Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 143: 252-259, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31369841

RESUMO

Post-exercise hypotension (PEH) is a common physiological phenomenon leading to lower blood pressure after acute exercise, but it is not fully understood how this intriguing response occurs. This study investigated whether the nitrate-reducing activity of oral bacteria is a key mechanism to trigger PEH. Following a randomized, double blind and crossover design, twenty-three healthy individuals (15 males/8 females) completed two treadmill trials at moderate intensity. After exercise, participants rinsed their mouth with antibacterial mouthwash to inhibit the activity of oral bacteria or a placebo mouthwash. Blood pressure was measured before, 1h and 2 h after exercise. The microvascular response to a reactive hyperaemia test, as well as blood and salivary samples were taken before and 2 h after exercise to analyse nitrate and nitrite concentrations and the oral microbiome. As expected, systolic blood pressure (SBP) was lower (1 h: -5.2 ±â€¯1.0 mmHg; P < 0.001); 2 h: -3.8 ±â€¯1.1 mmHg, P = 0.005) after exercise compared to baseline in the placebo condition. This was accompanied by an increase of circulatory nitrite 2 h after exercise (2h: 100 ±â€¯13 nM) compared to baseline (59 ±â€¯9 nM; P = 0.013). Additionally, an increase in the peak of the tissue oxygenation index (TOI) during the reactive hyperaemia response was observed after exercise (86.1 ±â€¯0.6%) compared to baseline levels (84.8 ±â€¯0.5%; P = 0.010) in the placebo condition. On the other hand, the SBP-lowering effect of exercise was attenuated by 61% at 1 h in the recovery period, and it was fully attenuated 2 h after exercise with antibacterial mouthwash. This was associated with a lack of changes in circulatory nitrite (P > 0.05), and impaired microvascular response (peak TOI baseline: 85.1 ±â€¯3.1%; peak TOI post-exercise: 84.6 ±â€¯3.2%; P > 0.05). Diversity of oral bacteria did not change after exercise in any treatment. These findings show that nitrite synthesis by oral commensal bacteria is a key mechanism to induce the vascular response to exercise over the first period of recovery thereby promoting lower blood pressure and greater muscle oxygenation.


Assuntos
Bactérias/crescimento & desenvolvimento , Exercício Físico , Hiperemia/fisiopatologia , Boca/microbiologia , Músculo Esquelético/metabolismo , Nitratos/farmacologia , Hipotensão Pós-Exercício/fisiopatologia , Adulto , Bactérias/efeitos dos fármacos , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Hiperemia/tratamento farmacológico , Hiperemia/metabolismo , Hiperemia/microbiologia , Masculino , Boca/efeitos dos fármacos , Antissépticos Bucais/farmacologia , Músculo Esquelético/efeitos dos fármacos , Hipotensão Pós-Exercício/tratamento farmacológico , Hipotensão Pós-Exercício/metabolismo , Hipotensão Pós-Exercício/microbiologia , Saliva/efeitos dos fármacos , Saliva/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA