Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.256
Filtrar
1.
PLoS One ; 19(5): e0301690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38701072

RESUMO

Myogenesis is regulated mainly by transcription factors known as Myogenic Regulatory Factors (MRFs), and the transcription is affected by epigenetic modifications. However, the epigenetic regulation of myogenesis is poorly understood. Here, we focused on the epigenomic modification enzyme, PHF2, which demethylates histone 3 lysine 9 dimethyl (H3K9me2) during myogenesis. Phf2 mRNA was expressed during myogenesis, and PHF2 was localized in the nuclei of myoblasts and myotubes. We generated Phf2 knockout C2C12 myoblasts using the CRISPR/Cas9 system and analyzed global transcriptional changes via RNA-sequencing. Phf2 knockout (KO) cells 2 d post differentiation were subjected to RNA sequencing. Gene ontology (GO) analysis revealed that Phf2 KO impaired the expression of the genes related to skeletal muscle fiber formation and muscle cell development. The expression levels of sarcomeric genes such as Myhs and Mybpc2 were severely reduced in Phf2 KO cells at 7 d post differentiation, and H3K9me2 modification of Mybpc2, Mef2c and Myh7 was increased in Phf2 KO cells at 4 d post differentiation. These findings suggest that PHF2 regulates sarcomeric gene expression via epigenetic modification.


Assuntos
Desenvolvimento Muscular , Sarcômeros , Animais , Camundongos , Diferenciação Celular/genética , Linhagem Celular , Epigênese Genética , Técnicas de Inativação de Genes , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Histonas/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citologia , Mioblastos/metabolismo , Mioblastos/citologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Sarcômeros/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
2.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612726

RESUMO

Medulloblastoma (MB) is a highly malignant childhood brain tumor. Group 3 MB (Gr3 MB) is considered to have the most metastatic potential, and tailored therapies for Gr3 MB are currently lacking. Gr3 MB is driven by PRUNE-1 amplification or overexpression. In this paper, we found that PRUNE-1 was transcriptionally regulated by lysine demethylase LSD1/KDM1A. This study aimed to investigate the therapeutic potential of inhibiting both PRUNE-1 and LSD1/KDM1A with the selective inhibitors AA7.1 and SP-2577, respectively. We found that the pharmacological inhibition had a substantial efficacy on targeting the metastatic axis driven by PRUNE-1 (PRUNE-1-OTX2-TGFß-PTEN) in Gr3 MB. Using RNA seq transcriptomic feature data in Gr3 MB primary cells, we provide evidence that the combination of AA7.1 and SP-2577 positively affects neuronal commitment, confirmed by glial fibrillary acidic protein (GFAP)-positive differentiation and the inhibition of the cytotoxic components of the tumor microenvironment and the epithelial-mesenchymal transition (EMT) by the down-regulation of N-Cadherin protein expression. We also identified an impairing action on the mitochondrial metabolism and, consequently, oxidative phosphorylation, thus depriving tumors cells of an important source of energy. Furthermore, by overlapping the genomic mutational signatures through WES sequence analyses with RNA seq transcriptomic feature data, we propose in this paper that the combination of these two small molecules can be used in a second-line treatment in advanced therapeutics against Gr3 MB. Our study demonstrates that the usage of PRUNE-1 and LSD1/KDM1A inhibitors in combination represents a novel therapeutic approach for these highly aggressive metastatic MB tumors.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Histona Desmetilases/genética , Epigênese Genética , Microambiente Tumoral
3.
Free Radic Biol Med ; 219: 49-63, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38608823

RESUMO

Previous studies have shown that ferroptosis of vascular smooth muscle cells (VSMCs) is involved in the development of aortic dissection (AD) and that histone methylation regulates this process. SP2509 acts as a specific inhibitor of lysine-specific demethylase 1 (LSD1), which governs a variety of biological processes. However, the effect of SP2509 on VSMC ferroptosis and AD remains to be elucidated. This aim of this study was to investigate the role and underlying mechanism of SP2509-mediated histone methylation on VSMC ferroptosis. Here, a mouse model of AD was established, and significantly reduced levels of H3K4me1 and H3K4me2 (target of SP2509) were found in the aortas of AD mice. In VSMCs, SP2509 treatment led to a dose-dependent increase in H3K4me2 levels. Furthermore, we found that SP2509 provided equivalent protection to ferrostatin-1 against VSMC ferroptosis, as evidenced by increased cell viability, decreased cell death and lipid peroxidation. RNA-sequencing analysis and subsequent experiments revealed that SP2509 counteracted cystine deficiency-induced response to inflammation and oxidative stress. More importantly, we demonstrated that SP2509 inhibited the expression of TFR and ferritin to reduce intracellular iron levels, thereby effectively blocking the process of ferroptosis. Therefore, our findings indicate that SP2509 protects VSMCs from multiple stimulus-induced ferroptosis by reducing intracellular iron levels, thereby preventing lipid peroxidation and cell death. These findings suggest that SP2509 may be a promising drug to alleviate AD by reducing iron deposition and VSMC ferroptosis.


Assuntos
Ferroptose , Ferro , Músculo Liso Vascular , Miócitos de Músculo Liso , Ferroptose/efeitos dos fármacos , Animais , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Camundongos , Ferro/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Estresse Oxidativo/efeitos dos fármacos , Humanos , Modelos Animais de Doenças , Peroxidação de Lipídeos/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Masculino , Sobrevivência Celular/efeitos dos fármacos , Histonas/metabolismo , Histonas/genética , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Camundongos Endogâmicos C57BL , Cicloexilaminas
4.
Nat Commun ; 15(1): 3412, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649356

RESUMO

Postnatal development of the gastrointestinal tract involves the establishment of the commensal microbiota, the acquisition of immune tolerance via a balanced immune cell composition, and maturation of the intestinal epithelium. While studies have uncovered an interplay between the first two, less is known about the role of the maturing epithelium. Here we show that intestinal-epithelial intrinsic expression of lysine-specific demethylase 1A (LSD1) is necessary for the postnatal maturation of intestinal epithelium and maintenance of this developed state during adulthood. Using microbiota-depleted mice, we find plasma cells, innate lymphoid cells (ILCs), and a specific myeloid population to depend on LSD1-controlled epithelial maturation. We propose that LSD1 controls the expression of epithelial-derived chemokines, such as Cxcl16, and that this is a mode of action for this epithelial-immune cell interplay in local ILC2s but not ILC3s. Together, our findings suggest that the maturing epithelium plays a dominant role in regulating the local immune cell composition, thereby contributing to gut homeostasis.


Assuntos
Microbioma Gastrointestinal , Histona Desmetilases , Mucosa Intestinal , Intestino Delgado , Animais , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Camundongos , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Microbioma Gastrointestinal/imunologia , Intestino Delgado/imunologia , Intestino Delgado/microbiologia , Camundongos Endogâmicos C57BL , Imunidade Inata , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos Knockout , Feminino , Masculino , Homeostase
5.
Nat Commun ; 15(1): 3563, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670969

RESUMO

Synthetic glucocorticoids (GC), such as dexamethasone, are extensively used to treat chronic inflammation and autoimmune disorders. However, long-term treatments are limited by various side effects, including muscle atrophy. GC activities are mediated by the glucocorticoid receptor (GR), that regulates target gene expression in various tissues in association with cell-specific co-regulators. Here we show that GR and the lysine-specific demethylase 1 (LSD1) interact in myofibers of male mice, and that LSD1 connects GR-bound enhancers with NRF1-associated promoters to stimulate target gene expression. In addition, we unravel that LSD1 demethylase activity is required for triggering starvation- and dexamethasone-induced skeletal muscle proteolysis in collaboration with GR. Importantly, inhibition of LSD1 circumvents muscle wasting induced by pharmacological levels of dexamethasone, without affecting their anti-inflammatory activities. Thus, our findings provide mechanistic insights into the muscle-specific GC activities, and highlight the therapeutic potential of targeting GR co-regulators to limit corticotherapy-induced side effects.


Assuntos
Dexametasona , Glucocorticoides , Histona Desmetilases , Músculo Esquelético , Atrofia Muscular , Receptores de Glucocorticoides , Animais , Masculino , Histona Desmetilases/metabolismo , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/genética , Glucocorticoides/farmacologia , Dexametasona/farmacologia , Receptores de Glucocorticoides/metabolismo , Camundongos , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/tratamento farmacológico , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica/efeitos dos fármacos
6.
Clin Epigenetics ; 16(1): 51, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576048

RESUMO

BACKGROUND: The intriguing connection between selenium and cancer resembles a captivating puzzle that keeps researchers engaged and curious. While selenium has shown promise in reducing cancer risks through supplementation, its interaction with epigenetics in cervical cancer remains a fascinating yet largely unexplored realm. Unraveling the intricacies of selenium's role and its interaction with epigenetic factors could unlock valuable insights in the battle against this complex disease. RESULT: Selenium has shown remarkable inhibitory effects on cervical cancer cells in various ways. In in vitro studies, it effectively inhibits the proliferation, migration, and invasion of cervical cancer cells, while promoting apoptosis. Selenium also demonstrates significant inhibitory effects on human cervical cancer-derived organoids. Furthermore, in an in vivo study, the administration of selenium dioxide solution effectively suppresses the growth of cervical cancer tumors in mice. One of the mechanisms behind selenium's inhibitory effects is its ability to inhibit histone demethylases, specifically JMJD3 and UTX. This inhibition is observed both in vitro and in vivo. Notably, when JMJD3 and UTX are inhibited with GSK-J4, similar biological effects are observed in both in vitro and in vivo models, effectively inhibiting organoid models derived from cervical cancer patients. Inhibiting JMJD3 and UTX also induces G2/M phase arrest, promotes cellular apoptosis, and reverses epithelial-mesenchymal transition (EMT). ChIP-qPCR analysis confirms that JMJD3 and UTX inhibition increases the recruitment of a specific histone modification, H3K27me3, to the transcription start sites (TSS) of target genes in cervical cancer cells (HeLa and SiHa cells). Furthermore, the expressions of JMJD3 and UTX are found to be significantly higher in cervical cancer tissues compared to adjacent normal cervical tissues, suggesting their potential as therapeutic targets. CONCLUSIONS: Our study highlights the significant inhibitory effects of selenium on the growth, migration, and invasion of cervical cancer cells, promoting apoptosis and displaying promising potential as a therapeutic agent. We identified the histone demethylases JMJD3 and UTX as specific targets of selenium, and their inhibition replicates the observed effects on cancer cell behavior. These findings suggest that JMJD3 and UTX could be valuable targets for selenium-based treatments of cervical cancer.


Assuntos
Selênio , Neoplasias do Colo do Útero , Feminino , Humanos , Animais , Camundongos , Selênio/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Metilação de DNA , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases/genética
7.
Ecotoxicol Environ Saf ; 277: 116352, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663195

RESUMO

Cadmium (Cd) pollution in soil poses a global concern due to its serious impacts on human health and ecological security. In plants, tremendous efforts have been made to identify some key genes and pathways in Cd stress responses. However, studies on the roles of epigenetic factors in response to Cd stress were still limited. In the study, we first gain insight into the gene expression dynamics for maize seedlings under 0 h, 12 h, and 72 h Cd stress. As a result, six distinct groups of genes were identified by hierarchical clustering and principal component analysis. The key pathways associated with 12 h Cd stress were protein modifications including protein ubiquitination, signal transduction by protein phosphorylation, and histone modification. Whereas, under 72 h stress, main pathways were involved in biological processes including phenylalanine metabolism, response to oxygen-containing compounds and metal ions. Then to be noted, one of the most highly expressed genes at 12 h under Cd treatment is annotated as histone demethylases (ZmJMJ20). The evolutionary tree analysis and domain analysis showed that ZmJMJ20 belonged to the JmjC-only subfamily of the Jumonji-C (JmjC) family, and ZmJMJ20 was conserved in rice and Arabidopsis. After 72 h of Cd treatment, the zmjmj20 mutant created by EMS treatment manifested less severe chlorosis/leaf yellowing symptoms compared with wild-type plants, and there was no significant difference in Fv/Fm and φPSII value before and after Cd treatment. Moreover, the expression levels of several photosynthesis-related down-regulated genes in EMS mutant plants were dramatically increased compared with those in wild-type plants at 12 h under Cd treatment. Our results suggested that ZmJMJ20 plays an important role in the Cd tolerance response pathway and will facilitate the development of cultivars with improved Cd stress tolerance.


Assuntos
Cádmio , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Poluentes do Solo , Estresse Fisiológico , Zea mays , Zea mays/genética , Zea mays/efeitos dos fármacos , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética
8.
Environ Toxicol ; 39(6): 3563-3577, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477077

RESUMO

Lysine specific demethylase 1 (LSD1) is a histone demethylase that specifically catalyzes the demethylation of histone H3K4 (H3K4me1/2) and regulates gene expression. In addition, it can mediate the process of autophagy through its demethylase activity. Sestrin2 (SESN2) is a stress-induced protein and a positive regulator of autophagy. In NaAsO2-induced mouse fibrotic livers and activated hepatic stellate cells (HSCs), LSD1 expression is decreased, SESN2 expression is increased, and autophagy levels are also increased. Overexpression of LSD1 and silencing of SESN2 decreased the level of autophagy and attenuated the activation of HSCs induced by NaAsO2. LSD1 promoted SESN2 gene transcription by increasing H3K4me1/2 in the SESN2 promoter region. 3-methyladenine (3-MA) and chloroquine were used to inhibit autophagy of HSCs, and the degree of activation was also alleviated. Taken together, LSD1 positively regulates SESN2 by increasing H3K4me1/2 enrichment in the SESN2 promoter region, which in turn increases the level of autophagy and promotes the activation of HSCs. Our results may provide new evidence for the importance of LSD1 in the process of autophagy and activation of HSCs induced by arsenic poisoning. Increasing the expression and activity of LSD1 is expected to be an effective way to reverse the autophagy and activation of HSCs induced by arsenic poisoning.


Assuntos
Proteínas Quinases Ativadas por AMP , Arsenitos , Histona Desmetilases , Transdução de Sinais , Compostos de Sódio , Animais , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Transdução de Sinais/efeitos dos fármacos , Arsenitos/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Camundongos , Compostos de Sódio/toxicidade , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Autofagia/efeitos dos fármacos , Masculino , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos Endogâmicos C57BL
9.
Nat Commun ; 15(1): 2165, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461301

RESUMO

The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.


Assuntos
Neoplasias , Estruturas R-Loop , RNA Longo não Codificante , Homeostase do Telômero , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Separação de Fases , RNA Longo não Codificante/genética , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero/genética , Humanos
10.
Commun Biol ; 7(1): 374, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548886

RESUMO

The transcription factor Growth Factor Independence 1B (GFI1B) recruits Lysine Specific Demethylase 1 A (LSD1/KDM1A) to stimulate gene programs relevant for megakaryocyte and platelet biology. Inherited pathogenic GFI1B variants result in thrombocytopenia and bleeding propensities with varying intensity. Whether these affect similar gene programs is unknow. Here we studied transcriptomic effects of four patient-derived GFI1B variants (GFI1BT174N,H181Y,R184P,Q287*) in MEG01 megakaryoblasts. Compared to normal GFI1B, each variant affected different gene programs with GFI1BQ287* uniquely failing to repress myeloid traits. In line with this, single cell RNA-sequencing of induced pluripotent stem cell (iPSC)-derived megakaryocytes revealed a 4.5-fold decrease in the megakaryocyte/myeloid cell ratio in GFI1BQ287* versus normal conditions. Inhibiting the GFI1B-LSD1 interaction with small molecule GSK-LSD1 resulted in activation of myeloid genes in normal iPSC-derived megakaryocytes similar to what was observed for GFI1BQ287* iPSC-derived megakaryocytes. Thus, GFI1B and LSD1 facilitate gene programs relevant for megakaryopoiesis while simultaneously repressing programs that induce myeloid differentiation.


Assuntos
Hematopoese , Megacariócitos , Humanos , Megacariócitos/metabolismo , Diferenciação Celular/genética , Hematopoese/genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo
11.
Free Radic Biol Med ; 217: 48-59, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527695

RESUMO

The transcription factor NRF2 plays a pivotal role in maintaining redox and metabolic homeostasis by orchestrating oxidative stress-dependent transcription programs. Despite growing evidence implicating various cellular components in the regulation of NRF2 activity at the posttranslational stage, relatively less is known about the factors dictating the transcriptional activation of NRF2 in response to oxidative stress. In this study, we report the crucial roles of MLL1, an H3K4-specific methyltransferase, and UTX, an H3K27-specific histone demethylase, in the NRF2-dependent transcription program under oxidative stress. We find that the depletion of MLL1 or UTX results in increased susceptibility to oxidative stress, accompanied by higher intracellular ROS and the failed activation of antioxidant genes, including NRF2. In addition, MLL1 and UTX selectively target the NRF2 promoter, and exogenous FLAG-NRF2 expression increases the viability of MLL1-or UTX-depleted cells upon exposure to hydrogen peroxide. RNA-seq analysis demonstrates that depletion of MLL1 or UTX affects the changes in NRF2-dependent transcriptome in response to oxidative stress. Furthermore, ChIP and ChIP-seq analyses find that MLL1 and UTX functionally cooperate to establish a chromatin environment that favors active transcription at the H3K4me3/H3K27me3 bivalent NRF2 promoter in response to ROS-induced oxidative stress. Collectively, these findings provide a molecular mechanism underlying the cellular response to oxidative stress and highlight the importance of the chromatin structure and function in maintaining redox homeostasis.


Assuntos
Histona Desmetilases , Fator 2 Relacionado a NF-E2 , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Metilação , Cromatina , Estresse Oxidativo
12.
Nat Commun ; 15(1): 1781, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453932

RESUMO

Kdm1a is a histone demethylase linked to intellectual disability with essential roles during gastrulation and the terminal differentiation of specialized cell types, including neurons, that remains highly expressed in the adult brain. To explore Kdm1a's function in adult neurons, we develop inducible and forebrain-restricted Kdm1a knockouts. By applying multi-omic transcriptome, epigenome and chromatin conformation data, combined with super-resolution microscopy, we find that Kdm1a elimination causes the neuronal activation of nonneuronal genes that are silenced by the polycomb repressor complex and interspersed with active genes. Functional assays demonstrate that the N-terminus of Kdm1a contains an intrinsically disordered region that is essential to segregate Kdm1a-repressed genes from the neighboring active chromatin environment. Finally, we show that the segregation of Kdm1a-target genes is weakened in neurons during natural aging, underscoring the role of Kdm1a safeguarding neuronal genome organization and gene silencing throughout life.


Assuntos
Cromatina , Histona Desmetilases , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Cromatina/genética , Neurônios/metabolismo
13.
Br J Haematol ; 204(5): 1899-1907, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432067

RESUMO

Kabuki syndrome (KS) is now listed in the Human Inborn Errors of Immunity (IEI) Classification. It is a rare disease caused by KMT2D and KDM6A variants, dominated by intellectual disability and characteristic facial features. Recurrently, pathogenic variants are identified in those genes in patients examined for autoimmune cytopenia (AIC), but interpretation remains challenging. This study aims to describe the genetic diagnosis and the clinical management of patients with paediatric-onset AIC and KS. Among 11 patients with AIC and KS, all had chronic immune thrombocytopenic purpura, and seven had Evans syndrome. All had other associated immunopathological manifestations, mainly symptomatic hypogammaglobinaemia. They had a median of 8 (5-10) KS-associated manifestations. Pathogenic variants were detected in KMT2D gene without clustering, during the immunological work-up of AIC in three cases, and the clinical strategy to validate them is emphasized. Eight patients received second-line treatments, mainly rituximab and mycophenolate mofetil. With a median follow-up of 17 (2-31) years, 8/10 alive patients still needed treatment for AIC. First-line paediatricians should be able to recognize and confirm KS in children with ITP or multiple AIC, to provide early appropriate clinical management and specific long-term follow-up. The epigenetic immune dysregulation in KS opens exciting new perspectives.


Assuntos
Anormalidades Múltiplas , Proteínas de Ligação a DNA , Face , Doenças Hematológicas , Histona Desmetilases , Proteínas de Neoplasias , Doenças Vestibulares , Humanos , Doenças Vestibulares/genética , Doenças Vestibulares/diagnóstico , Criança , Face/anormalidades , Feminino , Masculino , Pré-Escolar , Anormalidades Múltiplas/genética , Adolescente , Histona Desmetilases/genética , Proteínas de Neoplasias/genética , Doenças Hematológicas/genética , Proteínas de Ligação a DNA/genética , Púrpura Trombocitopênica Idiopática/genética , Púrpura Trombocitopênica Idiopática/terapia , Púrpura Trombocitopênica Idiopática/diagnóstico , Lactente , Trombocitopenia/genética , Trombocitopenia/diagnóstico , Trombocitopenia/etiologia , Trombocitopenia/terapia , Anemia Hemolítica Autoimune/genética , Anemia Hemolítica Autoimune/diagnóstico , Anemia Hemolítica Autoimune/terapia , Doenças Autoimunes/genética , Doenças Autoimunes/diagnóstico , Rituximab/uso terapêutico , Mutação , Citopenia
14.
Nucleic Acids Res ; 52(7): 3667-3681, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38321961

RESUMO

The Wnt/ß-Catenin pathway plays a key role in cell fate determination during development and in adult tissue regeneration by stem cells. These processes involve profound gene expression and epigenome remodeling and linking Wnt/ß-Catenin signaling to chromatin modifications has been a challenge over the past decades. Functional studies of the lysine demethylase LSD1/KDM1A converge to indicate that this epigenetic regulator is a key regulator of cell fate, although the extracellular cues controlling LSD1 action remain largely unknown. Here we show that ß-Catenin is a substrate of LSD1. Demethylation by LSD1 prevents ß-Catenin degradation thereby maintaining its nuclear levels. Consistently, in absence of LSD1, ß-Catenin transcriptional activity is reduced in both MuSCs and ESCs. Moreover, inactivation of LSD1 in mouse muscle stem cells and embryonic stem cells shows that LSD1 promotes mitotic spindle orientation via ß-Catenin protein stabilization. Altogether, by inscribing LSD1 and ß-Catenin in the same molecular cascade linking extracellular factors to gene expression, our results provide a mechanistic explanation to the similarity of action of canonical Wnt/ß-Catenin signaling and LSD1 on stem cell fate.


Assuntos
Autorrenovação Celular , Histona Desmetilases , Via de Sinalização Wnt , beta Catenina , Animais , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , beta Catenina/metabolismo , beta Catenina/genética , Camundongos , Autorrenovação Celular/genética , Núcleo Celular/metabolismo , Fuso Acromático/metabolismo , Diferenciação Celular/genética , Humanos , Células-Tronco/metabolismo , Células-Tronco/citologia
15.
Nature ; 627(8004): 594-603, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383780

RESUMO

Although KDM5C is one of the most frequently mutated genes in X-linked intellectual disability1, the exact mechanisms that lead to cognitive impairment remain unknown. Here we use human patient-derived induced pluripotent stem cells and Kdm5c knockout mice to conduct cellular, transcriptomic, chromatin and behavioural studies. KDM5C is identified as a safeguard to ensure that neurodevelopment occurs at an appropriate timescale, the disruption of which leads to intellectual disability. Specifically, there is a developmental window during which KDM5C directly controls WNT output to regulate the timely transition of primary to intermediate progenitor cells and consequently neurogenesis. Treatment with WNT signalling modulators at specific times reveal that only a transient alteration of the canonical WNT signalling pathway is sufficient to rescue the transcriptomic and chromatin landscapes in patient-derived cells and to induce these changes in wild-type cells. Notably, WNT inhibition during this developmental period also rescues behavioural changes of Kdm5c knockout mice. Conversely, a single injection of WNT3A into the brains of wild-type embryonic mice cause anxiety and memory alterations. Our work identifies KDM5C as a crucial sentinel for neurodevelopment and sheds new light on KDM5C mutation-associated intellectual disability. The results also increase our general understanding of memory and anxiety formation, with the identification of WNT functioning in a transient nature to affect long-lasting cognitive function.


Assuntos
Cognição , Embrião de Mamíferos , Desenvolvimento Embrionário , Histona Desmetilases , Via de Sinalização Wnt , Animais , Humanos , Camundongos , Ansiedade , Cromatina/efeitos dos fármacos , Cromatina/genética , Cromatina/metabolismo , Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/genética , Memória , Camundongos Knockout , Mutação , Neurogênese/genética , Via de Sinalização Wnt/efeitos dos fármacos
16.
J Exp Clin Cancer Res ; 43(1): 44, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326863

RESUMO

BACKGROUND: m6A modification is currently recognized as a major driver of RNA function that maintains cancer cell homeostasis. Long non-coding (Lnc) RNAs control cell proliferation and play an important role in the occurrence and progression of colorectal cancer (CRC). ZCCHC4 is a newly discovered m6A methyltransferase whose role and mechanism in tumors have not yet been elucidated. METHODS: The EpiQuik m6A RNA methylation kit was used to detect the level of total RNA m6A in six types of digestive tract tumors. The Kaplan-Meier method and receiver operating characteristic curve were used to evaluate the prognostic and diagnostic value of the newly discovered m6A methyltransferase, ZCCHC4, in CRC. The effects on CRC growth in vitro and in vivo were studied using gain- and loss-of-function experiments. The epigenetic mechanisms underlying ZCCHC4 upregulation in CRC were studied using RIP, MeRIP-seq, RNA pull-down, and animal experiments. RESULTS: We reported that the ZCCHC4-LncRNAGHRLOS-KDM5D axis regulates the growth of CRC in vitro and in vivo. We found that ZCCHC4 was upregulated in primary CRC samples and could predict adverse clinical outcomes in patients with CRC. Mechanistically, ZCCHC4 downregulated LncRNAGHRLOS to promote CRC tumorigenesis. As a downstream molecule of LncRNAGHRLOS, KDM5D directly controls CRC cell proliferation, migration, and invasion. CONCLUSION: This study suggests that the ZCCHC4 axis contributes to the tumorigenesis and progression of CRC and that ZCCHC4 may be a potential biomarker for this malignancy.


Assuntos
Adenina , Neoplasias Colorretais , RNA Longo não Codificante , Animais , Humanos , Adenina/análogos & derivados , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/patologia , Regulação para Baixo , Epigênese Genética , Histona Desmetilases/genética , Metiltransferases/metabolismo , Antígenos de Histocompatibilidade Menor , RNA , RNA Longo não Codificante/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
17.
Eur J Endocrinol ; 190(2): 173-181, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38330165

RESUMO

IMPORTANCE: A paradoxical increase of growth hormone (GH) following oral glucose load has been described in ∼30% of patients with acromegaly and has been related to the ectopic expression of the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) in somatotropinomas. Recently, we identified germline pathogenic variants and somatic loss of heterozygosity of lysine demethylase 1A (KDM1A) in patients with GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome. The ectopic expression of GIPR in both adrenal and pituitary lesions suggests a common molecular mechanism. OBJECTIVE: We aimed to analyze KDM1A gene sequence and KDM1A and GIPR expressions in somatotroph pituitary adenomas. SETTINGS: We conducted a cohort study at university hospitals in France and in Italy. We collected pituitary adenoma specimens from acromegalic patients who had undergone pituitary surgery. We performed targeted exome sequencing (gene panel analysis) and array-comparative genomic hybridization on somatic DNA derived from adenomas and performed droplet digital PCR on adenoma samples to quantify KDM1A and GIPR expressions. RESULTS: One hundred and forty-six patients with sporadic acromegaly were studied; 72.6% presented unsuppressed classical GH response, whereas 27.4% displayed a paradoxical rise in GH after oral glucose load. We did not identify any pathogenic variant in the KDM1A gene in the adenomas of these patients. However, we identified a recurrent 1p deletion encompassing the KDM1A locus in 29 adenomas and observed a higher prevalence of paradoxical GH rise (P = .0166), lower KDM1A expression (4.47 ± 2.49 vs 8.56 ± 5.62, P < .0001), and higher GIPR expression (1.09 ± 0.92 vs 0.43 ± 0.51, P = .0012) in adenomas from patients with KDM1A haploinsufficiency compared with those with 2 KDM1A copies. CONCLUSIONS AND RELEVANCE: Unlike in GIP-dependent primary bilateral macronodular adrenal hyperplasia, KDM1A genetic variations are not the cause of GIPR expression in somatotroph pituitary adenomas. Recurrent KDM1A haploinsufficiency, more frequently observed in GIPR-expressing adenomas, could be responsible for decreased KDM1A function resulting in transcriptional derepression on the GIPR locus.


Assuntos
Acromegalia , Adenoma , Adenoma Hipofisário Secretor de Hormônio do Crescimento , Hormônio do Crescimento Humano , Neoplasias Hipofisárias , Somatotrofos , Humanos , Neoplasias Hipofisárias/patologia , Acromegalia/metabolismo , Somatotrofos/metabolismo , Somatotrofos/patologia , Hibridização Genômica Comparativa , Hiperplasia/patologia , Estudos de Coortes , Genótipo , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Adenoma/patologia , Hormônio do Crescimento Humano/metabolismo , Hormônio do Crescimento/metabolismo , Glucose , Histona Desmetilases/genética , Histona Desmetilases/metabolismo
18.
Cell Death Dis ; 15(2): 136, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346941

RESUMO

Histone methylation plays a crucial role in various cellular processes. We previously reported the in vitro function of histone lysine demethylase 7 A (KDM7A) in osteoblast and adipocyte differentiation. The current study was undertaken to investigate the physiological role of KDM7A in bone homeostasis and elucidate the underlying mechanisms. A conditional strategy was employed to delete the Kdm7a gene specifically in osterix-expressing osteoprogenitor cells in mice. The resulting mutant mice exhibited a significant increase in cancellous bone mass, accompanied by an increase in osteoblasts and bone formation, as well as a reduction in osteoclasts, marrow adipocytes and bone resorption. The bone marrow stromal cells (BMSCs) and calvarial pre-osteoblastic cells derived from the mutant mice exhibited enhanced osteogenic differentiation and suppressed adipogenic differentiation. Additionally, osteoclastic precursor cells from the mutant mice exhibited impaired osteoclast differentiation. Co-culturing BMSCs from the mutant mice with wild-type osteoclast precursor cells resulted in the inhibition of osteoclast differentiation. Mechanistic investigation revealed that KDM7A was able to upregulate the expression of fibroblast activation protein α (FAP) and receptor activator of nuclear factor κB ligand (RANKL) in BMSCs through removing repressive di-methylation marks of H3K9 and H3K27 from Fap and Rankl promoters. Moreover, recombinant FAP attenuated the dysregulation of osteoblast and adipocyte differentiation in BMSCs from Kdm7a deficient mice. Finally, Kdm7a deficiency prevented ovariectomy-induced bone loss in mice. This study establish the role of KDM7A in bone homeostasis through its epigenetic regulation of osteoblast and osteoclast differentiation. Consequently, inhibiting KDM7A may prove beneficial in ameliorating osteoporosis. KDM7A suppresses osteoblast differentiation and bone formation through. upregulating FAP expression and inactivating canonical Wnt signaling, and conversely promotes osteoclast differentiation and bone resorption through upregulating RANKL expression. These are based on its epigenetic removal of the repressive H3K9me2 and H3K27me2 marks from Fap and Rankl promoters. As a result, the expression of KDM7A in osteoprogenitor cells tends to negatively modulate bone mass.


Assuntos
Reabsorção Óssea , Histona Desmetilases com o Domínio Jumonji , Osteoclastos , Animais , Feminino , Camundongos , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular , Epigênese Genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Homeostase , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Ligante RANK/genética , Ligante RANK/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo
19.
J Lipid Res ; 65(3): 100513, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38295985

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease without specific Food and Drug Administration-approved drugs. Recent advances suggest that chromatin remodeling and epigenetic alteration contribute to the development of NAFLD. The functions of the corresponding molecular modulator in NAFLD, however, are still elusive. KDM1A, commonly known as lysine-specific histone demethylase 1, has been reported to increase glucose uptake in hepatocellular carcinoma. In addition, a recent study suggests that inhibition of KDM1A reduces lipid accumulation in primary brown adipocytes. We here investigated the role of KDM1A, one of the most important histone demethylases, in NAFLD. In this study, we observed a significant upregulation of KDM1A in NAFLD mice, monkeys, and humans compared to the control group. Based on these results, we further found that the KDM1A can exacerbate lipid accumulation and inflammation in hepatocytes and mice. Mechanistically, KDM1A exerted its effects by elevating chromatin accessibility, subsequently promoting the development of NAFLD. Furthermore, the mutation of KDM1A blunted its capability to promote the development of NAFLD. In summary, our study discovered that KDM1A exacerbates hepatic steatosis and inflammation in NAFLD via increasing chromatin accessibility, further indicating the importance of harnessing chromatin remodeling and epigenetic alteration in combating NAFLD. KDM1A might be considered as a potential therapeutic target in this regard.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Cromatina/genética , Histona Desmetilases/genética , Inflamação/genética , Lipídeos
20.
In Vitro Cell Dev Biol Anim ; 60(2): 115-122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286920

RESUMO

DUSP4 is a biomarker of esophageal squamous cell carcinoma (ESCC), which is responsible for the prognosis in ESCC. However, the underlying mechanism of DUSP4-regulated ESCC carcinogenesis is unknown. As a negative regulator of JNK, DUSP4 can inhibit autophagy, which contributes to tumorigenesis. This study aimed to explore the role of autophagy in DUSP4-regulated ESCC carcinogenesis. Our results showed that DUSP4 overexpression inhibited autophagy and promoted LSD1 protein expression in ESCC cells, while DUSP4 silencing showed the opposite effects. However, DUSP4 overexpression and silencing did not affect LSD1 mRNA expression. But the regulatory ability of DUSP4 overexpression on autophagy, death level, and LSD1 protein was reversed by rapamycin. In addition, DUSP4 overexpression inhibited JNK and Bcl2 phosphorylation and the dissociation of Bcl2-Beclin1 complex, while DUSP4 silencing promoted JNK and Bcl2 phosphorylation. Moreover, the regulatory ability of DUSP4 overexpression on autophagy, death, and LSD1 protein was reversed by JNK activator anisomycin. The xenograft assays also showed that DUSP4 overexpression-promoted ESCC tumor growth in vivo and LC3II and LSD1 protein expression in tumor tissues were reversed by rapamycin or anisomycin. Overall, DUSP4 inhibits Bcl2-Beclin1-autophagy signal transduction through the negative regulation of JNK, thus suppressing autophagic death and the autophagic degradation of LSD1 in ESCC, by which DUSP4 promotes ESCC carcinogenesis.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Anisomicina , Proteína Beclina-1/genética , Linhagem Celular Tumoral , Autofagia/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Estabilidade Proteica , Sirolimo/farmacologia , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA