Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32.442
Filtrar
1.
Pak J Pharm Sci ; 37(2(Special)): 435-442, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38822547

RESUMO

Depression is a common non-motor symptom of Parkinson's disease. Previous studies demonstrated that hydroxysafflor yellow A had properties of improving motor symptoms of Parkinson's disease. The effect of hydroxysafflor yellow A on depression in Parkinson's disease mice is investigated in this study. To induce Parkinson's disease model, male Swiss mice were exposed to rotenone (30 mg/kg) for 6 weeks. The chronic unpredictable mild stress was employed to induce depression from week 3 to week 6. Sucrose preference, tail suspension, and forced swimming tests were conducted. Golgi and Nissl staining of hippocampus were carried out. The levels of dopamine, 5-hydroxytryptamine and the expression of postsynaptic density protein 95, brain-derived neurotrophic factor in hippocampus were assayed. It showed that HSYA improved the depression-like behaviors of Parkinson's disease mice. Hydroxysafflor yellow A attenuated the injury of nerve and elevated contents of dopamine, 5-hydroxytryptamine in hippocampus. Treatment with hydroxysafflor yellow A also augmented the expression of postsynaptic density protein 95 and brain-derived neurotrophic factor. These findings suggest that hydroxysafflor yellow A ameliorates depression-like behavior in Parkinson's disease mice through regulating the contents of postsynaptic density protein 95 and brain-derived neurotrophic factor, therefore protecting neurons and neuronal dendrites of the hippocampus.


Assuntos
Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo , Chalcona , Depressão , Hipocampo , Quinonas , Serotonina , Animais , Quinonas/farmacologia , Quinonas/uso terapêutico , Chalcona/análogos & derivados , Chalcona/farmacologia , Chalcona/uso terapêutico , Masculino , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Comportamento Animal/efeitos dos fármacos , Serotonina/metabolismo , Dopamina/metabolismo , Rotenona/farmacologia , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/psicologia
2.
Nutrients ; 16(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794753

RESUMO

Recent studies have indicated that fucoidan has the potential to improve cognitive impairment. The objective of this study was to demonstrate the protective effect and possible mechanisms of fucoidan in D-galactose (D-gal)-induced cognitive dysfunction. Sprague Dawley rats were injected with D-galactose (200 mg/kg, sc) and administrated with fucoidan (100 mg/kg or 200 mg/kg, ig) for 8 weeks. Our results suggested that fucoidan significantly ameliorated cognitive impairment in D-gal-exposed rats and reversed histopathological changes in the hippocampus. Fucoidan reduced D-gal-induced oxidative stress, declined the inflammation level and improved mitochondrial dysfunction in hippocampal. Fucoidan promoted mitochondrial biogenesis by regulating the PGC-1α/NRF1/TFAM pathway, thereby improving D-gal-induced mitochondrial dysfunction. The regulation effect of fucoidan on PGC-1α is linked to the upstream protein of APN/AMPK/SIRT1. Additionally, the neuroprotective action of fucoidan could be related to maintaining intestinal flora homeostasis with up-regulation of Bacteroidota, Muribaculaceae and Akkermansia and down-regulation of Firmicutes. In summary, fucoidan may be a natural, promising candidate active ingredient for age-related cognitive impairment interventions.


Assuntos
Disfunção Cognitiva , Galactose , Microbioma Gastrointestinal , Hipocampo , Homeostase , Mitocôndrias , Biogênese de Organelas , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Polissacarídeos , Ratos Sprague-Dawley , Polissacarídeos/farmacologia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Homeostase/efeitos dos fármacos , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ratos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Sirtuína 1/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição
3.
CNS Neurosci Ther ; 30(5): e14719, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38783536

RESUMO

BACKGROUND: Methamphetamine (METH) is a psychostimulant substance with highly addictive and neurotoxic effects, but no ideal treatment option exists to improve METH-induced neurocognitive deficits. Recently, mesenchymal stem cells (MSCs)-derived exosomes have raised many hopes for treating neurodegenerative sequela of brain disorders. This study aimed to determine the therapeutic potential of MSCs-derived exosomes on cognitive function and neurogenesis of METH-addicted rodents. METHODS: Male BALB/c mice were subjected to chronic METH addiction, followed by intravenous administration of bone marrow MSCs-derived exosomes. Then, the spatial memory and recognition memory of animals were assessed by the Barnes maze and the novel object recognition test (NORT). The neurogenesis-related factors, including NeuN and DCX, and the expression of Iba-1, a microglial activation marker, were assessed in the hippocampus by immunofluorescence staining. Also, the expression of inflammatory cytokines, including TNF-α and NF-κB, were evaluated by western blotting. RESULTS: The results showed that BMSCs-exosomes improved the time spent in the target quadrant and correct-to-wrong relative time in the Barnes maze. Also, NORT's discrimination index (DI) and recognition index (RI) were improved following exosome therapy. Additionally, exosome therapy significantly increased the expression of NeuN and DCX in the hippocampus while decreasing the expression of inflammatory cytokines, including TNF-α and NF-κB. Besides, BMSC-exosomes down-regulated the expression of Iba-1. CONCLUSION: Our findings indicate that BMSC-exosomes mitigated METH-caused cognitive dysfunction by improving neurogenesis and inhibiting neuroinflammation in the hippocampus.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Proteína Duplacortina , Exossomos , Hipocampo , Células-Tronco Mesenquimais , Metanfetamina , Camundongos Endogâmicos BALB C , Neurogênese , Animais , Exossomos/metabolismo , Masculino , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Camundongos , Metanfetamina/toxicidade , Transtornos Relacionados ao Uso de Anfetaminas/terapia , Transtornos Relacionados ao Uso de Anfetaminas/psicologia , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Cognição/fisiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Estimulantes do Sistema Nervoso Central/toxicidade , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Proteínas dos Microfilamentos/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA
4.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791161

RESUMO

Adult neurogenesis in the dentate gyrus (DG) is impaired during Alzheimer's disease (AD) progression. Curcumin has been reported to reduce cell apoptosis and stimulate neurogenesis. This study aimed to investigate the influence of curcumin on adult neurogenesis in AD mice and its potential mechanism. Two-month-old male C57BL/6J mice were injected with soluble ß-amyloid (Aß1-42) using lateral ventricle stereolocalization to establish AD models. An immunofluorescence assay, including bromodeoxyuridine (BrdU), doublecortin (DCX), and neuron-specific nuclear antigen (NeuN), was used to detect hippocampal neurogenesis. Western blot and an enzyme-linked immunosorbent assay (ELISA) were used to test the expression of related proteins and the secretion of brain-derived neurotrophic factor (BDNF). A Morris water maze was used to detect the cognitive function of the mice. Our results showed that curcumin administration (100 mg/kg) rescued the impaired neurogenesis of Aß1-42 mice, shown as enhanced BrdU+/DCX+ and BrdU+/NeuN+ cells in DG. In addition, curcumin regulated the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) -mediated glycogen synthase kinase-3ß (GSK3ß) /Wingless/Integrated (Wnt)/ß-catenin pathway and cyclic adenosine monophosphate response element-binding protein (CREB)/BDNF in Aß1-42 mice. Inhibiting Wnt/ß-catenin and depriving BDNF could reverse both the upregulated neurogenesis and cognitive function of curcumin-treated Aß1-42 mice. In conclusion, our study indicates that curcumin, through targeting PI3K/Akt, regulates GSK3ß/Wnt/ß-catenin and CREB/BDNF pathways, improving the adult neurogenesis of AD mice.


Assuntos
Doença de Alzheimer , Fator Neurotrófico Derivado do Encéfalo , Curcumina , Modelos Animais de Doenças , Proteína Duplacortina , Camundongos Endogâmicos C57BL , Neurogênese , Via de Sinalização Wnt , beta Catenina , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Curcumina/farmacologia , Camundongos , Masculino , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Duplacortina/metabolismo , beta Catenina/metabolismo , Peptídeos beta-Amiloides/metabolismo , Regulação para Cima/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791325

RESUMO

Perinatal exposure to valproic acid is commonly used for autism spectrum disorder (ASD) animal model development. The inhibition of histone deacetylases by VPA has been proposed to induce epigenetic changes during neurodevelopment, but the specific alterations in genetic expression underlying ASD-like behavioral changes remain unclear. We used qPCR-based gene expression and epigenetics tools and Western blotting in the hippocampi of neonatal valproic acid-exposed animals at 4 weeks of age and conducted the social interaction test to detect behavioral changes. Significant alterations in gene expression were observed in males, particularly concerning mRNA expression of Foxo3, which was significantly associated with behavioral changes. Moreover, notable differences were observed in H3K27ac chromatin immunoprecipitation, quantitative PCR (ChIP-qPCR), and methylation-sensitive restriction enzyme-based qPCR targeting the Foxo3 gene promoter region. These findings provide evidence that epigenetically regulated hippocampal Foxo3 expression may influence social interaction-related behavioral changes. Furthermore, identifying sex-specific gene expression and epigenetic changes in this model may elucidate the sex disparity observed in autism spectrum disorder prevalence.


Assuntos
Animais Recém-Nascidos , Transtorno do Espectro Autista , Epigênese Genética , Proteína Forkhead Box O3 , Hipocampo , Ácido Valproico , Animais , Ácido Valproico/farmacologia , Ácido Valproico/efeitos adversos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Masculino , Feminino , Ratos , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Metilação de DNA/efeitos dos fármacos , Caracteres Sexuais , Modelos Animais de Doenças , Gravidez , Comportamento Animal/efeitos dos fármacos , Fatores Sexuais , Ratos Sprague-Dawley , Regiões Promotoras Genéticas
6.
J Ethnopharmacol ; 331: 118292, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705428

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tabebuia impetiginosa (Bignoniaceae) was traditionally used for memory enhancement and central nervous system (CNS) stimulation. AIM OF THE STUDY: This study aims to create a metabolic profile of the ethyl acetate fraction of T. impetiginosa (TEF) and investigate for the first time its neuroprotective potential on cyclophosphamide (CP)-induced chemobrain, validating its traditional use. MATERIALS AND METHODS: Metabolite profiling of TEF was performed using Liquid Chromatography coupled with Quadrupole Time of Flight-Mass/Mass Spectrometry (LC-qTOF-MS/MS). For the in vivo study, CP (200 mg/kg, i.p.) was administered to induce cognitive impairment in rats; TEF (30 mg/kg, p.o.) was administered throughout the 14 days of the experiment to assess its role in mitigating CP-induced neuronal deficits. Behavioral tests including locomotor, Y-maze, and passive avoidance tests were conducted. Additionally, biochemical markers such as reduced glutathione (GSH), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), and caspase-3 immunoexpression were assessed in the hippocampus area. RESULTS: Forty-four phytoconstituents were tentatively identified in TEF, mainly iridoids and organic acids. TEF showed significant memory enhancement as evidenced by the increase in step-through latency in the passive avoidance test by 1.5 folds and the increase in sequence alternation percentage (SAP) in the Y-maze test by 67.3%, as compared to CP-group. Moreover, it showed pronounced antioxidant and anti-inflammatory potentials evidenced by the significant elevation in reduced glutathione (GSH) levels by 80% and a pronounced decline in MDA and TNF-α levels by 24% and 45%, respectively relative to the CP group. TEF treatment restored normal hippocampal histological features and attenuated apoptotic caspase-3 expression by 70% compared to the CP group. CONCLUSIONS: TEF can act as a promising natural scaffold in managing the chemobrain induced by CP in cancer patients.


Assuntos
Fármacos Neuroprotetores , Extratos Vegetais , Folhas de Planta , Espectrometria de Massas em Tandem , Animais , Fármacos Neuroprotetores/farmacologia , Espectrometria de Massas em Tandem/métodos , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Ratos , Cromatografia Líquida/métodos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Ratos Wistar , Ciclofosfamida/toxicidade , Aprendizagem em Labirinto/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos
7.
Pharmacol Rep ; 76(3): 519-534, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38722542

RESUMO

BACKGROUND: Synthetic cathinones (SC) constitute the second most frequently abused class of new psychoactive substances. They serve as an alternative to classic psychostimulatory drugs of abuse, such as methamphetamine, cocaine, or 3,4-methylenedioxymethamphetamine (MDMA). Despite the worldwide prevalence of SC, little is known about their long-term impact on the central nervous system. Here, we examined the effects of repeated exposure of mice during infancy, to 3,4-methylenedioxypyrovalerone (MDPV), a SC potently enhancing dopaminergic neurotransmission, on learning and memory in young adult mice. METHODS: All experiments were performed on C57BL/6J male and female mice. Animals were injected with MDPV (10 or 20 mg/kg) and BrdU (bromodeoxyuridine, 25 mg/kg) during postnatal days 11-20, which is a crucial period for the development of their hippocampus. At the age of 12 weeks, mice underwent an assessment of various types of memory using a battery of behavioral tests. Afterward, their brains were removed for detection of BrdU-positive cells in the dentate gyrus of the hippocampal formation with immunohistochemistry, and for measurement of the expression of synaptic proteins, such as synaptophysin and PSD95, in the hippocampus using Western blot. RESULTS: Exposure to MDPV resulted in impairment of spatial working memory assessed with Y-maze spontaneous alternation test, and of object recognition memory. However, no deficits in hippocampus-dependent spatial learning and memory were found using the Morris water maze paradigm. Consistently, hippocampal neurogenesis and synaptogenesis were not interrupted. All observed MDPV effects were sex-independent. CONCLUSIONS: MDPV administered repeatedly to mice during infancy causes learning and memory deficits that persist into adulthood but are not related to aberrant hippocampal development.


Assuntos
Benzodioxóis , Hipocampo , Transtornos da Memória , Camundongos Endogâmicos C57BL , Pirrolidinas , Catinona Sintética , Animais , Benzodioxóis/administração & dosagem , Benzodioxóis/farmacologia , Camundongos , Feminino , Masculino , Pirrolidinas/administração & dosagem , Pirrolidinas/farmacologia , Transtornos da Memória/induzido quimicamente , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Memória/efeitos dos fármacos
8.
Physiol Behav ; 281: 114583, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38750806

RESUMO

The 5xFAD mouse model shows age-related weight loss as well as cognitive and motor deficits. Metabolic dysregulation, especially impaired insulin signaling, is also present in AD. This study examined whether intranasal delivery of insulin (INI) at low (0.875 U) or high (1.750 U) doses would ameliorate these deficits compared to saline in 10-month-old female 5xFAD and B6SJL wildtype (WT) mice. INI increased forelimb grip strength in the wire hang test in 5xFAD mice in a dose-dependent manner but did not improve the performance of 5xFAD mice on the balance beam. High INI doses reduced frailty scores in 5xFAD mice and improved spatial memory in both acquisition and reversal probe trials in the Morris water maze. INI increased swim speed in 5xFAD mice but had no effect on object recognition memory or working memory in the spontaneous alternation task, nor did it improve memory in the contextual or cued fear memory tasks. High doses of insulin increased the liver, spleen, and kidney weights and reduced brown adipose tissue weights. P-Akt signaling in the hippocampus was increased by insulin in a dose-dependent manner. Altogether, INI increased strength, reduced frailty scores, and improved visual spatial memory. Hypoglycemia was not present after INI, however alterations in tissue and organ weights were present. These results are novel and important as they indicate that intra-nasal insulin can reverse cognitive, motor and frailty deficits found in this mouse model of AD.


Assuntos
Administração Intranasal , Modelos Animais de Doenças , Fragilidade , Insulina , Camundongos Transgênicos , Força Muscular , Memória Espacial , Animais , Insulina/administração & dosagem , Insulina/farmacologia , Força Muscular/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Feminino , Fragilidade/tratamento farmacológico , Camundongos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Doença de Alzheimer/tratamento farmacológico , Aprendizagem em Labirinto/efeitos dos fármacos , Relação Dose-Resposta a Droga , Transtornos da Memória/tratamento farmacológico , Precursor de Proteína beta-Amiloide/genética , Força da Mão/fisiologia , Medo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo
9.
Biochem Pharmacol ; 224: 116261, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705534

RESUMO

Delayed neurocognitive recovery (dNCR) is a common complication in geriatric surgical patients. The impact of anesthesia and surgery on patients with neurodegenerative diseases, such as Parkinson's disease (PD) or prion disease, has not yet been reported. In this study, we aimed to determine the association between a pre-existing A53T genetic background, which involves a PD-related point mutation, and the development of postoperative dNCR. We observed that partial hepatectomy induced hippocampus-dependent cognitive deficits in 5-month-old A53T transgenic mice, a model of early-stage PD without cognitive deficits, unlike in age-matched wild-type (WT) mice. We respectively examined molecular changes at 6 h, 1 day, and 2 days after partial hepatectomy and observed that cognitive changes were accompanied by weakened angiotensin-(1-7)/Mas receptor [Ang-(1-7)/MasR] axis, increased alpha-synuclein (α-syn) expression and phosphorylation, decreased methylated protein phosphatase-2A (Me-PP2A), and prompted microglia M1 polarization and neuronal apoptosis in the hippocampus at 1 day after surgery. Nevertheless, no changes in blood-brain barrier (BBB) integrity or plasma α-syn levels in either A53T or WT mice. Furthermore, intranasal administration of selective MasR agonist AVE 0991, reversed the mentioned cognitive deficits in A53T mice, enhanced MasR expression, reduced α-syn accumulation and phosphorylation, and attenuated microglia activation and apoptotic response. Our findings suggest that individuals with the A53T genetic background may be more susceptible to developing postoperative dNCR. This susceptibility could be linked to central α-syn accumulation mediated by the weakened Ang-(1-7)/MasR/methyl-PP2A signaling pathway in the hippocampus following surgery, independent of plasma α-syn level and BBB.


Assuntos
Angiotensina I , Hipocampo , Camundongos Transgênicos , Fragmentos de Peptídeos , Receptores Acoplados a Proteínas G , alfa-Sinucleína , Animais , Humanos , Masculino , Camundongos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Angiotensina I/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mutação , Fragmentos de Peptídeos/metabolismo , Complicações Cognitivas Pós-Operatórias/metabolismo , Complicações Cognitivas Pós-Operatórias/genética , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/genética , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética
10.
CNS Neurosci Ther ; 30(5): e14716, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38698533

RESUMO

BACKGROUND: Sevoflurane is a superior agent for maintaining anesthesia during surgical procedures. However, the neurotoxic mechanisms of clinical concentration remain poorly understood. Sevoflurane can interfere with the normal function of neurons and synapses and impair cognitive function by acting on α5-GABAAR. METHODS: Using MWM test, we evaluated cognitive abilities in mice following 1 h of anesthesia with 2.7%-3% sevoflurane. Based on hippocampal transcriptome analysis, we analyzed the differential genes and IL-6 24 h post-anesthesia. Western blot and RT-PCR were performed to measure the levels of α5-GABAAR, Radixin, P-ERM, P-Radixin, Gephyrin, IL-6, and ROCK. The spatial distribution and expression of α5-GABAAR on neuronal somata were analyzed using histological and three-dimensional imaging techniques. RESULTS: MWM test indicated that partial long-term learning and memory impairment. Combining molecular biology and histological analysis, our studies have demonstrated that sevoflurane induces immunosuppression, characterized by reduced IL-6 expression levels, and that enhanced Radixin dephosphorylation undermines the microstructural stability of α5-GABAAR, leading to its dissociation from synaptic exterior and resulting in a disordered distribution in α5-GABAAR expression within neuronal cell bodies. On the synaptic cleft, the expression level of α5-GABAAR remained unchanged, the spatial distribution became more compact, with an increased fluorescence intensity per voxel. On the extra-synaptic space, the expression level of α5-GABAAR decreased within unchanged spatial distribution, accompanied by an increased fluorescence intensity per voxel. CONCLUSION: Dysregulated α5-GABAAR expression and distribution contributes to sevoflurane-induced partial long-term learning and memory impairment, which lays the foundation for elucidating the underlying mechanisms in future studies.


Assuntos
Anestésicos Inalatórios , Hipocampo , Transtornos da Memória , Receptores de GABA-A , Sevoflurano , Sevoflurano/toxicidade , Animais , Camundongos , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Anestésicos Inalatórios/toxicidade , Receptores de GABA-A/metabolismo , Receptores de GABA-A/biossíntese , Receptores de GABA-A/genética , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia
11.
CNS Neurosci Ther ; 30(5): e14739, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38702935

RESUMO

AIMS: The hippocampus has been reported to be morphologically and neurochemically altered in schizophrenia (SZ). Hyperlocomotion is a characteristic SZ-associated behavioral phenotype, which is associated with dysregulated dopamine system function induced by hippocampal hyperactivity. However, the neural mechanism of hippocampus underlying hyperlocomotion remains largely unclear. METHODS: Mouse pups were injected with N-methyl-D-aspartate receptor antagonist (MK-801) or vehicle twice daily on postnatal days (PND) 7-11. In the adulthood phase, one cohort of mice underwent electrode implantation in field CA1 of the hippocampus for the recording local field potentials and spike activity. A separate cohort of mice underwent surgery to allow for calcium imaging of the hippocampus while monitoring the locomotion. Lastly, the effects of atypical antipsychotic (aripiprazole, ARI) were evaluated on hippocampal neural activity. RESULTS: We found that the hippocampal theta oscillations were enhanced in MK-801-treated mice, but the correlation coefficient between the hippocampal spiking activity and theta oscillation was reduced. Consistently, although the rate and amplitude of calcium transients of hippocampal neurons were increased, their synchrony and correlation to locomotion speed were disrupted. ARI ameliorated perturbations produced by the postnatal MK-801 treatment. CONCLUSIONS: These results suggest that the disruption of neural coordination may underly the neuropathological mechanism for hyperlocomotion of SZ.


Assuntos
Antipsicóticos , Aripiprazol , Modelos Animais de Doenças , Maleato de Dizocilpina , Hipocampo , Hipercinese , Esquizofrenia , Animais , Aripiprazol/farmacologia , Aripiprazol/uso terapêutico , Esquizofrenia/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Maleato de Dizocilpina/farmacologia , Camundongos , Hipercinese/tratamento farmacológico , Masculino , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Camundongos Endogâmicos C57BL , Animais Recém-Nascidos , Neurônios/efeitos dos fármacos , Ritmo Teta/efeitos dos fármacos , Ritmo Teta/fisiologia
12.
CNS Neurosci Ther ; 30(5): e14740, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38715318

RESUMO

AIMS: γ-aminobutyric acid (GABA) from reactive astrocytes is critical for the dysregulation of neuronal activity in various neuroinflammatory conditions. While Scutellaria baicalensis Georgi (S. baicalensis) is known for its efficacy in addressing neurological symptoms, its potential to reduce GABA synthesis in reactive astrocytes and the associated neuronal suppression remains unclear. This study focuses on the inhibitory action of monoamine oxidase B (MAO-B), the key enzyme for astrocytic GABA synthesis. METHODS: Using a lipopolysaccharide (LPS)-induced neuroinflammation mouse model, we conducted immunohistochemistry to assess the effect of S. baicalensis on astrocyte reactivity and its GABA synthesis. High-performance liquid chromatography was performed to reveal the major compounds of S. baicalensis, the effects of which on MAO-B inhibition, astrocyte reactivity, and tonic inhibition in hippocampal neurons were validated by MAO-B activity assay, qRT-PCR, and whole-cell patch-clamp. RESULTS: The ethanolic extract of S. baicalensis ameliorated astrocyte reactivity and reduced excessive astrocytic GABA content in the CA1 hippocampus. Baicalin and baicalein exhibited significant MAO-B inhibition potential. These two compounds downregulate the mRNA levels of genes associated with reactive astrogliosis or astrocytic GABA synthesis. Additionally, LPS-induced aberrant tonic inhibition was reversed by both S. baicalensis extract and its key compounds. CONCLUSIONS: In summary, baicalin and baicalein isolated from S. baicalensis reduce astrocyte reactivity and alleviate aberrant tonic inhibition of hippocampal neurons during neuroinflammation.


Assuntos
Astrócitos , Flavanonas , Flavonoides , Lipopolissacarídeos , Neurônios , Extratos Vegetais , Scutellaria baicalensis , Ácido gama-Aminobutírico , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Flavanonas/farmacologia , Scutellaria baicalensis/química , Camundongos , Ácido gama-Aminobutírico/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Masculino , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Monoaminoxidase/metabolismo , Inibição Neural/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo
13.
Brain Behav ; 14(5): e3503, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38775292

RESUMO

BACKGROUND: Crocin has a good prospect in the treatment of Alzheimer's disease (AD), but the mechanisms underlying its neuroprotective effects remain elusive. This study aimed to investigate the neuroprotective effects of Crocin and its underlying mechanisms in AD. METHODS: AD mice were set up by injecting Aß25-35 solution into the hippocampus. Then, the AD mice were injected intraperitoneally with 40 mg/kg/day of Crocin for 14 days. Following the completion of Crocin treatment, an open-field test, Y-maze test and Morris water maze test were conducted to evaluate the impact of Crocin on spatial learning and memory deficiency in mice. The effects of Crocin on hippocampal neuron injury, proinflammatory cytokine expressions (IL-1ß, IL-6, and TNF-α), and PI3K/AKT signaling-related protein expressions were measured using hematoxylin and eosin staining, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) experiments, respectively. RESULTS: Crocin attenuated Aß25-35-induced spatial learning and memory deficiency and hippocampal neuron injury. Furthermore, the Western blot and qRT-PCR results showed that Crocin effectively suppressed inflammation and activated the PI3K/AKT pathway in Aß25-35-induced mice. CONCLUSION: Crocin restrained neuroinflammation via the activation of the PI3K/AKT pathway, thereby ameliorating the cognitive dysfunction of AD mice.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Carotenoides , Disfunção Cognitiva , Hipocampo , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Carotenoides/farmacologia , Carotenoides/administração & dosagem , Camundongos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Peptídeos beta-Amiloides/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Modelos Animais de Doenças , Fragmentos de Peptídeos/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
14.
Addict Biol ; 29(5): e13402, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38797559

RESUMO

Increases in harmful drinking among older adults indicate the need for a more thorough understanding of the relationship between later-life alcohol use and brain health. The current study investigated the relationships between alcohol use and progressive grey and white matter changes in older adults using longitudinal data. A total of 530 participants (aged 70 to 90 years; 46.0% male) were included. Brain outcomes assessed over 6 years included total grey and white matter volume, as well as volume of the hippocampus, thalamus, amygdala, corpus callosum, orbitofrontal cortex and insula. White matter integrity was also investigated. Average alcohol use across the study period was the main exposure of interest. Past-year binge drinking and reduction in drinking from pre-baseline were additional exposures of interest. Within the context of low-level average drinking (averaging 11.7 g per day), higher average amount of alcohol consumed was associated with less atrophy in the left (B = 7.50, pFDR = 0.010) and right (B = 5.98, pFDR = 0.004) thalamus. Past-year binge-drinking was associated with poorer white matter integrity (B = -0.013, pFDR = 0.024). Consuming alcohol more heavily in the past was associated with greater atrophy in anterior (B = -12.73, pFDR = 0.048) and posterior (B = -17.88, pFDR = 0.004) callosal volumes over time. Across alcohol exposures and neuroimaging markers, no other relationships were statistically significant. Within the context of low-level drinking, very few relationships between alcohol use and brain macrostructure were identified. Meanwhile, heavier drinking was negatively associated with white matter integrity.


Assuntos
Consumo de Bebidas Alcoólicas , Atrofia , Encéfalo , Substância Cinzenta , Imageamento por Ressonância Magnética , Substância Branca , Humanos , Masculino , Idoso , Feminino , Estudos Longitudinais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Substância Branca/efeitos dos fármacos , Idoso de 80 Anos ou mais , Substância Cinzenta/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/efeitos dos fármacos , Atrofia/patologia , Envelhecimento/patologia , Envelhecimento/fisiologia , Consumo Excessivo de Bebidas Alcoólicas/patologia , Consumo Excessivo de Bebidas Alcoólicas/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/patologia , Tálamo/efeitos dos fármacos , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Hipocampo/efeitos dos fármacos , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Corpo Caloso/efeitos dos fármacos
15.
CNS Neurosci Ther ; 30(5): e14778, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38801174

RESUMO

AIMS: Synaptic vesicle protein 2A (SV2A) is a unique therapeutic target for pharmacoresistant epilepsy (PRE). As seizure-induced neuronal programmed death, parthanatos was rarely reported in PRE. Apoptosis-inducing factor (AIF), which has been implicated in parthanatos, shares a common cytoprotective function with SV2A. We aimed to investigate whether parthanatos participates in PRE and is mitigated by SV2A via AIF. METHODS: An intraperitoneal injection of lithium chloride-pilocarpine was used to establish an epileptic rat model, and phenytoin and phenobarbital sodium were utilized to select PRE and pharmacosensitive rats. The expression of SV2A was manipulated via lentivirus delivery into the hippocampus. Video surveillance was used to assess epileptic ethology. Biochemical tests were employed to test hippocampal tissues following a successful SV2A infection. Molecular dynamic calculations were used to simulate the interaction between SV2A and AIF. RESULTS: Parthanatos core index, PARP1, PAR, nuclear AIF and MIF, γ-H2AX, and TUNEL staining were all increased in PRE. SV2A is bound to AIF to form a stable complex, successfully inhibiting AIF and MIF nuclear translocation and parthanatos and consequently mitigating spontaneous recurrent seizures in PRE. Moreover, parthanatos deteriorated after the SV2A reduction. SIGNIFICANCE: SV2A protected hippocampal neurons and mitigated epileptic seizures by inhibiting parthanatos via binding to AIF in PRE.


Assuntos
Fator de Indução de Apoptose , Modelos Animais de Doenças , Epilepsia Resistente a Medicamentos , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso , Ratos Sprague-Dawley , Animais , Ratos , Fator de Indução de Apoptose/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Glicoproteínas de Membrana/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Anticonvulsivantes/farmacologia
16.
Transl Psychiatry ; 14(1): 208, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796566

RESUMO

In clinical settings, tumor compression, trauma, surgical injury, and other types of injury can cause hypothalamic damage, resulting in various types of hypothalamic dysfunction. Impaired release of oxytocin can lead to cognitive impairment and affect prognosis and long-term quality of life after hypothalamic injury. Hypothalamic injury-induced cognitive dysfunction was detected in male animals. Behavioral parameters were measured to assess the characteristics of cognitive dysfunction induced by hypothalamic-pituitary stalk lesions. Brains were collected for high-throughput RNA sequencing and immunostaining to identify pathophysiological changes in hippocampal regions highly associated with cognitive function after injury to corresponding hypothalamic areas. Through transcriptomic analysis, we confirmed the loss of oxytocin neurons after hypothalamic injury and the reversal of hypothalamic-induced cognitive dysfunction after oxytocin supplementation. Furthermore, overactivation of the ERK signaling pathway and ß-amyloid deposition in the hippocampal region after hypothalamic injury were observed, and cognitive function was restored after inhibition of ERK signaling pathway overactivation. Our findings suggest that cognitive dysfunction after hypothalamic injury may be caused by ERK hyperphosphorylation in the hippocampal region resulting from a decrease in the number of oxytocin neurons, which in turn causes ß-amyloid deposition.


Assuntos
Peptídeos beta-Amiloides , Disfunção Cognitiva , Hipocampo , Hipotálamo , Sistema de Sinalização das MAP Quinases , Ocitocina , Ocitocina/metabolismo , Ocitocina/farmacologia , Animais , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Modelos Animais de Doenças , Camundongos , Fosforilação
17.
Neurol Res ; 46(7): 593-604, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38747300

RESUMO

BACKGROUND: Sevoflurane treatment increases the incidence of postoperative cognitive dysfunction (POCD), and patients with POCD show a decline in cognitive abilities compared to preoperative levels. OBJECTIVES: This study aimed to investigate whether the activation of α7 nicotinic acetylcholine receptor (α7nAChR) and the expression of M1 acetylcholine receptor (mAChR M1) in the hippocampus affects the cognitive function of aged rats. METHODS: Forty-eight Sprague-Dawley (SD) rats of 1-week- and 12-months-old were divided into eight groups: four groups for α7nAChR and four groups for mAChR M1, respectively. All SD rats received 1.0-02% sevoflurane for α7nAChR and 1.0-02% sevoflurane for mAChR M1 for 2-6 h, respectively. The Y-maze test was used to assess the ability to learn and memory after receiving sevoflurane for 7 days at the same moment portion. RT-PCR was used to determine the expression of α7nAChR and mAChR M1 in the hippocampus of rats. RESULTS: The α7nAChR mitigated the formation of sevoflurane-induced memory impairment by modulating the translocation of NR2B from the intracellular reservoir to the cell surface reservoir within the hippocampus. Next, sevoflurane-induced decline of cognitive function and significantly decreased mAChR M1 expression at mRNA levels. CONCLUSION: α7nAChR regulates the trafficking of NR2B in the hippocampus of rats via the Src-family tyrosine kinase (SFK) pathway. This regulation is associated with cognitive deficits induced by sevoflurane in hippocampal development. Sevoflurane affects the cognitive function of rats by suppressing the mAChR M1 expression at mRNA levels in the hippocampus.


α7nAChR attenuates sevoflurane-induced memory deficits by regulating NR2B.α7nAChR controls NR2B via the SFK in the hippocampus of rats that contribute to sevoflurane-induced cognitive deficits.Sevoflurane may affect cognitive function in rats by suppressing the mAChR M1 expression at the mRNA levels in the hippocampus.Dysregulation of the α7nAChR and mAChR M1 receptors may contribute to cognitive deficits and neurodegenerative disorders.


Assuntos
Hipocampo , Ratos Sprague-Dawley , Receptor Muscarínico M1 , Sevoflurano , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Sevoflurano/farmacologia , Sevoflurano/efeitos adversos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Receptor Muscarínico M1/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Ratos , Aprendizagem em Labirinto/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/biossíntese , Receptores de N-Metil-D-Aspartato/genética , Anestésicos Inalatórios/farmacologia , Anestésicos Inalatórios/efeitos adversos , Modelos Animais de Doenças
18.
Eur J Pharmacol ; 974: 176631, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692425

RESUMO

OBJECTIVE: Dasatinib and quercetin (D & Q) have demonstrated promise in improving aged-related pathophysiological dysfunctions in humans and mice. Herein we aimed to ascertain whether the heat stress (HS)-induced cognitive deficits in aged or even young adult male mice can be reduced by D & Q therapy. METHODS: Before the onset of HS, animals were pre-treated with D & Q or placebo for 3 consecutive days every 2 weeks over a 10-week period. Cognitive function, intestinal barrier permeability, and blood-brain barrier permeability were assessed. RESULTS: Compared to the non-HS young adult male mice, the HS young adult male mice or the aged male mice had significantly lesser extents of the exacerbated stress reactions, intestinal barrier disruption, endotoxemia, systemic inflammation and oxidative stress, blood-brain barrier disruption, hippocampal inflammation and oxidative stress, and cognitive deficits evaluated at 7 days post-HS. All the cognitive deficits and other syndromes that occurred in young adult HS mice or in aged HS mice were significantly attenuated by D & Q therapy (P < 0.01). Compared to the young adult HS mice, the aged HS mice had significantly (P < 0.01) higher severity of cognitive deficits and other related syndromes. CONCLUSIONS: First, our data show that aged male mice are more vulnerable to HS-induced cognitive deficits than those of the young adult male mice. Second, we demonstrate that a combination of D and Q therapy attenuates cognitive deficits in heat stressed aged or young adult male mice via broad normalization of the brain-gut-endotoxin axis function.


Assuntos
Barreira Hematoencefálica , Dasatinibe , Estresse Oxidativo , Quercetina , Animais , Masculino , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Quercetina/farmacologia , Quercetina/uso terapêutico , Camundongos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Resposta ao Choque Térmico/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Quimioterapia Combinada , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Cognição/efeitos dos fármacos
19.
Phytomedicine ; 129: 155709, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735197

RESUMO

BACKGROUND: Cornus officinalis Sieb. Et Zucc. has the efficacy of tonifying the marrow and filling up the essence, breaking up the accumulation and opening up the orifices. Our research team found that CoS extracts were protective against Aß25-35-induced memory impairment in mice. However, the pharmacodynamic components and mechanisms by which CoS improves AD have yet to be thoroughly explored and investigated. PURPOSE: This study focused on exploring the bioactive components and pharmacodynamic mechanisms of CoS aqueous extract underlying mitochondrial damage and neuroinflammation to improve Aß25-35-induced AD. METHODS: AD mouse models were generated using Aß25-35 brain injections. Different doses of CoS aqueous extract were orally administered to mice for 28 days. The cognitive function, neuronal and synaptic damage, mitochondrial damage (mitochondrial length, mitochondrial fusion fission-related protein expression), neuroglial activation, and immune inflammatory factor and ERK pathway-related protein levels of mice were assessed. The CoS aqueous extracts components were identified using UPLC-TQ/MS and screened for cellular activity. Midivi-1 (Drp1 inhibitor) or PD98059 (ERK inhibitor) was added to Aß25-35-exposed PC12 cells to assess whether CoS and its active compounds mMorB and CorE regulate mitochondrial fission through ERK/Drp1. PC12-N9 cells were cocultured to investigate whether mMorB and CorE could regulate mitochondrial division through the ERK pathway to modulate neuroinflammation. RESULTS: CoS improved exploration and memory in AD mice, reduced synaptic and mitochondrial damage in their hippocampus, and modulated disturbed mitochondrial dynamics. Moreover, CoS inhibited ERK pathway signaling and attenuated abnormal activation of glial cells and secondary immune inflammatory responses. Additionally, in vitro experiments revealed that CoS and its compounds 7ß-O-methylmorroniside (mMorB) and Cornusdiridoid E (CorE) ameliorated mitochondrial injury caused by Aß25-35 in PC12 cells through inhibition of the ERK/Drp1 pathway. Meanwhile, mMorB and CorE ameliorated cellular inflammation by inhibiting the Ras/ERK/CREB signaling pathway. CONCLUSION: CoS aqueous extract ameliorates behavioral deficits and brain damage in Aß25-35-induced AD mice by modulating the ERK pathway to attenuate mitochondrial damage and neuroinflammation, and the compounds mMorB and CorE are the therapeutically active ingredients.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Cornus , Modelos Animais de Doenças , Fragmentos de Peptídeos , Extratos Vegetais , Animais , Peptídeos beta-Amiloides/metabolismo , Camundongos , Cornus/química , Doença de Alzheimer/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Masculino , Ratos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células PC12 , Hipocampo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
20.
Sci Rep ; 14(1): 11557, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773352

RESUMO

Juvenile loneliness is a risk factor for psychopathology in later life. Deprivation of early social experience due to peer rejection has a detrimental impact on emotional and cognitive brain function in adulthood. Accumulating evidence indicates that soy peptides have many positive effects on higher brain function in rodents and humans. However, the effects of soy peptide use on juvenile social isolation are unknown. Here, we demonstrated that soy peptides reduced the deterioration of behavioral and cellular functions resulting from juvenile socially-isolated rearing. We found that prolonged social isolation post-weaning in male C57BL/6J mice resulted in higher aggression and impulsivity and fear memory deficits at 7 weeks of age, and that these behavioral abnormalities, except impulsivity, were mitigated by ingestion of soy peptides. Furthermore, we found that daily intake of soy peptides caused upregulation of postsynaptic density 95 in the medial prefrontal cortex and phosphorylation of the cyclic adenosine monophosphate response element binding protein in the hippocampus of socially isolated mice, increased phosphorylation of the adenosine monophosphate-activated protein kinase in the hippocampus, and altered the microbiota composition. These results suggest that soy peptides have protective effects against juvenile social isolation-induced behavioral deficits via synaptic maturation and cellular functionalization.


Assuntos
Agressão , Suplementos Nutricionais , Medo , Hipocampo , Camundongos Endogâmicos C57BL , Isolamento Social , Animais , Isolamento Social/psicologia , Masculino , Medo/efeitos dos fármacos , Agressão/efeitos dos fármacos , Camundongos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Proteínas de Soja/farmacologia , Memória/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA