Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
Biomed Pharmacother ; 174: 116537, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579402

RESUMO

Chronic Lymphocytic Leukemia (CLL) patients have a defective expression of the proapoptotic protein p66Shc and of its transcriptional factor STAT4, which evoke molecular abnormalities, impairing apoptosis and worsening disease prognosis and severity. p66Shc expression is epigenetically controlled and transcriptionally modulated by STAT4; epigenetic modifiers are deregulated in CLL cells and specific histone deacetylases (HDACs) like HDAC1, are overexpressed. Reactivation of STAT4/p66Shc expression may represent an attractive and challenging strategy to reverse CLL apoptosis defects. New selective class I HDAC inhibitors (HDACis, 6a-g) were developed with increased potency over existing agents and preferentially interfering with the CLL-relevant isoform HDAC1, to unveil the role of class I HDACs in the upregulation of STAT4 expression, which upregulates p66Shc expression and hence normalizes CLL cell apoptosis. 6c (chlopynostat) was identified as a potent HDAC1i with a superior profile over entinostat. 6c induces marked apoptosis of CLL cells compared with SAHA, which was associated with an upregulation of STAT4/p66Shc protein expression. The role of HDAC1, but not HDAC3, in the epigenetic upregulation of STAT4/p66Shc was demonstrated for the first time in CLL cells and was validated in siRNA-induced HDAC1/HDAC3 knock-down EBV-B cells. To sum up, HDAC1 inhibition is necessary to reactivate STAT4/p66Shc expression in patients with CLL. 6c is one of the most potent HDAC1is known to date and represents a novel pharmacological tool for reversing the impairment of the STAT4/p66Shc apoptotic machinery.


Assuntos
Apoptose , Linfócitos B , Inibidores de Histona Desacetilases , Leucemia Linfocítica Crônica de Células B , Fator de Transcrição STAT4 , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Apoptose/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Fator de Transcrição STAT4/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/antagonistas & inibidores , Benzamidas/farmacologia , Masculino , Idoso , Feminino , Pessoa de Meia-Idade
2.
Cells ; 12(23)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067162

RESUMO

Abnormal sexual maturity exhibits significant detrimental effects on adult health outcomes, and previous studies have indicated that targeting histone acetylation might serve as a potential therapeutic approach to regulate sexual maturity. However, the mechanisms that account for it remain to be further elucidated. Using the mouse model, we showed that Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, downregulated the protein level of Hdac1 in ovaries to promote the apoptosis of granulosa cells (GCs), and thus arrested follicular development and delayed sexual maturity. Using porcine GCs as a cell model, a novel sexual maturity-associated lncRNA, which was named as the stimulatory factor of follicular development (SFFD), transcribed from mitochondrion and mediated by HDAC1, was identified using RNA sequencing. Mechanistically, HDAC1 knockdown significantly reduced the H3K27ac level at the -953/-661 region of SFFD to epigenetically inhibit its transcription. SFFD knockdown released miR-202-3p to reduce the expression of cyclooxygenase 1 (COX1), an essential rate-limited enzyme involved in prostaglandin synthesis. This reduction inhibited the proliferation and secretion of 17ß-estradiol (E2) while promoting the apoptosis of GCs. Consequently, follicular development was arrested and sexual maturity was delayed. Taken together, HDAC1 knockdown-mediated SFFD downregulation promoted the apoptosis of GCs through the miR-202-3p-COX1 axis and lead to delayed sexual maturity. Our findings reveal a novel regulatory network modulated by HDAC1, and HDAC1-mediated SFFD may be a promising new therapeutic target to treat delayed sexual maturity.


Assuntos
MicroRNAs , RNA Longo não Codificante , Maturidade Sexual , Animais , Feminino , Camundongos , Apoptose/genética , Proliferação de Células , Ciclo-Oxigenase 1/metabolismo , Células da Granulosa/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Suínos , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Ácidos Hidroxâmicos/farmacologia
3.
Cell Death Dis ; 13(4): 324, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35395834

RESUMO

Histone deacetylases (HDACs) are entwined with the pathogenesis of various cancers and potentially serve as promising therapeutic targets. Herein, we intend to explore the potential role of HDAC1 inhibitor (JSL-1) in the tumorigenesis and metastasis of cholangiocarcinoma (CC) and to highlight the molecular basis of its function. As shown by bioinformatics analysis and immunohistochemical detection, high HDAC1 expression was witnessed in CC tissues relative to matched controls from patients with cholecystitis. The molecular network that HDAC1 silencing reduced the enrichment of HDAC1 and Snail on the TPX2 promoter was identified using immunoprecipitation and chromatin immunoprecipitation assays. Both short hairpin RNA (shRNA)-mediated knockdown of HDAC1 and JSL-1 treatment exhibited anti-proliferative, anti-migration and anti-invasion effects on CC cells through downregulation of TPX2. The in vivo xenograft model was developed in nude mice. Consistently, the anti-tumorigenic and anti-metastatic properties of shRNA against HDAC1 and HDAC1 inhibitor were validated in the in vivo settings. Taken together, our data supported the notion that HDAC1 inhibitor retards the initiation and development of CC via mediating the TPX2/Snail axis, highlighting the anti-tumor molecular network functioned in CC.


Assuntos
Colangiocarcinoma , Histona Desacetilase 1 , Inibidores de Histona Desacetilases , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Colangiocarcinoma/genética , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Metástase Neoplásica , RNA Interferente Pequeno , Fatores de Transcrição da Família Snail/genética
4.
BMC Pulm Med ; 22(1): 61, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148729

RESUMO

BACKGROUND: Exposure to toluene diisocyanate (TDI) is a significant pathogenic factor for asthma. We previously reported that the receptor for advanced glycation end products (RAGE) plays a key role in TDI-induced asthma. Histone deacetylase (HDAC) has been reported to be important in asthmatic pathogenesis. However, its effect on TDI-induced asthma is not known. The aim of this study was to determine the role of RAGE and HDAC in regulating airway inflammation using a TDI-induced murine asthma model. METHODS: BALB/c mice were sensitized and challenged with TDI to establish an asthma model. FPS-ZM1 (RAGE inhibitor), JNJ-26482585 and romidepsin (HDAC inhibitors) were administered intraperitoneally before each challenge. In vitro, the human bronchial epithelial cell line 16HBE was stimulated with TDI-human serum albumin (TDI-HSA). RAGE knockdown cells were constructed and evaluated, and MK2006 (AKT inhibitor) was also used in the experiments. RESULTS: In TDI-induced asthmatic mice, the expression of RAGE, HDAC1, and p-AKT/t-AKT was upregulated, and these expressions were attenuated by FPS-ZM1. Airway reactivity, Th2 cytokine levels in lymph supernatant, IgE, airway inflammation, and goblet cell metaplasia were significantly increased in the TDI-induced asthmatic mice. These increases were suppressed by JNJ-26482585 and romidepsin. In addition, JNJ-26482585 and romidepsin ameliorated the redistribution of E-cadherin and ß-catenin in TDI-induced asthma. In TDI-HSA-stimulated 16HBE cells, knockdown of RAGE attenuated the upregulation of HDAC1 and phospho-AKT (p-AKT). Treatment with the AKT inhibitor MK2006 suppressed TDI-induced HDAC1 expression. CONCLUSIONS: These findings indicate that RAGE modulates HDAC1 expression via the PI3K/AKT pathway, and that inhibition of HDAC prevents TDI-induced airway inflammation.


Assuntos
Asma/prevenção & controle , Histona Desacetilase 1/metabolismo , Inflamação/prevenção & controle , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Asma/induzido quimicamente , Benzamidas/farmacologia , Linhagem Celular , Citocinas/metabolismo , Depsipeptídeos/farmacologia , Modelos Animais de Doenças , Histona Desacetilase 1/antagonistas & inibidores , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosfatidilinositol 3-Quinases/metabolismo , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Tolueno 2,4-Di-Isocianato/toxicidade
5.
Eur J Med Chem ; 227: 113893, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34656899

RESUMO

The equilibrium between histone acetylation and deacetylation plays an important role in cancer initiation and progression. The histone deacetylases (HDACs) are a class of key regulators of gene expression that enzymatically remove an acetyl moiety from acetylated lysine ε-amino groups on histone tails. Therefore, HDAC inhibitors have recently emerged as a promising strategy for cancer therapy and several pan-HDAC inhibitors have globally been approved for clinical use. In the present study, we designed and synthesized a series of substituted indole-based hydroxamic acid derivatives that exhibited potent anti-proliferative activities in various tumor cell lines. Among the compounds tested, compound 4o, was found to be among the most potent in the inhibition of HDAC1 (half maximal inhibitory concentration, IC50 = 1.16 nM) and HDAC6 (IC50 = 2.30 nM). It also exhibited excellent in vitro anti-tumor proliferation activity. Additionally, compound 4o effectively increased the acetylation of histone H3 in a dose-dependent manner and inhibited cell proliferation by inducing cell cycle arrest and apoptosis. Moreover, compound 4o remarkably blocked colony formation in HCT116 cancer cells. Based on its favorable in vitro profile, compound 4o was further evaluated in an HCT116 xenograft mouse model, in which it demonstrated better in vivo efficacy than the clinically used HDAC inhibitor, suberanilohydroxamic acid. Interestingly, compound 4k was found to have a preference for the inhibition of HDAC6, with IC50 values of 115.20 and 5.29 nM against HDAC1 and HDAC6, respectively.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Histona Desacetilase 1/antagonistas & inibidores , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desacetilase 1/metabolismo , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Indóis/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
6.
Eur J Med Chem ; 227: 113908, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34656900

RESUMO

Highly efficacious and tolerable agents for the treatment of glioblastoma (GBM), the most common and aggressive primary brain tumor, are urgently needed. Herein, we reveal the design, synthesis and biological evaluation of several piperazine based benzamide derivatives, which are based on the non-classical isostere principle and combination principle for GBM therapy. After structure-activity relationship (SAR) study, compound L19 was demonstrated as the most promising compound with IC50 values of 0.15 µM, 0.29 µM, 1.25 µM against GBM C6, U87-MG, U251 cells, respectively. Moreover, compound L19 could inhibit the proliferation, migration and invasion, as well as induce apoptosis and cell cycle arrest of GBM cell lines in vitro. From mechanism perspective, compound L19 could regulate the cell cycle-related proteins and influence the p16INK4a-CDK4/6-pRb pathway by western blotting experiment. What is worth mentioning is that compound L19 could penetrate the blood-brain barrier (BBB) with an exceptional brain-to-plasma ratio of 1.07 in vivo. Besides, the superior anti-glioblastoma potency in vivo of compound L19 was identified on U87-MG-xenograft model without any apparent host toxicity. Overall, the potential of compound L19 warrants further pre-clinical investigation for GBM therapy.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Glioblastoma/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Piperazinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Benzamidas/síntese química , Benzamidas/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Piperazinas/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
J Invest Dermatol ; 142(1): 77-87.e10, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34284046

RESUMO

HDAC inhibitors show therapeutic promise for skin malignancies; however, the roles of specific HDACs in adult epidermal homeostasis and in disease are poorly understood. We find that homozygous epidermal codeletion of Hdac1 and Hdac2 in adult mouse epidermis causes reduced basal cell proliferation, apoptosis, inappropriate differentiation, and eventual loss of Hdac1/2-null keratinocytes. Hdac1/2-deficient epidermis displays elevated acetylated p53 and increased expression of the senescence gene p16. Loss of p53 partially restores basal proliferation, whereas p16 deletion promotes long-term survival of Hdac1/2-null keratinocytes. In activated GLI2-driven pre-basal cell carcinoma, Hdac1/2 deletion dramatically reduces proliferation and increases apoptosis, and knockout of either p53 or p16 partially rescues both proliferation and basal cell viability. Topical application of the HDAC inhibitor romidepsin to the normal epidermis or to GLI2ΔN-driven lesions produces similar defects to those caused by genetic Hdac1/2 deletion, and these are partially rescued by loss of p16. These data reveal essential roles for HDAC1/2 in maintaining proliferation and survival of adult epidermal and basal cell carcinoma progenitors and suggest that the efficacy of therapeutic HDAC1/2 inhibition will depend in part on the mutational status of p53 and p16.


Assuntos
Carcinoma Basocelular/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Epiderme/fisiologia , Queratinócitos/fisiologia , Neoplasias Cutâneas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Apoptose , Carcinogênese , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/genética , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/genética , Depsipeptídeos/farmacologia , Depsipeptídeos/uso terapêutico , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Lesões Pré-Cancerosas , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Proteína Supressora de Tumor p53/genética
8.
Fertil Steril ; 117(2): 433-443, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34809976

RESUMO

OBJECTIVE: To evaluate the effect of inhibition of histone deacetylases (HDACs) by suberoylanilide hydroxamic acid (SAHA) treatment of human uterine leiomyoma primary (HULP) cells in vitro on cell proliferation, cell cycle, extracellular matrix (ECM) formation, and transforming growth factor ß3 (TGF-ß3) signaling. DESIGN: Prospective study comparing uterine leiomyoma (UL) vs. adjacent myometrium (MM) tissue and cells with or without SAHA treatment. SETTING: Hospital and university laboratories. PATIENT(S): Women with UL without any hormone treatment. INTERVENTION(S): Myomectomy or hysterectomy surgery in women for leiomyoma disease. MAIN OUTCOME MEASURE(S): HDAC activity was assessed by enzyme-linked immunosorbent assay, and gene expression was assessed by quantitative real-time polymerase chain reaction. Effects of SAHA on HULP cells were analyzed by CellTiter (Promega, Madison, Wisconsin), Western blot, and quantitative real-time polymerase chain reaction. RESULT(S): The expression of HDAC genes (HDAC1, fold change [FC] = 1.65; HDAC3, FC = 2.08; HDAC6, FC = 2.42) and activity (0.56 vs. 0.10 optical density [OD]/h/mg) was significantly increased in UL vs. MM tissue. SAHA decreased HDAC activity in HULP cells but not in MM cells. Cell viability significantly decreased in HULP cells (81.68% at 5 µM SAHA, 73.46% at 10 µM SAHA), but not in MM cells. Proliferating cell nuclear antigen expression was significantly inhibited in SAHA-treated HULP cells (5 µM SAHA, FC = 0.556; 10 µM SAHA, FC = 0.622). Cell cycle markers, including C-MYC (5 µM SAHA, FC = 0.828) and CCND1 (5 µM SAHA, FC = 0.583; 10 µM SAHA, FC = 0.482), were significantly down-regulated after SAHA treatment. SAHA significantly inhibited ECM protein expression, including FIBRONECTIN (5 µM SAHA, FC = 0.815; 10 µM SAHA, FC = 0.673) and COLLAGEN I (5 µM SAHA, FC = 0.599; 10 µM SAHA, FC = 0.635), in HULP cells. TGFß3 and MMP9 gene expression was also significantly down-regulated by 10 µM SAHA (TGFß3, FC = 0.596; MMP9, FC = 0.677). CONCLUSION(S): SAHA treatment inhibits cell proliferation, cell cycle, ECM formation, and TGF-ß3 signaling in HULP cells, suggesting that histone deacetylation may be useful for treatment of UL.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Leiomioma/tratamento farmacológico , Neoplasias Uterinas/tratamento farmacológico , Vorinostat/farmacologia , Adulto , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Leiomioma/enzimologia , Leiomioma/genética , Leiomioma/patologia , Pessoa de Meia-Idade , Estudos Prospectivos , Transdução de Sinais , Fator de Crescimento Transformador beta3/metabolismo , Células Tumorais Cultivadas , Neoplasias Uterinas/enzimologia , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia
9.
Eur J Med Chem ; 229: 114049, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34954594

RESUMO

Histone deacetylases (HDAC) are clinically validated and attractive epigenetic drug targets for human cancers. Several HDAC inhibitors have been approved for cancer treatment to date, however, clinical applications have been limited due to the poor pharmacokinetics, bioavailability, selectivity of the HDAC inhibitors and most of them need to be combined with other drugs to achieve better results. Here, we describe our efforts toward the discovery of a novel series of lactam-based derivatives as selective HDAC inhibitors. Intensive structural modifications lead to the identification of compound 24g as the most active Class I HDAC Inhibitor, along with satisfactory metabolic stability in vitro (t1/2, human = 797 min) and the desirable oral bioavailability (F = 92%). More importantly, compound 24g showed good antitumor efficacy in a TMD-8 xenograft model (TGI = 77%) without obvious toxicity. These results indicated that Class I HDAC Inhibitor could be potentially used to treat certain diffuse large B-cell lymphoma therapeutics.


Assuntos
Desenho de Fármacos , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/química , Animais , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cães , Ensaios de Seleção de Medicamentos Antitumorais , Meia-Vida , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacocinética , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Camundongos , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Ratos , Relação Estrutura-Atividade
10.
Mediators Inflamm ; 2021: 6359652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924813

RESUMO

Ellagic acid (EA) was reported to play protective roles in rheumatoid arthritis (RA). It was found that the level of metastasis-associated gene 1 (MTA1)/histone deacetylase 1 (HDAC1) protein complex was downregulated by polyphenols in several human disorders. Notably, inhibition of MTA1 or HDAC1 has anti-inflammatory effects on RA. Therefore, our study is aimed at investigating whether EA prevents RA progression through regulating the MTA1/HDAC1 complex. Herein, the human fibroblast-like synoviocyte (FLS) cell line MH7A was treated with TNF-α to induce an inflammation model in vitro and then incubated with different concentrations of EA. Western blot analysis showed that EA reduced MTA1 expression in a dose-dependent manner in MH7A cells. Then, TNF-α-treated MH7A cells were incubated with EA alone or together with MTA1 overexpression plasmid (pcDNA-MTA1), and we found that EA inhibited proliferation, inflammation cytokine levels, and oxidative stress marker protein levels and promoted apoptosis in MH7A cells, while MTA1 overexpression abolished these effects. Moreover, coimmunoprecipitation assay verified the interaction between MTA1 and HDAC1. EA downregulated the MTA1/HDAC1 complex in MH7A cells. MTA1 knockdown inhibited proliferation, inflammation, and oxidative stress and promoted apoptosis in MH7A cells, while HDAC1 overexpression reversed these effects. Moreover, chromatin immunoprecipitation assay indicated that EA inhibited HDAC1-mediated Nur77 deacetylation. Rescue experiments demonstrated that Nur77 knockdown reversed the effects of EA on MH7A cell biological behaviors. Additionally, EA treatment attenuated arthritis index, paw swelling, synovial hyperplasia, and inflammation in collagen-induced arthritis (CIA) rats. In conclusion, EA inhibited proliferation, inflammation, and oxidative stress and promoted apoptosis in MH7A cells and alleviated the severity of RA in CIA rats though downregulating MTA1/HDAC1 complex and promoting HDAC1 deacetylation-mediated Nur77 expression.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Ácido Elágico/farmacologia , Histona Desacetilase 1/antagonistas & inibidores , Proteínas Repressoras/antagonistas & inibidores , Transativadores/antagonistas & inibidores , Acetilação , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Histona Desacetilase 1/fisiologia , Humanos , Masculino , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Proteínas Repressoras/fisiologia , Transativadores/fisiologia
11.
Reprod Sci ; 28(12): 3540-3546, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34668144

RESUMO

Breast cancer resistance protein (BCRP/ABCG2) is a critical drug efflux transporters by limiting drugs' transplacental transfer rates. More investigations on the regulation of placental BCRP offer great promise for enabling pronounced progress in individualized and safe pharmacotherapy during pregnancy. Histone deacetylases (HDACs) play an important role in epigenetic regulation of placental genes. It was reported recently by us that HDAC1 was involved in placental BCRP regulation in vitro. The aim of this study was to further explore the effect of HDAC1 on placental BCRP expression and functionality in animals. Randomly assigned C57BL pregnant dams received intraperitoneal injections of a negative control siRNA or Hdac1 siRNA from embryonic day 7.5 (E7.5) to E15.5, respectively. At E16.5, glyburide (GLB), a probe for evaluating placental BCRP efflux functionality, was injected via the tail vein. Animals were sacrificed through cervical dislocation at various times (5-180 min) after drug administration. The maternal blood, placentas, and fetal-units were collected. GLB concentrations were determined by a validated high-performance liquid chromatography/mass spectrometry (HPLC-MS) assay. Real-time quantitative PCR (qRT-PCR), Western blot, and immunohistochemical (IHC) analysis were employed to identify mRNA/protein levels and localization of gene expressions, respectively. It was noted that Hdac1 inhibition significantly decreased placental Bcrp expression, with markedly increases of GLB concentrations and area under the concentration-time curve (AUC) in fetal-units. Particularly, the ratios of fetal-unit/maternal plasma GLB concentrations were also significantly elevated following Hdac1 repression. Taken together, these findings suggested that HDAC1 was involved in positive regulation of placental BCRP expression and functionality in vivo.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/biossíntese , Histona Desacetilase 1/biossíntese , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Placenta/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Feminino , Inativação Gênica/efeitos dos fármacos , Inativação Gênica/fisiologia , Glibureto/administração & dosagem , Glibureto/metabolismo , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Camundongos , Camundongos Endogâmicos C57BL , Placenta/efeitos dos fármacos , Gravidez , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/metabolismo
12.
Bioorg Chem ; 117: 105407, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34653945

RESUMO

A series of quinazolinyl-containing benzamide derivatives were designed, synthesized and evaluated for their in vitro histone deacetylase 1 (HDAC1) inhibitory activities. Compounds 11a surpassed the known class I selective HDAC inhibitor MS-275 in both HDAC1 enzymatic inhibitory activity and cellular anti-proliferative activity against a selected set of cancer cell types (Hut78, K562, Hep3B and HCT116 cells) with no observed effects on human normal cells. In particular, compound 11a inhibited HDAC1 over the other tested HDACs isoforms (HDAC2, HDAC6 and HDAC8) with acceptable safety profiles. Moreover, compound 11a displayed favorable oral pharmacokinetic properties and showed significant antitumor activity in the A549 tumor xenograft model in vivo.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Benzamidas/química , Benzamidas/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular
13.
Respir Res ; 22(1): 239, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465322

RESUMO

BACKGROUND: It has been found that up-regulation of histone deacetylases 1 (HDAC1) is involved in the development of pulmonary arterial hypertension (PAH). However, it is still unclear whether inhibition of HDAC1 suppresses the development of PAH via restoring miR-34a level in monocrotaline (MCT)-induced PAH rats. METHODS: PAH rat models were induced by intraperitoneal injection of MCT. HDAC1 was suppressed by intraperitoneal injection of the class I HDAC inhibitor MS-275, and miR-34a was over-expressed via tail vein injection of miR-34a agomiR. RESULTS: HDAC1 protein was significantly increased in MCT-induced PAH rats; this was accompanied with down-regulation of miR-34a and subsequent up-regulation of matrix metalloproteinase 9 (MMP-9)/tissue inhibitor of metalloproteinase 1 (TIMP-1) and MMP-2/TIMP-2. Administration of PAH rats with MS-275 or miR-34a agomiR dramatically abolished MCT-induced reduction of miR-34a and subsequent up-regulation of MMP-9/TIMP-1 and MMP-2/TIMP-2, finally reduced extracellular matrix (ECM) accumulation, pulmonary arterial remodeling, right ventricular systolic pressure (RVSP) and right ventricle hypertrophy index (RVHI) in PAH rats. CONCLUSIONS: HDAC1 contributes to the development of MCT-induced rat PAH by suppressing miR-34a level and subsequently up-regulating the ratio of MMP-9/TIMP-1 and MMP-2/TIMP-2. Inhibition of HDAC1 alleviates pulmonary arterial remodeling and PAH through up-regulation of miR-34a level and subsequent reduction of MMP-9/TIMP-1 and MMP-2/TIMP-2, suggesting that inhibition of HDAC1 might have potential value in the management of PAH.


Assuntos
Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Monocrotalina/toxicidade , Artéria Pulmonar/metabolismo , Remodelação Vascular/fisiologia , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/uso terapêutico , Masculino , MicroRNAs/biossíntese , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Piridinas/farmacologia , Piridinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Remodelação Vascular/efeitos dos fármacos
14.
Anticancer Res ; 41(9): 4353-4364, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34475055

RESUMO

BACKGROUND/AIM: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential anti-tumor agent. However, resistance to TRAIL has been reported in a number of clinical trials. In this study, we investigated the molecular mechanisms by which a novel histone deacetylase (HDAC) inhibitor, CBUD-1001, sensitizes colorectal cancer (CRC) cells to TRAIL-induced apoptosis. MATERIALS AND METHODS: Apoptotic cell death induced by CBUD-1001 and/or TRAIL was assessed on human CRC cells using the MTT assay, FACS analysis and nuclei staining. The involved molecular mechanisms were explored through western blotting analysis. RESULTS: We demonstrated that combined with CBUD-1001, TRAIL significantly enhanced TRAIL-induced apoptosis in CRC cells via mitochondria-mediated pathways. We also found that hyper-acetylation of histone by CBUD-1001 treatment leads to up-regulation of death receptor (DR) 5 in a dose- and time-dependent manner. Furthermore, we identified that enhanced sensitivity to TRAIL by combination with CBUD-1001 depends on the MAPK/CHOP axis, being a key mediator of DR5. CONCLUSION: A novel HDAC inhibitor CBUD-1001 sensitizes TRAIL-induced apoptosis via up-regulation of DR5, and that CBUD-1001 and TRAIL combination treatment offers an effective strategy to overcome TRAIL resistance in CRC cells.


Assuntos
Neoplasias Colorretais/metabolismo , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Regulação para Baixo , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos
15.
Mol Cancer Ther ; 20(9): 1550-1560, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34210825

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by early dissemination and poor drug response. Therefore, it is an unmet medical need to develop new strategies for treatment. As aberrant activation of ERK due to KRAS activating mutation is a driving force for PDAC, a brake system that can terminate ERK signaling represents an ideal druggable target. Herein, we demonstrate that forced expression of dual specificity phosphatase-2 (DUSP2), a specific ERK phosphatase, abrogated tumor formation and loss of Dusp2 facilitated Kras-driven PDAC progression. We report that a selective HDAC1/2 inhibitor (B390) has multifaceted therapeutic potential in PDAC by restoring the expression and function of DUSP2. In vitro study showed that treatment with B390 inhibited growth and migration abilities of PDAC cells, decreased extracellular vesicle-associated VEGF-C expression, and suppressed lymphatic endothelial cell proliferation. In vivo, B390 not only suppressed tumor growth by increasing tumor cell death, it also inhibited lymphangiogenesis and lymphovascular invasion. Taken together, our data demonstrate that B390 was able to alleviate loss of DUSP2-mediated pathologic processes, which provides the proof-of-concept evidence to demonstrate the potential of using selective HDAC1/2 inhibitors in PDAC treatment and suggests reinstating DUSP2 expression may be a strategy to subside PDAC progression.


Assuntos
Fosfatase 2 de Especificidade Dupla/metabolismo , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Linfangiogênese , Neoplasias Pancreáticas/tratamento farmacológico , Fator C de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Fosfatase 2 de Especificidade Dupla/genética , Vesículas Extracelulares/metabolismo , Humanos , Camundongos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Tumorais Cultivadas , Fator C de Crescimento do Endotélio Vascular/genética
16.
J Neurosci ; 41(31): 6775-6792, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34193554

RESUMO

Epigenetic modifiers are increasingly being investigated as potential therapeutics to modify and overcome disease phenotypes. Diseases of the nervous system present a particular problem as neurons are postmitotic and demonstrate relatively stable gene expression patterns and chromatin organization. We have explored the ability of epigenetic modifiers to prevent degeneration of rod photoreceptors in a mouse model of retinitis pigmentosa (RP), using rd10 mice of both sexes. The histone modification eraser enzymes lysine demethylase 1 (LSD1) and histone deacetylase 1 (HDAC1) are known to have dramatic effects on the development of rod photoreceptors. In the RP mouse model, inhibitors of these enzymes blocked rod degeneration, preserved vision, and affected the expression of multiple genes including maintenance of rod-specific transcripts and downregulation of those involved in inflammation, gliosis, and cell death. The neuroprotective activity of LSD1 inhibitors includes two pathways. First, through targeting histone modifications, they increase accessibility of chromatin and upregulate neuroprotective genes, such as from the Wnt pathway. We propose that this process is going in rod photoreceptors. Second, through nonhistone targets, they inhibit transcription of inflammatory genes and inflammation. This process is going in microglia, and lack of inflammation keeps rod photoreceptors alive.SIGNIFICANCE STATEMENT Retinal degenerations are a leading cause of vision loss. RP is genetically very heterogeneous, and the multiple pathways leading to cell death are one reason for the slow progress in identifying suitable treatments for patients. Here we demonstrate that inhibition of LSD1and HDAC1 in a mouse model of RP leads to preservation of rod photoreceptors and visual function, retaining of expression of rod-specific genes, and with decreased inflammation, cell death, and Müller cell gliosis. We propose that these epigenetic inhibitors cause more open and accessible chromatin, allowing expression of neuroprotective genes. A second mechanism that allows rod photoreceptor survival is suppression of inflammation by epigenetic inhibitors in microglia. Manipulation of epigenetic modifiers is a new strategy to fight neurodegeneration in RP.


Assuntos
Histona Desacetilase 1/antagonistas & inibidores , Histona Desmetilases/antagonistas & inibidores , Degeneração Neural/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Feminino , Inibidores de Histona Desacetilases/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/patologia , Tranilcipromina/farmacologia
17.
J Virol ; 95(18): e0085321, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34232065

RESUMO

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus causing acute intestinal infection in pigs, with high mortality often seen in neonatal pigs. The newborns rely on innate immune responses against invading pathogens because of lacking adaptive immunity. However, how PEDV disables the innate immunity of newborns toward severe infection remains unknown. We found that PEDV infection led to reduced expression of histone deacetylases (HDACs), especially HDAC1, in porcine IPEC-J2 cells. HDACs are considered important regulators of innate immunity. We hypothesized that PEDV interacts with certain host factors to regulate HDAC1 expression in favor of its replication. We show that HDAC1 acted as a negative regulator of PEDV replication in IPEC-J2 cells, as shown by chemical inhibition, gene knockout, and overexpression. A GC-box (GCCCCACCCCC) within the HDAC1 promoter region was identified for Sp1 binding in IPEC-J2 cells. Treatment of the cells with Sp1 inhibitor mithramycin A inhibited HDAC1 expression, indicating direct regulation of HDAC1 expression by Sp1. Of the viral proteins that were overexpressed in IPEC-J2 cells, the N protein was found to be present in the nuclei and more inhibitory to HDAC1 transcription. The putative nuclear localization sequence 261PKKNKSR267 contributed to its nuclear localization. The N protein interacted with Sp1 and interfered with its binding to the promoter region, thereby inhibiting its transcriptional activity for HDAC1 expression. Our findings reveal a novel mechanism of PEDV evasion of the host responses, offering implications for studying the infection processes of other coronaviruses. IMPORTANCE The enteric coronavirus porcine epidemic diarrhea virus (PEDV) causes fatal acute intestinal infection in neonatal pigs that rely on innate immune responses. Histone deacetylases (HDACs) play important roles in innate immune regulation. Our study found PEDV suppresses HDAC1 expression via the interaction of its N protein and porcine Sp1, which identified a novel mechanism of PEDV evasion of the host responses to benefit its replication. This study suggests that other coronaviruses, including SARS-CoV and SARS-CoV-2, also make use of their N proteins to intercept the host immune responses in favor of their infection.


Assuntos
Infecções por Coronavirus/veterinária , Células Epiteliais/virologia , Histona Desacetilase 1/antagonistas & inibidores , Mucosa Intestinal/virologia , Fator de Transcrição Sp1/metabolismo , Doenças dos Suínos/virologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Células Cultivadas , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Vírus da Diarreia Epidêmica Suína/patogenicidade , Fator de Transcrição Sp1/genética , Suínos , Doenças dos Suínos/metabolismo , Doenças dos Suínos/patologia , Proteínas não Estruturais Virais/genética
18.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073721

RESUMO

Epigenetic therapy using histone deacetylase (HDAC) inhibitors has become an attractive project in new drug development. However, DNA methylation and histone acetylation are important epigenetic ways to regulate the occurrence and development of leukemia. Given previous studies, N-(2-aminophenyl)benzamide acridine (8a), as a histone deacetylase 1 (HDAC1) inhibitor, induces apoptosis and shows significant anti-proliferative activity against histiocytic lymphoma U937 cells. HDAC1 plays a role in the nucleus, which we confirmed by finding that 8a entered the nucleus. Subsequently, we verified that 8a mainly passes through the endogenous (mitochondrial) pathway to induce cell apoptosis. From the protein interaction data, we found that 8a also affected the expression of DNA methyltransferase 1 (DNMT1). Therefore, an experiment was performed to assess the binding of 8a to DNMT1 at the molecular and cellular levels. We found that the binding strength of 8a to DNMT1 enhanced in a dose-dependent manner. Additionally, 8a inhibits the expression of DNMT1 mRNA and its protein. These findings suggested that the anti-proliferative and pro-apoptotic activities of 8a against leukemia cells were achieved by targeting HDAC1 and DNMT1.


Assuntos
Apoptose , Proliferação de Células , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Histona Desacetilase 1/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1/genética , Regulação Neoplásica da Expressão Gênica , Células HeLa , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Células K562 , Simulação de Acoplamento Molecular , Neoplasias/enzimologia , Neoplasias/fisiopatologia , Células U937
19.
Mol Immunol ; 136: 55-64, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34087624

RESUMO

Pseudorabies virus (PRV) is an enveloped double-stranded DNA virus that is the etiological agent of Aujeszky's disease in pigs. Vaccination is currently available to prevent PRV infection, but there is still an urgent need for new strategies to control this infectious disease. Histone deacetylases (HDACs) are epigenetic regulators that regulate the histone tail, chromatin conformation, protein-DNA interaction and even transcription. Viral transcription and protein activities are intimately linked to regulation by histone acetyltransferases and HDACs that remodel chromatin and regulate gene expression. We reported here that genetic and pharmacological inhibition of HDAC1 significantly influenced PRV replication. Moreover, we demonstrated that inhibition of HDAC1 induced a DNA damage response and antiviral innate immunity. Mechanistically, the HDAC1 inhibition-induced DNA damage response resulted in the release of double-strand DNA into the cytosol to activate cyclic GMP-AMP synthase and the downstream STING/TBK1/IRF3 innate immune signaling pathway. Our results demonstrate that an HDAC1 inhibitor may be used as a new strategy to prevent Aujeszky's disease in pigs.


Assuntos
Herpesvirus Suídeo 1/efeitos dos fármacos , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Pseudorraiva/tratamento farmacológico , Células 3T3 , Animais , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/genética , Células HEK293 , Herpesvirus Suídeo 1/crescimento & desenvolvimento , Histona Desacetilase 1/genética , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Nucleotidiltransferases/metabolismo , Pseudorraiva/imunologia , Células RAW 264.7 , Interferência de RNA , RNA Interferente Pequeno/genética , Suínos , Doenças dos Suínos/virologia , Replicação Viral/efeitos dos fármacos
20.
Parasitol Res ; 120(6): 2175-2187, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33987736

RESUMO

Theileria and Babesia species are eukaryotic protozoan parasites classified under the order Piroplasmida of the phylum Apicomplexa. Tick vectors transmit these microorganisms in tropical and subtropical regions to a wide range of animals, including ruminants, causing fatal and life-threatening diseases such as bovine babesiosis and theileriosis. Resistance to commercially available drugs requires the search for new drug candidates. Histone deacetylase (HDAC) has a potential to be utilized as a drug target; therefore, it may be considered as an effective alternative. Previous studies revealed that HDAC inhibitors, identified for human use, show promising anti-parasitic effects. We have herein focused on the class I HDAC enzyme, HDAC1, of the Babesia and Theileria species to discover potential benzamide inhibitors by following a streamlined workflow of computer-aided drug design methodology. Molecular docking and molecular dynamics simulations revealed that benzamide derivatives stably interacted with the HDAC1 active site in both parasites as hypothesized. Furthermore, specific residue insertions at the entry point of the active site cleft of parasitic HDAC1 could enable ways to design parasite-specific drugs without adversely affecting host enzymes.


Assuntos
Antiprotozoários/farmacologia , Babesia/enzimologia , Benzamidas/farmacologia , Inibidores Enzimáticos/farmacologia , Histona Desacetilase 1/antagonistas & inibidores , Simulação de Dinâmica Molecular , Theileria/enzimologia , Animais , Bovinos , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA