Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.172
Filtrar
1.
Brain Res Bull ; 211: 110944, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604377

RESUMO

Ischemic stroke is a serious cerebrovascular condition. Isobavachalcone (ISO) has been documented to exhibit an anti-inflammatory effect across a variety of diseases; however, its protective impact on ischemic stroke remains unexplored. In this study, we evaluated the influence of ISO in both transient middle cerebral artery occlusion/reperfusion (tMCAO/R) rat models and oxygen-glucose deprivation/reperfusion (OGD/R) cell models. We observed that pretreatment with 50 mg/kg ISO diminished the volume of brain infarction, reduced brain edema, and ameliorated neurological deficits in rats. A reduction in Nissl bodies was noted in the tMCAO/R group, which was reversed following treatment with 50 mg/kg ISO. TUNEL/NeuN double staining revealed a decrease in TUNEL-positive cells in tMCAO/R rats treated with ISO. Furthermore, ISO treatment suppressed the expression of cleaved caspase-3 and BAX, while elevating the expression of BCL-2 in tMCAO/R rats. The levels of CD86 and iNOS were elevated in tMCAO/R rats; conversely, ISO treatment enhanced the expression of CD206 and Arg-1. Additionally, the expression of TNF-α, IL-6, and IL-1ß was elevated in tMCAO/R rats, whereas ISO treatment counteracted this effect. ISO treatment also increased the expression of TGF-ß and IL-10 in the ischemic penumbra of tMCAO/R rats. It was found that ISO treatment hindered microglial M1 polarization and favored M2 polarization. Histone Deacetylase 1 (HDAC1) is the downstream target protein of ISO, with ISO treatment resulting in decreased HDAC1 expression in both tMCAO/R rats and OGD/R-induced cells. Overexpression of HDAC1 was shown to promote microglial M1 polarization and inhibit M2 polarization in OGD/R+ISO cells. Overall, ISO treatment mitigated brain damage following ischemic stroke by promoting M2 polarization and attenuated ischemic injury by repressing HDAC1 expression.


Assuntos
Chalconas , Histona Desacetilase 1 , AVC Isquêmico , Ratos Sprague-Dawley , Animais , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Masculino , Ratos , Histona Desacetilase 1/metabolismo , Chalconas/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Fármacos Neuroprotetores/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Animais de Doenças
2.
Bioorg Med Chem ; 104: 117680, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582047

RESUMO

Many disease states require multiple drugs to inhibit multiple targets for their effective treatment/management, i.e. a drug cocktail regimen, or "polypharmacy". Polypharmacology, in contrast, is the development of single agents that can inhibit multiple targets. Each strategy is associated with advantages and disadvantages. Motivated by promising clinical trial data for the treatment of multiple myeloma with the combination of the HDAC6 inhibitor ricolinostat and the proteasome inhibitor bortezomib, we herein describe a focused family of dual HDAC/non-covalent proteasome inhibitors, and explore the impact of linker and zinc-binding group identities on HDAC1/6 isozyme selectivity. In general, previously reported specificity determinants of monovalent HDAC1/6 inhibitors were preserved in our dual HDAC/proteasome inhibitors.


Assuntos
Inibidores de Histona Desacetilases , Inibidores de Proteassoma , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Proteassoma/farmacologia , Complexo de Endopeptidases do Proteassoma , Bortezomib , Histona Desacetilases , Desacetilase 6 de Histona , Histona Desacetilase 1
3.
Mol Cancer ; 23(1): 85, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678233

RESUMO

Nuclear condensates have been shown to regulate cell fate control, but its role in oncogenic transformation remains largely unknown. Here we show acquisition of oncogenic potential by nuclear condensate remodeling. The proto-oncogene SS18 and its oncogenic fusion SS18-SSX1 can both form condensates, but with drastically different properties and impact on 3D genome architecture. The oncogenic condensates, not wild type ones, readily exclude HDAC1 and 2 complexes, thus, allowing aberrant accumulation of H3K27ac on chromatin loci, leading to oncogenic expression of key target genes. These results provide the first case for condensate remodeling as a transforming event to generate oncogene and such condensates can be targeted for therapy. One sentence summary: Expulsion of HDACs complexes leads to oncogenic transformation.


Assuntos
Histona Desacetilase 1 , Histona Desacetilase 2 , Proto-Oncogene Mas , Humanos , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Histonas/metabolismo , Animais
4.
Cell Rep ; 43(4): 114065, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38578828

RESUMO

Epigenetic modification shapes differentiation trajectory and regulates the exhaustion state of chimeric antigen receptor T (CAR-T) cells. Limited efficacy induced by terminal exhaustion closely ties with intrinsic transcriptional regulation. However, the comprehensive regulatory mechanisms remain largely elusive. Here, we identify class I histone deacetylase inhibitors (HDACi) as boosters of CAR-T cell function by high-throughput screening of chromatin-modifying drugs, in which M344 and chidamide enhance memory maintenance and resistance to exhaustion of CAR-T cells that induce sustained antitumor efficacy both in vitro and in vivo. Mechanistically, HDACi decrease HDAC1 expression and enhance H3K27ac activity. Multi-omics analyses from RNA-seq, ATAC-seq, and H3K27ac CUT&Tag-seq show that HDACi upregulate expression of TCF4, LEF1, and CTNNB1, which subsequently activate the canonical Wnt/ß-catenin pathway. Collectively, our findings elucidate the functional roles of class I HDACi in enhancing CAR-T cell function, which provides the basis and therapeutic targets for synergic combination of CAR-T cell therapy and HDACi treatment.


Assuntos
Aminopiridinas , Inibidores de Histona Desacetilases , Via de Sinalização Wnt , Inibidores de Histona Desacetilases/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Humanos , Camundongos , Benzamidas/farmacologia , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/imunologia , Histona Desacetilase 1/metabolismo
5.
Food Funct ; 15(9): 5103-5117, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38680105

RESUMO

Hydroxytyrosol (HT), a phenolic extra-virgin olive oil compound used as a food supplement, has been recognized to protect liver function and alleviate stress-induced depressive-like behaviors. However, its protective effects against stress-induced liver injury (SLI) remain unknown. Here, the anti-SLI effect of HT was evaluated in mice with chronic unpredictable mild stress-induced SLI. Network pharmacology combined with molecular docking was used to clarify the underlying mechanism of action of HT against SLI, followed by experimental verification. The results showed that accompanying with the alleviation of HT on stress-induced depressive-like behaviors, HT was confirmed to exert the protective effects against SLI, as represented by reduced serum corticosterone (CORT), aspartate aminotransferase and alanine aminotransferase activities, as well as repair of liver structure, inhibition of oxidative homeostasis collapse, and inflammation reaction in the liver. Furthermore, core genes including histone deacetylase 1 and 2 (HDAC1/2), were identified as potential targets of HT in SLI based on bioinformatic screening and simulation. Consistently, HT significantly inhibited HDAC1/2 expression to maintain mitochondrial dysfunction in an autophagy-dependent manner, which was confirmed in a CORT-induced AML-12 cell injury and SLI mice models combined with small molecule inhibitors. We provide the first evidence that HT inhibits HDAC1/2 to induce autophagy in hepatocytes for maintaining mitochondrial dysfunction, thus preventing inflammation and oxidative stress for exerting an anti-SLI effect. This constitutes a novel therapeutic modality to synchronously prevent stress-induced depression-like behaviors and liver injury, supporting the advantaged therapeutic potential of HT.


Assuntos
Autofagia , Histona Desacetilase 2 , Álcool Feniletílico , Álcool Feniletílico/análogos & derivados , Animais , Camundongos , Álcool Feniletílico/farmacologia , Autofagia/efeitos dos fármacos , Masculino , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Camundongos Endogâmicos C57BL , Histona Desacetilase 1/metabolismo , Simulação de Acoplamento Molecular , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/complicações
6.
Biomed Pharmacother ; 174: 116537, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579402

RESUMO

Chronic Lymphocytic Leukemia (CLL) patients have a defective expression of the proapoptotic protein p66Shc and of its transcriptional factor STAT4, which evoke molecular abnormalities, impairing apoptosis and worsening disease prognosis and severity. p66Shc expression is epigenetically controlled and transcriptionally modulated by STAT4; epigenetic modifiers are deregulated in CLL cells and specific histone deacetylases (HDACs) like HDAC1, are overexpressed. Reactivation of STAT4/p66Shc expression may represent an attractive and challenging strategy to reverse CLL apoptosis defects. New selective class I HDAC inhibitors (HDACis, 6a-g) were developed with increased potency over existing agents and preferentially interfering with the CLL-relevant isoform HDAC1, to unveil the role of class I HDACs in the upregulation of STAT4 expression, which upregulates p66Shc expression and hence normalizes CLL cell apoptosis. 6c (chlopynostat) was identified as a potent HDAC1i with a superior profile over entinostat. 6c induces marked apoptosis of CLL cells compared with SAHA, which was associated with an upregulation of STAT4/p66Shc protein expression. The role of HDAC1, but not HDAC3, in the epigenetic upregulation of STAT4/p66Shc was demonstrated for the first time in CLL cells and was validated in siRNA-induced HDAC1/HDAC3 knock-down EBV-B cells. To sum up, HDAC1 inhibition is necessary to reactivate STAT4/p66Shc expression in patients with CLL. 6c is one of the most potent HDAC1is known to date and represents a novel pharmacological tool for reversing the impairment of the STAT4/p66Shc apoptotic machinery.


Assuntos
Apoptose , Linfócitos B , Inibidores de Histona Desacetilases , Leucemia Linfocítica Crônica de Células B , Fator de Transcrição STAT4 , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Apoptose/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Fator de Transcrição STAT4/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/antagonistas & inibidores , Benzamidas/farmacologia , Masculino , Idoso , Feminino , Pessoa de Meia-Idade
7.
Cell Death Dis ; 15(4): 289, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653973

RESUMO

GATA-binding protein 4 (GATA4) is recognized for its significant roles in embryogenesis and various cancers. Through bioinformatics and clinical data, it appears that GATA4 plays a role in breast cancer development. Yet, the specific roles and mechanisms of GATA4 in breast cancer progression remain elusive. In this study, we identify GATA4 as a tumor suppressor in the invasion and migration of breast cancer. Functionally, GATA4 significantly reduces the transcription of MMP9. On a mechanistic level, GATA4 diminishes MMP9 transcription by interacting with p65 at the NF-κB binding site on the MMP9 promoter. Additionally, GATA4 promotes the recruitment of HDAC1, amplifying the bond between p65 and HDAC1. This leads to decreased acetylation of p65, thus inhibiting p65's transcriptional activity on the MMP9 promoter. Moreover, GATA4 hampers the metastasis of breast cancer in vivo mouse model. In summary, our research unveils a novel mechanism wherein GATA4 curtails breast cancer cell metastasis by downregulating MMP9 expression, suggesting a potential therapeutic avenue for breast cancer metastasis.


Assuntos
Neoplasias da Mama , Movimento Celular , Fator de Transcrição GATA4 , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 1 , Metaloproteinase 9 da Matriz , Invasividade Neoplásica , Humanos , Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA4/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Feminino , Movimento Celular/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/genética , Animais , Acetilação , Linhagem Celular Tumoral , Camundongos , Fator de Transcrição RelA/metabolismo , Transcrição Gênica , Regiões Promotoras Genéticas/genética , Camundongos Nus , Camundongos Endogâmicos BALB C
8.
Anticancer Res ; 44(4): 1739-1750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538000

RESUMO

BACKGROUND/AIM: Only a few studies have examined the expression of nucleosome remodeling and deacetylase complex in endometrial carcinoma (EC). The aim of this study was to analyze the expressions of histone deacetylase (HDAC1), HDAC2, and chromodomain helicase DNA-binding protein 4 (CHD4) in EC. PATIENTS AND METHODS: Sixty cases of EC were categorized into two clusters based on the expression levels of the three proteins. RESULTS: Cluster 1 (C1) exhibited elevated expressions of HDAC2 and CHD4 compared with cluster 2 (C2). Notably, 75% of cases in C2 represented non-aggressive histological types, whereas 37.5% of cases in C1 manifested aggressive types. C2 exclusively comprised pathological tumor stage 1 (pT1) tumors, whereas C1 included pT2 and pT3 tumors. In C1, 25% of cases displayed aberrant p53 expression, contrasting with the absence of such expression in C2. Furthermore, only one patient in C2 experienced disease recurrence, whereas 20.8% of patients in C1 developed recurrent tumors. CONCLUSION: High HDAC2 and CHD4 expression may be associated with adverse clinicopathological characteristics in EC. Further studies are needed to validate these results.


Assuntos
Neoplasias do Endométrio , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Humanos , Feminino , Nucleossomos , Recidiva Local de Neoplasia , Histona Desacetilases/metabolismo , Histona Desacetilase 1
9.
Cell Biochem Funct ; 42(2): e3990, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504444

RESUMO

The majority of adenocarcinoma lung cancer is found in nonsmokers. A history of tobacco use is more common in squamous cell carcinoma of the lung. The aim of this study is to identify the cisplatin (CDDP)-resistance that promotes lung squamous carcinoma cell growth through nicotine-mediated HDAC1/7nAchR/E2F/pRb cell cycle activation. Squamous cell carcinoma (NCI-H520 and NCI-H157) cells were examined after cisplatin and nicotine treatment by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay, cell migration assay, immunofluorescence staining, western blot analysis, and immunoprecipitation analysis. Consequently, CDDP is released from DNA and Rb phosphorylated pRb as a result of nicotine-induced cancer cell proliferation through 7nAchR, which then triggers the opening of the HDAC1 cell cycle. The cell cycle is stopped when CDDP adducts are present. Nicotine exerts cancer cytoprotective effects by allowing HDAC1 repair mechanisms to re-establish E2F promoting DNA stimulation cell cycle integrity in the cytosol and preventing potential CDDP and HDAC1 suppressed in the nuclear. Concentration expression of nicotine causes squamous carcinoma cell carcinogens to emerge from inflammation. COX2, NF-KB, and NOS2 increase as a result of nicotine-induced squamous carcinoma cell inflammation. Nicotine enhanced the cell growth-related proteins such as α7nAchR, EGFR, HDAC1, Cyclin D, Cyclin E, E2F, Rb, and pRb by western blot analysis. It also induced cancer cell inflammation and growth. As a result, we suggest that nicotine will increase the therapeutic resistance effects of CDDP. This has the potential to interact with nicotine through α7nAchR receptors and HDAC1/Cyclin D/E2F/pRb potentially resulting in CDDP therapy resistance, as well as cell cycle-induced cancer cell growth.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Cisplatino/farmacologia , Nicotina/farmacologia , Receptor Nicotínico de Acetilcolina alfa7 , Ciclina D1/metabolismo , Ciclo Celular , Carcinoma de Células Escamosas/genética , Proliferação de Células , Neoplasias Pulmonares/tratamento farmacológico , Pulmão/metabolismo , Pulmão/patologia , DNA , Inflamação , Linhagem Celular Tumoral , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/farmacologia
10.
Front Cell Infect Microbiol ; 14: 1308362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476167

RESUMO

Infectious peritonitis is a leading cause of peritoneal functional impairment and a primary factor for therapy discontinuation in peritoneal dialysis (PD) patients. Although bacterial infections are a common cause of peritonitis episodes, emerging evidence suggests a role for viral pathogens. Toll-like receptors (TLRs) specifically recognize conserved pathogen-associated molecular patterns (PAMPs) from bacteria, viruses, and fungi, thereby orchestrating the ensuing inflammatory/immune responses. Among TLRs, TLR3 recognizes viral dsRNA and triggers antiviral response cascades upon activation. Epigenetic regulation, mediated by histone deacetylase (HDAC), has been demonstrated to control several cellular functions in response to various extracellular stimuli. Employing epigenetic target modulators, such as epidrugs, is a current therapeutic option in several cancers and holds promise in treating viral diseases. This study aims to elucidate the impact of TLR3 stimulation on the plasticity of human mesothelial cells (MCs) in PD patients and to investigate the effects of HDAC1-3 inhibition. Treatment of MCs from PD patients with the TLR3 agonist polyinosinic:polycytidylic acid (Poly(I:C)), led to the acquisition of a bona fide mesothelial-to-mesenchymal transition (MMT) characterized by the upregulation of mesenchymal genes and loss of epithelial-like features. Moreover, Poly(I:C) modulated the expression of several inflammatory cytokines and chemokines. A quantitative proteomic analysis of MCs treated with MS-275, an HDAC1-3 inhibitor, unveiled altered expression of several proteins, including inflammatory cytokines/chemokines and interferon-stimulated genes (ISGs). Treatment with MS-275 facilitated MMT reversal and inhibited the interferon signature, which was associated with reduced STAT1 phosphorylation. However, the modulation of inflammatory cytokine/chemokine production was not univocal, as IL-6 and CXCL8 were augmented while TNF-α and CXCL10 were decreased. Collectively, our findings underline the significance of viral infections in acquiring a mesenchymal-like phenotype by MCs and the potential consequences of virus-associated peritonitis episodes for PD patients. The observed promotion of MMT reversal and interferon response inhibition by an HDAC1-3 inhibitor, albeit without a general impact on inflammatory cytokine production, has translational implications deserving further analysis.


Assuntos
Benzamidas , Interferon Tipo I , Peritonite , Piridinas , Viroses , Humanos , Interferon Tipo I/metabolismo , Receptor 3 Toll-Like/metabolismo , Epigênese Genética , Proteômica , Citocinas/metabolismo , Quimiocinas/metabolismo , Poli I-C/farmacologia , Receptores Toll-Like/metabolismo , Viroses/genética , Fenótipo , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo
11.
Crit Rev Eukaryot Gene Expr ; 34(4): 45-54, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505872

RESUMO

HDAC1 functions as an oncogene in multi-type cancers. This study aimed to investigate the roles of histone deacetylase 1 (HDAC1) in cervical cancer (CC). mRNA expression was determined using reverse transcription quantitative polymerase chain reaction. The protein-protein complexes was analyzed using co-immunoprecipitation assay. The binding sites between NRF2 and NEU1 were confirmed by chromatin immunoprecipitation assay. Cell viability was detected by CCK-8. Cell proliferation was measured using CCK-8 and colony formation assays. Cell migrative and invasive ability were determined using transwell assay. We found that HDAC1 was upregulated in CC patients and cells. Trichostatin A (TSA) treatment decreased the number of colonies and migrated and invaded cells. Moreover, HDAC1 interacted with NRF2 to downregulate NEU1 expression. NEU1 knockdown attenuated the effects of TSA and enhanced the aggressiveness of CC cells. In conclusion, HDAC1 functions as an oncogene in CC. Targeting HDAC1 may be an alternative strategy for CC.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Regulação para Baixo , Neoplasias do Colo do Útero/genética , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sincalida/genética , Sincalida/metabolismo , Neuraminidase/genética , Neuraminidase/metabolismo
12.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474606

RESUMO

Metalloenzymes are ubiquitously present in the human body and are relevant to a variety of diseases. However, the development of metalloenzyme inhibitors is limited by low specificity and poor drug-likeness associated with metal-binding fragments (MBFs). A generalized drug discovery strategy was established, which is characterized by the property characterization of zinc-dependent metalloenzyme inhibitors (ZnMIs). Fifteen potential Zn2+-binding fragments (ZnBFs) were identified, and a customized pharmacophore feature was defined based on these ZnBFs. The customized feature was set as a required feature and applied to a search for novel inhibitors for histone deacetylase 1 (HDAC1). Ten potential HDAC1 inhibitors were recognized, and one of them (compound 9) was a known potent HDAC1 inhibitor. The results demonstrated the effectiveness of our strategy to identify novel inhibitors for zinc-dependent metalloenzymes.


Assuntos
Inibidores de Histona Desacetilases , Metaloproteínas , Humanos , Inibidores de Histona Desacetilases/farmacologia , Metaloproteínas/química , Descoberta de Drogas , Zinco , Histona Desacetilase 1
13.
Bioorg Med Chem Lett ; 102: 129670, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387692

RESUMO

Histone deacetylase 6 (HDAC6) has drawn more and more attention for its potential application in Alzheimer's disease (AD) therapy. A series of tetrahydro-ß-carboline (THßC) hydroxamic acids with aryl linker were synthesized. In enzymatic assay, all compounds exhibited nanomolar IC50 values. The most promising compound 11d preferentially inhibited HDAC6 (IC50, 8.64 nM) with approximately 149-fold selectivity over HDAC1. Molecular simulation revealed that the hydroxamic acid of 11d could bind to the zinc ion by a bidentate chelating manner. In vitro, 11d induced neurite outgrowth of PC12 cells without producing toxic effects and showed obvious neuroprotective activity in a model of H2O2-induced oxidative stress.


Assuntos
Carbolinas , Inibidores de Histona Desacetilases , Peróxido de Hidrogênio , Ratos , Animais , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Peróxido de Hidrogênio/farmacologia , Ácidos Hidroxâmicos/farmacologia , Crescimento Neuronal , Histona Desacetilase 1/metabolismo , Relação Estrutura-Atividade
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382623

RESUMO

The production of type I interferon (IFN) is precisely modulated by host to protect against viral infection efficiently without obvious immune disorders. Elucidating the tight control towards type I IFN production would be helpful to get insight into natural immunity and inflammatory diseases. As yet, however, the mechanisms that regulate IFN-ß production, especially the epigenetic regulatory mechanisms, remain poorly explored. This study elucidated the potential function of Peptidylarginine deiminases (PADIs)-mediated citrullination in innate immunity. We identified PADI4, a PADIs family member that can act as an epigenetic coactivator, could repress IFN-ß production upon RNA virus infection. Detailed experiments showed that PADI4 deficiency increased IFN-ß production and promoted antiviral immune activities against RNA viruses. Mechanistically, the increased PADI4 following viral infection translocated to nucleus and recruited HDAC1 upon binding to Ifnb1 promoter, which then led to the deacetylation of histone H3 and histone H4 for repressing Ifnb1 transcription. Taken together, we identify a novel non-classical role for PADI4 in the regulation of IFN-ß production, suggesting its potential as treatment target in inflammatory or autoimmune diseases.


Assuntos
Histonas , Viroses , Proteína DEAD-box 58/genética , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histonas/metabolismo , Imunidade Inata , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Receptores Imunológicos/metabolismo
15.
Neurotox Res ; 42(1): 12, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329647

RESUMO

The permeability of the blood-brain barrier (BBB) is increased in Alzheimer's disease (AD). This plays a key role in the instigation and maintenance of chronic inflammation during AD. Experiments using AD models showed that the increased permeability of the BBB was mainly caused by the decreased expression of tight junction-related proteins occludin and claudin-5. In this study, we found that ZNF787 and HDAC1 were upregulated in ß-amyloid (Aß)1-42-incubated endothelial cells, resulting in increased BBB permeability. Conversely, the silencing of ZNF787 and HDAC1 by RNAi led to reduced BBB permeability. The silencing of ZNF787 and HDAC1 enhanced the expression of occludin and claudin-5. Mechanistically, ZNF787 binds to promoter regions for occludin and claudin-5 and functions as a transcriptional regulator. Furthermore, we demonstrate that ZNF787 interacts with HDAC1, and this resulted in the downregulation of the expression of genes encoding tight junction-related proteins to increase in BBB permeability. Taken together, our study identifies critical roles for the interaction between ZNF787 and HDAC1 in regulating BBB permeability and the pathogenesis of AD.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Histona Desacetilase 1 , Humanos , Doença de Alzheimer/genética , Claudina-5/genética , Células Endoteliais , Histona Desacetilase 1/genética , Ocludina/genética , Permeabilidade
16.
J Exp Clin Cancer Res ; 43(1): 27, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38254102

RESUMO

BACKGROUND: Peritoneal metastasis, which accounts for 85% of all epithelial ovarian carcinoma (EOC) metastases, is a multistep process that requires the establishment of adhesive interactions between cancer cells and the peritoneal membrane. Interrelations between EOC and the mesothelial stroma are critical to facilitate the metastatic process. No data is available so far on the impact of histone acetylation/deacetylation, a potentially relevant mechanism governing EOC metastasis, on mesothelial cells (MCs)-mediated adhesion. METHODS: Static adhesion and peritoneal clearance experiments were performed pretreating mesenchymal-like MCs and platinum-sensitive/resistant EOC cell lines with MS-275-a Histone deacetylase (HDAC)1-3 pharmacological inhibitor currently used in combination trials. Results were acquired by confocal microscopy and were analyzed with an automated Opera software. The role of HDAC1/2 was validated by genetic silencing. The role of α4-, α5-α1 Integrins and Fibronectin-1 was validated using specific monoclonal antibodies. Quantitative proteomic analysis was performed on primary MCs pretreated with MS-275. Decellularized matrices were generated from either MS-275-exposed or untreated cells to study Fibronectin-1 extracellular secretion. The effect of MS-275 on ß1 integrin activity was assessed using specific monoclonal antibodies. The role of Talin-1 in MCs/EOC adhesion was analyzed by genetic silencing. Talin-1 ectopic expression was validated as a rescue tool from MS-275-induced phenotype. The in vivo effect of MS-275-induced MC remodeling was validated in a mouse model of peritoneal EOC dissemination. RESULTS: Treatment of MCs with non-cytotoxic concentrations of MS-275 caused a consistent reduction of EOC adhesion. Proteomic analysis revealed several pathways altered upon MC treatment with MS-275, including ECM deposition/remodeling, adhesion receptors and actin cytoskeleton regulators. HDAC1/2 inhibition hampered actin cytoskeleton polymerization by downregulating actin regulators including Talin-1, impairing ß1 integrin activation, and leading to abnormal extracellular secretion and distribution of Fibronectin-1. Talin-1 ectopic expression rescued EOC adhesion to MS-275-treated MCs. In an experimental mouse model of metastatic EOC, MS-275 limited tumor invasion, Fibronectin-1 secretion and the sub-mesothelial accumulation of MC-derived carcinoma-associated fibroblasts. CONCLUSION: Our study unveils a direct impact of HDAC-1/2 in the regulation of MC/EOC adhesion and highlights the regulation of MC plasticity by epigenetic inhibition as a potential target for therapeutic intervention in EOC peritoneal metastasis.


Assuntos
Benzamidas , Carcinoma Epitelial do Ovário , Adesão Celular , Histona Desacetilase 1 , Histona Desacetilase 2 , Neoplasias Ovarianas , Neoplasias Peritoneais , Animais , Feminino , Humanos , Camundongos , Citoesqueleto de Actina/metabolismo , Anticorpos Monoclonais , Carcinoma Epitelial do Ovário/metabolismo , Epitélio , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas , Histona Desacetilase 1/metabolismo , Integrina alfa5 , Integrina beta1/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Proteômica , Piridinas , Talina/genética , Talina/metabolismo , Histona Desacetilase 2/metabolismo , Adesão Celular/genética
17.
Eur J Pharm Sci ; 194: 106706, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244809

RESUMO

Cervical cancer is the leading cause of death among gynecological malignant tumors, especially due to the poor prognosis of patients with advanced tumors due to recurrence, metastasis, and chemotherapy resistance. Therefore, exploring new antineoplastic drugs with high efficacy and low toxicity may bring new expectations in patients with cervical cancer. Natural products and their derivatives exert an antitumor activity. Therefore, in this work, combined with network pharmacology analysis and experimental validation, we investigated the anti-cervical cancer activity and molecular mechanism of a new trifluoromethyl quinoline (FKL) derivative in vivo and in vitro. FKL117 inhibited the proliferation of cervical cancer cells in a dose and time-dependent manner, induced apoptosis in HeLa cells, arrested the cell cycle in the G2/M phase, and regulated the expression of the apoptotic and cell cycle-related proteins Bcl-2, Bax, cyclin B1, and CDC2. We used online databases to obtain HDAC1 as one of the possible targets of FKL117 and the target binding and binding affinity were modeled by molecular docking. The results showed that FKL117 formed a hydrogen bond with HDAC1 and had good binding ability. We found that FKL117 targeted to inhibit the expression and function of HDAC1 and increased the acetylation of histone H3 and H4, which was also confirmed in vivo. The migration of HMGB1 from the nucleus to the cytoplasm further verified the above results. In conclusion, our study suggested that FKL117 might be used as a novel candidate for targeting the inhibition of HDAC1 against cervical cancer.


Assuntos
Quinolinas , Neoplasias do Colo do Útero , Feminino , Humanos , Histonas/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Células HeLa , Acetilação , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Apoptose , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Proliferação de Células , Histona Desacetilase 1/metabolismo
18.
PeerJ ; 12: e16768, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250727

RESUMO

Background: Recent studies have shown that activated pyroptosis in atopic dermatitis (AD) switches inflammatory processes and causes abnormal cornification and epidermal barrier dysfunction. Little research has focused on the interaction mechanism between pyroptosis-related genes and human keratinocyte differentiation. Methods: The AD dataset from the Gene Expression Omnibus (GEO) was used to identify differently expressed pyroptosis-related genes (DEPRGs). Hub genes were identified and an enrichment analysis was performed to select epithelial development-related genes. Lesions of AD patients were detected via immunohistochemistry (IHC) to verify the hub gene. Human keratinocytes cell lines, gasdermin D (GSDMD) overexpression, Caspase1 siRNA, Histone Deacetylase1 (HDAC1) siRNA, and HDAC1 overexpression vectors were used for gain-and-loss-of-function experiments. Regulation of cornification protein was determined by qPCR, western blot (WB), immunofluorescence (IF), dual-luciferase reporter assay, co-immunoprecipitation (Co-IP), and chromatin immunoprecipitation (ChIP). Results: A total of 27 DEPRGs were identified between either atopic dermatitis non-lesional skin (ANL) and healthy control (HC) or atopic dermatitis lesional skin (AL) and HC. The enrichment analysis showed that these DEPRGs were primarily enriched in the inflammatory response and keratinocytes differentiation. Of the 10 hub genes identified via the protein-protein interaction network, only GSDMD was statistically and negatively associated with the expression of epithelial tight junction core genes. Furthermore, GSDMD was upregulated in AD lesions and inhibited human keratinocyte differentiation by reducing filaggrin (FLG) expression. Mechanistically, GSDMD activated by Caspase1 reduced FLG expression via HDAC1. HDAC1 decreased FLG expression by reducing histone acetylation at the FLG promoter. In addition, GSDMD blocked the interaction of Potassium Channel Tetramerization Domain Containing 6 (KCTD6) and HDAC1 to prohibit HDAC1 degradation. Conclusion: This study revealed that GSDMD was upregulated in AD lesions and that GSDMD regulated keratinocytes via epigenetic modification, which might provide potential therapeutic targets for AD.


Assuntos
Dermatite Atópica , Histonas , Humanos , Dermatite Atópica/genética , Proteínas Filagrinas , Imunoprecipitação da Cromatina , Queratinócitos , RNA Interferente Pequeno , Histona Desacetilase 1/genética , Gasderminas , Proteínas de Ligação a Fosfato
19.
J Biochem Mol Toxicol ; 38(1): e23630, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229308

RESUMO

Hepatic ischemia-reperfusion (IR) injury is a complex systemic process causing a series clinical problem. C/EBPα is a key transcription factor for hepatocyte function, but its role and mechanism in regulating hepatic IR injury are largely unknown. Occluding portal vein and hepatic artery was used to establish a mouse model of hepatic IR injury. C/EBPα expression was decreased in IR-injured liver compared with the sham, accompanied by increased contents of serum alanine transaminase (ALT), aspartate transaminase (AST), high mobility group box-1, and proportion of hepatic cells. Oxygen and glucose deprivation/recovery (OGD/R) was used to establish a cellular hepatic IR model in WRL-68 hepatocytes in vitro, and C/EBPα was overexpressed in the hepatocytes to evaluate its effect on hepatic IR injury. OGD/R promoted oxidative stress, cell apoptosis and endoplasmic reticulum (ER) stress in hepatocytes, which was reversed by C/EBPα overexpression. Then, we found that C/EBPα promoted histone deacetylase 1 (HDAC1) transcription through binding to HDAC1 promoter. Moreover, HDAC1 deacetylated the activating transcription factor 4 (ATF4), a key positive regulator of ER stress. Trichostatin-A (an HDAC inhibitor) or ATF4 overexpression reversed the improvement of C/EBPα on OGD/R-induced ER stress and hepatocyte dysfunction. 4-Phenylbutyric acid (an endoplasmic reticulum stress inhibitor) also reversed the hepatic IR injury induced by ATF4 overexpression. Finally, lentivirus-mediated C/EBPα overexpression vector was applied to administrate hepatic IR mice, and the results showed that C/EBPα overexpression ameliorated IR-induced hepatic injury, manifesting with reduced ALT/AST, oxidative stress and ER stress. Altogether, our findings suggested that C/EBPα ameliorated hepatic IR injury by inhibiting ER stress via HDAC1-mediated deacetylation of ATF4 promoter.


Assuntos
Fator 4 Ativador da Transcrição , Traumatismo por Reperfusão , Animais , Camundongos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/farmacologia , Apoptose , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/farmacologia , Estresse do Retículo Endoplasmático , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/farmacologia , Fígado/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo
20.
Mol Biotechnol ; 66(1): 68-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37022596

RESUMO

Chronic pancreatitis (CP) as a progressive inflammatory disorder, remains untreatable. The novel treatment strategy for CP is imperative. We attempted to explore the therapeutic biomarkers for CP. The single-cell sequencing data were retrieved from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in idiopathic CP were identified, followed by function and pathway annotation, and PPI network established. DEGs of interest were verified in human tissue samples. The function of candidate biomarker was determined in the murine model with CP. A total of 208 genes were specially differentially expressed in idiopathic patients. Functional enrichment analysis showed DEGs were mainly enriched in glycogen catabolic process, RNA splicing, and glucagon signaling pathway. A PPI network centered on HDAC1 was constructed. HDAC1 was overexpressed in CP patients. The murine model with CP was induced by repetitive cerulein treatment. Silencing sh-HDAC1 treatment reversed cerulein-induced inflammatory cells accumulation, high expression of TGF-ß1, and collagen 1 in pancreas in vivo. HDAC1 might be served as potential biomarker for CP. The present study provided insights into the molecular mechanism of CP that may be useful in further investigations.


Assuntos
Perfilação da Expressão Gênica , Pancreatite Crônica , Humanos , Camundongos , Animais , Ceruletídeo/efeitos adversos , Modelos Animais de Doenças , Pancreatite Crônica/genética , Pancreatite Crônica/induzido quimicamente , Biomarcadores , Análise de Dados , Biologia Computacional , Histona Desacetilase 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA