hyperuricemia mouse model, II15 showed significant uric acid lowering effect. The results suggest that II15 had good inhibitory effect on XOR/URAT1, with the possibility for further investigation in in-vivo models of hyperuricemia.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Transportadores de Ânions Orgânicos , Proteínas de Transporte de Cátions Orgânicos , Piridinas , Animais , Piridinas/farmacologia , Piridinas/química , Piridinas/síntese química , Camundongos , Humanos , Relação Estrutura-Atividade , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Simulação de Acoplamento Molecular , Xantina Desidrogenase/antagonistas & inibidores , Xantina Desidrogenase/metabolismo , Relação Dose-Resposta a Droga , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Masculino , Ácido Úrico/metabolismo
5.
Nutrients ; 16(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38613119

RESUMO

Resveratrol (RES) has been reported to prevent hyperuricemia (HUA); however, its effect on intestinal uric acid metabolism remains unclear. This study evaluated the impact of RES on intestinal uric acid metabolism in mice with HUA induced by a high-fat diet (HFD). Moreover, we revealed the underlying mechanism through metagenomics, fecal microbiota transplantation (FMT), and 16S ribosomal RNA analysis. We demonstrated that RES reduced the serum uric acid, creatinine, urea nitrogen, and urinary protein levels, and improved the glomerular atrophy, unclear renal tubule structure, fibrosis, and renal inflammation. The results also showed that RES increased intestinal uric acid degradation. RES significantly changed the intestinal flora composition of HFD-fed mice by enriching the beneficial bacteria that degrade uric acid, reducing harmful bacteria that promote inflammation, and improving microbial function via the upregulation of purine metabolism. The FMT results further showed that the intestinal microbiota is essential for the effect of RES on HUA, and that Lactobacillus may play a key role in this process. The present study demonstrated that RES alleviates HFD-induced HUA and renal injury by regulating the gut microbiota composition and the metabolism of uric acid.


Assuntos
Microbioma Gastrointestinal , Hiperuricemia , Animais , Camundongos , Hiperuricemia/tratamento farmacológico , Resveratrol/farmacologia , Ácido Úrico , Túbulos Renais , Inflamação
6.
J Ethnopharmacol ; 330: 118254, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38670409

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gout, a painful joint disease with a prevalence ranging from 0.86% to 2.2% in China over the past decade. Traditional medicine has long utilized the medicinal and edible Piper longum L. (PL) fruit spikes for treating gout and other joint conditions like rheumatoid arthritis. However, the exact mechanisms behind its effectiveness remain unclear. AIM OF THE STUDY: This study aimed to investigate the potential of alcoholic extracts from PL fruit spikes as a safe and effective treatment for gout. We used a combined network pharmacology and experimental validation approach to evaluate the mechanisms behind the anti-gout properties of PL. MATERIALS AND METHODS: UPLC-Q/TOF-MS analysis determined the major components of PL. Subsequently, network pharmacology analysis predicted potential molecular targets and related signaling pathways for the anti-gout activity of PL. Molecular docking simulations further explored the interactions between PL compounds and proteins and characterized the properties of potential bioactive secondary metabolites. Mouse models of air pouch inflammation and hyperuricemia were further established, and the anti-gout mechanism of PL was confirmed by examining the expression of proteins related to the MAPK and PI3K-AKT pathways in the tissue. RESULTS: Our analysis revealed 220 bioactive secondary metabolites within PL extracts. Network pharmacology and molecular docking results indicated that these metabolites primarily combat gout by modulating the PI3K-AKT and MAPK signaling pathways. In vivo experiments have also proven that PL at a dose of 100 mg/kg can optimally reduce acute inflammation of gout and kidney damage caused by high uric acid. The anti-gout mechanism involves the PI3K-AKT/MAPK signaling pathway and its downstream NF-κB pathway. CONCLUSION: This study provides compelling evidence for PL's therapeutic potential in gout management by modulating key inflammatory pathways. The findings offer a strong foundation for future clinical exploration of PL as a gout treatment option.


Assuntos
Gota , Fosfatidilinositol 3-Quinases , Piper , Extratos Vegetais , Proteínas Proto-Oncogênicas c-akt , Animais , Piper/química , Gota/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Camundongos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais/efeitos dos fármacos , Farmacologia em Rede , Hiperuricemia/tratamento farmacológico , Camundongos Endogâmicos C57BL , Supressores da Gota/farmacologia , Supressores da Gota/uso terapêutico , Supressores da Gota/isolamento & purificação , Frutas/química , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo
7.
Int Immunopharmacol ; 132: 111932, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38560961

RESUMO

Uric acid is a product of purine degradation, and uric acid may have multiple physiologic roles, including the beneficial effects as an antioxidant and neuroprotector, maintenance of blood pressure during low salt ingestion, and modulation of immunity. However, overproduction of metabolic uric acid, and/or imbalance of renal uric acid secretion and reabsorption, and/or underexcretion of extrarenal uric acid, e.g. gut, will contribute to hyperuricemia, which is a common metabolic disease. Long-lasting hyperuricemia can induce the formation and deposition of monosodium urate (MSU) crystals within the joints and periarticular structures. MSU crystals further induce an acute, intensely painful, and sterile inflammation conditions named as gout by NLRP3 inflammasome-mediated cleavage of pro-IL-1ß to bioactive IL-1ß. Moreover, hyperuricemia and gout are associated with multiple cardiovascular and renal disorders, e.g., hypertension, myocardial infarction, stroke, obesity, hyperlipidemia, type 2 diabetes mellitus and chronic kidney disease. Although great efforts have been made by scientists of modern medicine, however, modern therapeutic strategies with a single target are difficult to exert long-term positive effects, and even some of these agents have severe adverse effects. The Chinese have used the ancient classic prescriptions of traditional Chinese medicine (TCM) to treat metabolic diseases, including gout, by multiple targets, for more than 2200 years. In this review, we discuss the current understanding of urate homeostasis, the pathogenesis of hyperuricemia and gout, and both modern medicine and TCM strategies for this commonly metabolic disorder. We hope these will provide the good references for treating hyperuricemia and gout.


Assuntos
Gota , Homeostase , Hiperuricemia , Transdução de Sinais , Ácido Úrico , Humanos , Gota/metabolismo , Gota/tratamento farmacológico , Ácido Úrico/metabolismo , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
9.
Clin Rheumatol ; 43(5): 1745-1754, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492092

RESUMO

OBJECTIVE: Urate-lowering therapy (ULT) is widely recognized as the primary treatment for hyperuricemia and gout. Xanthine oxidase inhibitors (XOI), particularly febuxostat, have gained popularity as a frontline approach. However, the divergent efficacy and safety between febuxostat and the traditional ULT drug, benzbromarone, remain poorly understood. This knowledge gap necessitates a comprehensive analysis and evidence update to guide drug selection for physicians and patients. METHOD: We conducted a systematic analysis by extracting relevant clinical studies from four medical literature databases. Forest plots, funnel plots, sensitivity analysis, Egger's test, and subgroup analysis were utilized to compare relevant indicators. RESULTS: The advantages and disadvantages of the two drugs were evaluated based on various indicators such as serum uric acid (SUA), triglyceride (TG), urinary uric acid (UUA), white blood cell count (WBC), total cholesterol (TC), blood urea nitrogen (BUN), alanine aminotransferase (ALT), aspartate aminotransferase (AST), estimated glomerular filtration rate (eGFR), and serum creatinine (SC). Benzbromarone demonstrated better efficacy in rapidly reducing SUA levels and inhibiting inflammation for hyperuricemia and gout patients. Febuxostat was slightly less effective in lowering SUA, but there was no significant difference in its impact on liver and kidney function after long-term use. CONCLUSION: This study highlights the superiority of benzbromarone in rapidly reducing SUA and inhibiting inflammation. Febuxostat shows comparable effects on liver and kidney function after long-term use. These findings provide valuable insights for clinicians and patients in drug selection. Key Points • Benzbromarone stands out as a highly effective treatment for hyperuricemia and gout, offering rapid reduction of serum uric acid levels and potent anti-inflammatory effects. • When it comes to long-term use, febuxostat demonstrates comparable effects on liver and kidney function. This provides reassurance for patients who require extended treatment duration. • Moreover, our study goes beyond previous research by presenting a more comprehensive and detailed analysis.


Assuntos
Gota , Hiperuricemia , Humanos , Febuxostat/uso terapêutico , Hiperuricemia/tratamento farmacológico , Benzobromarona/uso terapêutico , Ácido Úrico , Supressores da Gota/efeitos adversos , Gota/tratamento farmacológico , Resultado do Tratamento , Inflamação/tratamento farmacológico , Alopurinol/uso terapêutico
10.
Clin Transl Sci ; 17(3): e13757, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488426

RESUMO

The cardiovascular (CV) safety of febuxostat compared to allopurinol for the treatment of hyperuricemia among Asian patients is uncertain. In this study, we conducted a systematic review and meta-analysis to compare the CV safety profiles of febuxostat with allopurinol in Asian patients with hyperuricemia. A total of 13 studies were included. On the basis of the pooled results of cohort studies, febuxostat users were at a significantly higher risk for acute coronary syndrome (ACS; hazard ratio [HR]: 1.06, 95% confidence interval [CI]: 1.03-1.09, p < 0.01), atrial fibrillation (HR: 1.19, 95% CI: 1.05-1.35, p < 0.01) than allopurinol users, whereas no significant difference between febuxostat and allopurinol existed for urgent coronary revascularization (HR: 1.07, 95% CI: 0.98-1.16, p = 0.13), and stroke (HR: 0.96, 95% CI: 0.91-1.01, p = 0.13). Nevertheless, that difference in results of acute decompensated heart failure (ADHF; HR: 0.73, 95% CI: 0.35-1.53, p = 0.40) and all-cause death (HR = 0.86, 95% CI: 0.49-1.51, p = 0.60) was not significant based on randomized controlled trials. In the Chinese subgroup, febuxostat could increase the risk of ADHF (HR: 1.22, 95% CI: 1.01-1.48, p < 0.05), CV death (HR: 1.25, 95% CI: 1.03-1.50, p < 0.05), and all-cause mortality (HR: 1.07, 95% CI: 1.01-1.14, p < 0.05) compared to allopurinol. In conclusion, the use of febuxostat, compared with allopurinol among Asian patients, was associated with a significantly increased risk of adverse CV events.


Assuntos
Doenças Cardiovasculares , Gota , Hiperuricemia , Humanos , Alopurinol/efeitos adversos , Febuxostat/efeitos adversos , Hiperuricemia/complicações , Hiperuricemia/tratamento farmacológico , Supressores da Gota/efeitos adversos , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia , Gota/tratamento farmacológico , Resultado do Tratamento
11.
Lipids Health Dis ; 23(1): 77, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468241

RESUMO

BACKGROUND: Obesity is associated with elevated serum uric acid (SUA) levels and frequent gout flares. Losing weight can reduce the SUA level and gout flares. The effect of orlistat on SUA levels and gout flares in patients with overweight/obesity and hyperuricemia (HUA) has not been extensively studied. This study investigated the effects of orlistat on SUA levels and gout flares compared to placebo in overweight and obese patients with HUA. METHODS: A total of 72 Chinese patients with overweight/obesity and HUA were randomly divided into a placebo group (35, 48.6%) and an orlistat group (37, 51.4%); the trial lasted 12 weeks. The primary endpoints were the relative changes in body weight, the SUA level, and gout flares in the per-protocol population. RESULTS: Orlistat reduced the proportion of patients with gout flares (log-rank P = 0.023, hazard ratio = 0.31, 95% confidence interval 0.11-0.85). There was no significant difference in SUA level between the two groups. The average weight loss of the orlistat group was 2.85 kg, and the average weight loss of the placebo group was 0.76 kg. The weight loss in the orlistat group was significantly greater than that in the control group (P < 0.05). CONCLUSIONS: This study is the first to demonstrate that orlistat has no significant effect on SUA levels in patients with overweight/obesity and HUA. The utility of orlistat as an adjunct therapy to prevent gout flares during weight loss in patients with HUA was emphasized. TRIAL REGISTRATION: Clinicaltrials.gov NCT05496075.


Assuntos
Hiperuricemia , Orlistate , Sobrepeso , Humanos , Masculino , Método Duplo-Cego , Gota/complicações , Gota/tratamento farmacológico , Hiperuricemia/complicações , Hiperuricemia/tratamento farmacológico , Obesidade/complicações , Obesidade/tratamento farmacológico , Orlistate/efeitos adversos , Sobrepeso/complicações , Sobrepeso/tratamento farmacológico , Ácido Úrico , Redução de Peso
12.
Sci Rep ; 14(1): 6991, 2024 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523180

RESUMO

Gout and hyperuricemia are characterized by high uric acid levels, and their treatment involves medications that have adverse effects. In this study, we evaluated oral liposomal formulations with eremantholide C and goyazensolide as a novel approach to reduce the toxicity associated with these substances while maintaining their anti-hyperuricemic activity. We characterized the formulations and evaluated them based on encapsulation efficiency and stability over 12 months and under simulated physiological environments. We determined the toxicity of the liposomal formulations in Caco-2 cells and the anti-hyperuricemic activity in rats. The formulations exhibited nanometric size, a narrow size distribution, and a negative zeta potential, indicating their stability and uniformity. The efficient encapsulation of the sesquiterpene lactones within the liposomes emphasizes their potential for sustained release and therapeutic efficacy. Stability evaluation revealed a small decrease in the eremantholide C concentration and a remarkable stability in the goyazensolide concentration. In Caco-2 cells, the liposomes did not exert toxicity, but did exhibit an antiproliferative effect. In vivo assays demonstrated that the liposomes reduced serum uric acid levels. Our study represents an advancement in gout and hyperuricemia treatment. The liposomal formulations effectively reduced the toxicity associated with the sesquiterpene lactones while maintaining their therapeutic effects.


Assuntos
Artrite Gotosa , Hidrocarbonetos Aromáticos com Pontes , Furanos , Gota , Hiperuricemia , Sesquiterpenos , Sesterterpenos , Humanos , Ratos , Animais , Lipossomos/uso terapêutico , Ácido Úrico/uso terapêutico , Hiperuricemia/tratamento farmacológico , Células CACO-2 , Gota/tratamento farmacológico , Lactonas/farmacologia , Lactonas/uso terapêutico
13.
J Agric Food Chem ; 72(12): 6565-6574, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498316

RESUMO

Uncontrolled hyperuricemia often leads to the development of hyperuricemic nephropathy (HN), characterized by excessive inflammation and oxidative stress. Piperine, a cinnamic acid alkaloid, possesses various pharmacological activities, such as antioxidant and anti-inflammatory effects. In this study, we intended to investigate the protective effects of piperine on adenine and potassium oxonate-induced HN mice and a uric-acid-induced injury model in renal tubular epithelial cells (mRTECs). We observed that treatment with piperine for 3 weeks significantly reduced serum uric acid levels and reversed kidney function impairment in mice with HN. Piperine (5 µM) alleviated uric acid-induced damage in mRTECs. Moreover, piperine inhibited transporter expression and dose-dependently inhibited the activity of both transporters. The results revealed that piperine regulated the AKT/mTOR signaling pathway both in vivo and in vitro. Overall, piperine inhibits URAT1/GLUT9 and ameliorates HN by inhibiting the AKT/mTOR pathway, making it a promising candidate for patients with HN.


Assuntos
Alcaloides , Benzodioxóis , Hiperuricemia , Piperidinas , Alcamidas Poli-Insaturadas , Humanos , Camundongos , Animais , Hiperuricemia/tratamento farmacológico , Ácido Úrico/metabolismo , Rim/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Serina-Treonina Quinases TOR/metabolismo
14.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542302

RESUMO

Cardiorenal syndrome (CRS) involves joint dysfunction of the heart and kidney. Acute forms share biochemical alterations like hyperuricaemia (HU) with tumour lysis syndrome (TLS). The mainstay treatment of acute CRS with systemic overload is diuretics, but rasburicase is used in TLS to prevent and treat hyperuricaemia. An observational, retrospective study was performed to assess the effectiveness and safety of a single dose of rasburicase in hospitalized patients with cardiorenal syndrome, worsening renal function and uric acid levels above 9 mg/dL. Rasburicase improved diuresis and systemic congestion in the 35 patients included. A total of 86% of patients did not need to undergo RRT, and early withdrawal was possible in the remaining five. Creatinine (Cr) decreased after treatment with rasburicase from a peak of 3.6 ± 1.27 to 1.79 ± 0.83 mg/dL, and the estimated glomerular filtration rate (eGFR) improved from 17 ± 8 to 41 ± 20 mL/min/1.73 m2 (p = 0.0001). The levels of N-terminal type B Brain Natriuretic Peptide (Nt-ProBNP) and C-reactive protein (CRP) were also significantly reduced. No relevant adverse events were detected. Our results show that early treatment with a dose of rasburicase in patients with CRS and severe HU is effective to improve renal function and systemic congestion, avoiding the need for sustained extrarenal clearance, regardless of comorbidities and ventricular function.


Assuntos
Síndrome Cardiorrenal , Hiperuricemia , Síndrome de Lise Tumoral , Humanos , Hiperuricemia/tratamento farmacológico , Síndrome Cardiorrenal/tratamento farmacológico , Estudos Retrospectivos , Síndrome de Lise Tumoral/tratamento farmacológico , Síndrome de Lise Tumoral/etiologia , Síndrome de Lise Tumoral/prevenção & controle , Urato Oxidase/uso terapêutico
15.
J Ethnopharmacol ; 327: 118014, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38460576

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chronic kidney disease can be caused by numerous diseases including obesity and hyperuricemia (HUA). Obesity may exacerbate the renal injury caused by HUA. Red ginseng, a steamed products of Panax ginseng Meyer root, is known for its remarkable efficacy in improving metabolic syndrome, such as maintaining lipid metabolic balance. However, the role of red ginseng on hyperuricemia-induced renal injury in obese cases remains unclear. AIM OF THE STUDY: This study aimed to investigate the action of red ginseng extract (RGE) on lipotoxicity-induced renal injury in HUA mice. MATERIALS AND METHODS: A high-fat diet (HFD)-induced obesity model was employed to initially investigate the effects of RGE on body weight, TC, OGTT, renal lipid droplets, and renal function indices such as uric acid, creatinine, and urea nitrogen. Renal structural improvement was demonstrated by H&E staining. Subsequently, an animal model combining obesity and HUA was established to further study the impact of RGE on OAT1 and ACC1 expression levels. The mechanisms underlying renal injury regulation by RGE were postulated on the basis of RNA sequencing, which was verified by immunohistochemical (including F4/80, Ki67, TGF-ß1, α-SMA, and E-cadherin), Masson, and Sirius red staining. RESULTS: RGE modulated HFD-induced weight gain, glucose metabolism, and abnormalities of uric acid, urea nitrogen, and creatinine. RGE alleviated the more severe renal histopathological changes induced by obesity combined with HUA, with down-regulated the protein levels of ACC1, F4/80, Ki67, TGF-ß1, and α-SMA, and up-regulated OAT1 and E-cadherin. CONCLUSIONS: RGE has ameliorative effects on chronic kidney disease caused by obesity combined with HUA by maintaining lipid balance and reducing renal inflammation and fibrosis.


Assuntos
Hiperuricemia , Panax , Insuficiência Renal Crônica , Camundongos , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/patologia , Fator de Crescimento Transformador beta1 , Ácido Úrico , Creatinina , Antígeno Ki-67 , Obesidade/tratamento farmacológico , Fibrose , Panax/química , Caderinas , Nitrogênio , Lipídeos , Ureia
16.
Eur J Pharmacol ; 971: 176528, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38556118

RESUMO

Hyperuricemic nephropathy (HN) is characterized by renal fibrosis and tubular necrosis caused by elevated uric acid levels. Ferroptosis, an iron-dependent type of cell death, has been implicated in the pathogenesis of kidney diseases. The objective of this study was to explore the role of ferroptosis in HN and the impact of a ferroptosis inhibitor, ferrostatin-1 (Fer-1). The study combined adenine and potassium oxonate administration to establish a HN model in mice and treated HK-2 cells with uric acid to simulate HN conditions. The effects of Fer-1 on the renal function, fibrosis, and ferroptosis-associated molecules were investigated in HN mice and HK-2 cells treated with uric acid. The HN mice presented with renal dysfunction characterized by elevated tissue iron levels and diminished antioxidant capacity. There was a significant decrease in the mRNA and protein expression levels of SLC7A11, GPX4, FTL-1 and FTH-1 in HN mice. Conversely, treatment with Fer-1 reduced serum uric acid, serum creatinine, and blood urea nitrogen, while increasing uric acid levels in urine. Fer-1 administration also ameliorated renal tubule dilatation and reduced renal collagen deposition. Additionally, Fer-1 also upregulated the expression levels of SLC7A11, GPX4, FTL-1, and FTH-1, decreased malondialdehyde and iron levels, and enhanced glutathione in vivo and in vitro. Furthermore, we first found that Fer-1 exhibited a dose-dependent inhibition of URAT1, with the IC50 value of 7.37 ± 0.66 µM. Collectively, the current study demonstrated that Fer-1 effectively mitigated HN by suppressing ferroptosis, highlighting the potential of targeting ferroptosis as a therapeutic strategy for HN.


Assuntos
Cicloexilaminas , Ferroptose , Hiperuricemia , Nefropatias , Fenilenodiaminas , Camundongos , Animais , Ácido Úrico , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Nefropatias/tratamento farmacológico , Fibrose , Ferro
17.
J Am Heart Assoc ; 13(7): e033407, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38533986

RESUMO

BACKGROUND: The study aimed to investigate the relationship between uric acid (UA) levels and functional outcomes at 3 months in patients with acute ischemic stroke (AIS) who underwent intravenous thrombolysis (IVT). METHODS AND RESULTS: This prospective cohort study included 1001 consecutive patients with AIS who underwent IVT. The correlation between UA levels and post-IVT AIS outcomes was examined. Any nonlinear relationship was assessed using a restricted cubic spline function. The nonlinear P value for the association of UA levels with favorable (modified Rankin Scale [mRS] score ≤2) and excellent (mRS score ≤1) outcomes at 3 months post-IVT were <0.001 and 0.001, respectively. However, for patients with and without hyperuricemia, no evident nonlinear relationship was observed between UA levels and favorable 3-month post-IVT outcomes, with nonlinear P values of 0.299 and 0.207, respectively. The corresponding interaction analysis yielded a P value of 0.001, indicating significant heterogeneity. Similar results were obtained for excellent outcomes at 3 months post-IVT. In the hyperuricemia group, increased UA levels by 50 µmol/L reduced the odds of a favorable 3-month post-AIS outcome (odds ratio [OR], 0.75 [95% CI, 0.57-0.97]). Conversely, in the nonhyperuricemia group, a similar UA increase was linked to higher favorable outcome odds (OR, 1.31 [95% CI, 1.15-1.50]). CONCLUSIONS: An inverted U-shaped nonlinear relationship was observed between UA levels and favorable and excellent outcomes at 3 months in patients with AIS who underwent IVT. Higher UA levels predict favorable outcomes in patients without hyperuricemia but unfavorable outcomes in those with hyperuricemia.


Assuntos
Isquemia Encefálica , Hiperuricemia , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/complicações , AVC Isquêmico/diagnóstico , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/complicações , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/complicações , Ácido Úrico , Resultado do Tratamento , Hiperuricemia/diagnóstico , Hiperuricemia/tratamento farmacológico , Hiperuricemia/complicações , Estudos Prospectivos , Terapia Trombolítica/efeitos adversos , Terapia Trombolítica/métodos , Fibrinolíticos/uso terapêutico
18.
J Med Chem ; 67(6): 5032-5052, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38482820

RESUMO

Gout and hyperuricemia are metabolic diseases characterized with high serum uric acid (SUA) levels that significantly impact human health. Lesinurad, a uricosuric agent, is limited to concurrent use with xanthine oxidase inhibitors (XOIs) in clinical practice due to its restricted efficacy and potential nephrotoxicity. Herein, extensive structural modifications of lesinurad were conducted through scaffold hopping and substituent modification strategies, affording 54 novel derivatives containing pyrimidine-fused cyclic structures. Notably, the thienopyrimidine compound 29 demonstrated a remarkable 2-fold increase in SUA-lowering in vivo activity compared to lesinurad, while exhibiting potent inhibitory activity against the urate transporter 1 (URAT1, IC50 = 2.01 µM) and glucose transporter 9 (GLUT9, IC50 = 18.21 µM). Furthermore, it possessed a lower effective dosage of 0.5 mg/kg, favorable safety profile without any apparent acute toxicity at doses of 1000 mg/kg, and improved pharmacokinetic properties. Overall, we have discovered an efficacious URAT1/GLUT9 dual inhibitor for inhibiting urate reabsorption with favorable pharmacokinetic profiles.


Assuntos
Gota , Hiperuricemia , Transportadores de Ânions Orgânicos , Tioglicolatos , Triazóis , Humanos , Ácido Úrico/uso terapêutico , Gota/tratamento farmacológico , Hiperuricemia/tratamento farmacológico , Uricosúricos/uso terapêutico , Pirimidinas/toxicidade , Pirimidinas/uso terapêutico , Proteínas Facilitadoras de Transporte de Glucose , Proteínas de Transporte de Cátions Orgânicos
19.
BMC Nephrol ; 25(1): 97, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491453

RESUMO

BACKGROUND: In this study, we aimed to clarify the beneficial effects of urate-lowering treatment with the novel agent dotinurad on renal function in patients with chronic kidney disease (CKD) and hyperuricemia (HUA). METHODS: Thirty-five patients with CKD (mean age 65.4 ± 14.8 years, 23 men) diagnosed with HUA were recruited. Changes in eGFR before and after dotinurad administration were assessed. Patients first underwent a 3-month observation period and then 3 months treatment with dotinurad. RESULTS: During the observation period, mean eGFR (mL/min/1.73 m2) declined significantly. The baseline eGFR was 31.8 ± 16.4 and the serum urate level (sUA, mg/dL) was 8.1 ± 1.7. During the treatment period, eGFR recovered to 36.5 ± 17.5 and sUA decreased to 6.7 ± 1.0. The increase in eGFR after dotinurad administration was correlated with a decrease in sUA (R = 0.375, p = 0.0263). CONCLUSION: Dotinurad administration to patients with CKD and HUA appears to be beneficial in restoring kidney function. Dotinurad may represent a potential medication for the prevention of kidney function decline caused by HUA.


Assuntos
Benzotiazóis , Hiperuricemia , Insuficiência Renal Crônica , Insuficiência Renal , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Hiperuricemia/tratamento farmacológico , Ácido Úrico , Uricosúricos/uso terapêutico , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal/tratamento farmacológico , Rim
20.
Front Endocrinol (Lausanne) ; 15: 1320092, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435751

RESUMO

Introduction: Hyperuricemia (HUA) is a metabolic disorder caused by purine metabolism dysfunction in which the increasing purine levels can be partially attributed to seafood consumption. Perillae Folium (PF), a widely used plant in functional food, has been historically used to mitigate seafood-induced diseases. However, its efficacy against HUA and the underlying mechanism remain unclear. Methods: A network pharmacology analysis was performed to identify candidate targets and potential mechanisms involved in PF treating HUA. The candidate targets were determined based on TCMSP, SwissTargetPrediction, Open Targets Platform, GeneCards, Comparative Toxicogenomics Database, and DrugBank. The potential mechanisms were predicted via Gene Ontology (GO) and Kyoto Gene and Genome Encyclopedia (KEGG) analyses. Molecular docking in AutoDock Vina and PyRx were performed to predict the binding affinity and pose between herbal compounds and HUA-related targets. A chemical structure analysis of PF compounds was performed using OSIRIS DataWarrior and ClassyFire. We then conducted virtual pharmacokinetic and toxicity screening to filter potential inhibitors. We further performed verifications of these inhibitors' roles in HUA through molecular dynamics (MD) simulations, text-mining, and untargeted metabolomics analysis. Results: We obtained 8200 predicted binding results between 328 herbal compounds and 25 potential targets, and xanthine dehydrogenase (XDH) exhibited the highest average binding affinity. We screened out five promising ligands (scutellarein, benzyl alpha-D-mannopyranoside, elemol, diisobutyl phthalate, and (3R)-hydroxy-beta-ionone) and performed MD simulations up to 50 ns for XDH complexed to them. The scutellarein-XDH complex exhibited the most satisfactory stability. Furthermore, the text-mining study provided laboratory evidence of scutellarein's function. The metabolomics approach identified 543 compounds and confirmed the presence of scutellarein. Extending MD simulations to 200 ns further indicated the sustained impact of scutellarein on XDH structure. Conclusion: Our study provides a computational and biomedical basis for PF treating HUA and fully elucidates scutellarein's great potential as an XDH inhibitor at the molecular level, holding promise for future drug design and development.


Assuntos
Hiperuricemia , Humanos , Hiperuricemia/tratamento farmacológico , Simulação de Dinâmica Molecular , Alimento Funcional , Simulação de Acoplamento Molecular , Farmacologia em Rede , Purinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA