Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Nat Cancer ; 3(6): 753-767, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35449309

RESUMO

Small cell lung cancer (SCLC) is notorious for its early and frequent metastases, which contribute to it as a recalcitrant malignancy. To understand the molecular mechanisms underlying SCLC metastasis, we generated SCLC mouse models with orthotopically transplanted genome-edited lung organoids and performed multiomics analyses. We found that a deficiency of KMT2C, a histone H3 lysine 4 methyltransferase frequently mutated in extensive-stage SCLC, promoted multiple-organ metastases in mice. Metastatic and KMT2C-deficient SCLC displayed both histone and DNA hypomethylation. Mechanistically, KMT2C directly regulated the expression of DNMT3A, a de novo DNA methyltransferase, through histone methylation. Forced DNMT3A expression restrained metastasis of KMT2C-deficient SCLC through repressing metastasis-promoting MEIS/HOX genes. Further, S-(5'-adenosyl)-L-methionine, the common cofactor of histone and DNA methyltransferases, inhibited SCLC metastasis. Thus, our study revealed a concerted epigenetic reprogramming of KMT2C- and DNMT3A-mediated histone and DNA hypomethylation underlying SCLC metastasis, which suggested a potential epigenetic therapeutic vulnerability.


Assuntos
DNA Metiltransferase 3A , Histona-Lisina N-Metiltransferase , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , DNA Metiltransferase 3A/genética , Metilases de Modificação do DNA/genética , Epigênese Genética/genética , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metiltransferases/genética , Camundongos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/secundário
2.
Nat Struct Mol Biol ; 29(2): 85-96, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35102319

RESUMO

Transcriptionally silenced heterochromatin bearing methylation of histone H3 on lysine 9 (H3K9me) is critical for maintaining organismal viability and tissue integrity. Here we show that in addition to ensuring H3K9me, MET-2, the Caenorhabditis elegans homolog of the SETDB1 histone methyltransferase, has a noncatalytic function that contributes to gene repression. Subnuclear foci of MET-2 coincide with H3K9me deposition, yet these foci also form when MET-2 is catalytically deficient and H3K9me is compromised. Whereas met-2 deletion triggers a loss of silencing and increased histone acetylation, foci of catalytically deficient MET-2 maintain silencing of a subset of genes, blocking acetylation on H3K9 and H3K27. In normal development, this noncatalytic MET-2 activity helps to maintain fertility. Under heat stress MET-2 foci disperse, coinciding with increased acetylation and transcriptional derepression. Our study suggests that the noncatalytic, focus-forming function of this SETDB1-like protein and its intrinsically disordered cofactor LIN-61 is physiologically relevant.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Animais Geneticamente Modificados , Biocatálise , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas Cromossômicas não Histona/deficiência , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Inativação Gênica , Heterocromatina/genética , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Metilação , Modelos Biológicos , Mutação , Transcrição Gênica
3.
Life Sci Alliance ; 5(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34893559

RESUMO

Changes in histone post-translational modifications are associated with aging through poorly defined mechanisms. Histone 3 lysine 4 (H3K4) methylation at promoters is deposited by SET1 family methyltransferases acting within conserved multiprotein complexes known as COMPASS. Previous work yielded conflicting results about the requirement for H3K4 methylation during aging. Here, we reassessed the role of SET1/COMPASS-dependent H3K4 methylation in Caenorhabditis elegans lifespan and fertility by generating set-2(syb2085) mutant animals that express a catalytically inactive form of SET-2, the C. elegans SET1 homolog. We show that set-2(syb2085) animals retain the ability to form COMPASS, but have a marked global loss of H3K4 di- and trimethylation (H3K4me2/3). Reduced H3K4 methylation was accompanied by loss of fertility, as expected; however, in contrast to earlier studies, set-2(syb2085) mutants displayed a significantly shortened, not extended, lifespan and had normal intestinal fat stores. Other commonly used set-2 mutants were also short-lived, as was a cfp-1 mutant that lacks the SET1/COMPASS chromatin-targeting component. These results challenge previously held views and establish that WT H3K4me2/3 levels are essential for normal lifespan in C. elegans.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Fertilidade/genética , Histona-Lisina N-Metiltransferase/deficiência , Longevidade/genética , Proteínas Nucleares/deficiência , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Catálise , Ativação Enzimática , Histonas/metabolismo , Metilação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
4.
Biosci Rep ; 41(11)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34724040

RESUMO

Lysine methyltransferase 2D (KMT2D), as one of the key histone methyltransferases responsible for histone 3 lysine 4 methylation (H3K4me), has been proved to be the main pathogenic gene of Kabuki syndrome disease. Kabuki patients with KMT2D mutation frequently present various dental abnormalities, including abnormal tooth number and crown morphology. However, the exact function of KMT2D in tooth development remains unclear. In this report, we systematically elucidate the expression pattern of KMT2D in early tooth development and outline the molecular mechanism of KMT2D in dental epithelial cell line. KMT2D and H3K4me mainly expressed in enamel organ and Kmt2d knockdown led to the reduction in cell proliferation activity and cell cycling activity in dental epithelial cell line (LS8). RNA-sequencing (RNA-seq) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis screened out several important pathways affected by Kmt2d knockdown including Wnt signaling. Consistently, Top/Fop assay confirmed the reduction in Wnt signaling activity in Kmt2d knockdown cells. Nuclear translocation of ß-catenin was significantly reduced by Kmt2d knockdown, while lithium chloride (LiCl) partially reversed this phenomenon. Moreover, LiCl partially reversed the decrease in cell proliferation activity and G1 arrest, and the down-regulation of Wnt-related genes in Kmt2d knockdown cells. In summary, the present study uncovered a pivotal role of histone methyltransferase KMT2D in dental epithelium proliferation and cell cycle homeostasis partially through regulating Wnt/ß-catenin signaling. The findings are important for understanding the role of KMT2D and histone methylation in tooth development.


Assuntos
Células Epiteliais/metabolismo , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/deficiência , Proteína de Leucina Linfoide-Mieloide/genética , Dente/metabolismo , Via de Sinalização Wnt/genética , Animais , Proteína Quinase CDC2/metabolismo , Ciclo Celular/genética , Linhagem Celular , Proliferação de Células/genética , Ciclina D1/metabolismo , Células Epiteliais/citologia , Histonas/metabolismo , Cloreto de Lítio/farmacologia , Camundongos , Camundongos Endogâmicos ICR , Dente Molar/metabolismo , Dente/citologia , Via de Sinalização Wnt/efeitos dos fármacos
5.
Nature ; 590(7846): 504-508, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536620

RESUMO

Amplification of chromosomal region 8p11-12 is a common genetic alteration that has been implicated in the aetiology of lung squamous cell carcinoma (LUSC)1-3. The FGFR1 gene is the main candidate driver of tumorigenesis within this region4. However, clinical trials evaluating FGFR1 inhibition as a targeted therapy have been unsuccessful5. Here we identify the histone H3 lysine 36 (H3K36) methyltransferase NSD3, the gene for which is located in the 8p11-12 amplicon, as a key regulator of LUSC tumorigenesis. In contrast to other 8p11-12 candidate LUSC drivers, increased expression of NSD3 correlated strongly with its gene amplification. Ablation of NSD3, but not of FGFR1, attenuated tumour growth and extended survival in a mouse model of LUSC. We identify an LUSC-associated variant NSD3(T1232A) that shows increased catalytic activity for dimethylation of H3K36 (H3K36me2) in vitro and in vivo. Structural dynamic analyses revealed that the T1232A substitution elicited localized mobility changes throughout the catalytic domain of NSD3 to relieve auto-inhibition and to increase accessibility of the H3 substrate. Expression of NSD3(T1232A) in vivo accelerated tumorigenesis and decreased overall survival in mouse models of LUSC. Pathological generation of H3K36me2 by NSD3(T1232A) reprograms the chromatin landscape to promote oncogenic gene expression signatures. Furthermore, NSD3, in a manner dependent on its catalytic activity, promoted transformation in human tracheobronchial cells and growth of xenografted human LUSC cell lines with amplification of 8p11-12. Depletion of NSD3 in patient-derived xenografts from primary LUSCs containing NSD3 amplification or the NSD3(T1232A)-encoding variant attenuated neoplastic growth in mice. Finally, NSD3-regulated LUSC-derived xenografts were hypersensitive to bromodomain inhibition. Thus, our work identifies NSD3 as a principal 8p11-12 amplicon-associated oncogenic driver in LUSC, and suggests that NSD3-dependency renders LUSC therapeutically vulnerable to bromodomain inhibition.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Histonas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Nucleares/metabolismo , Animais , Biocatálise , Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Feminino , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Humanos , Neoplasias Pulmonares/genética , Masculino , Metilação , Camundongos , Modelos Moleculares , Mutação , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619101

RESUMO

Hotspot histone H3 mutations have emerged as drivers of oncogenesis in cancers of multiple lineages. Specifically, H3 lysine 36 to methionine (H3K36M) mutations are recurrently identified in chondroblastomas, undifferentiated sarcomas, and head and neck cancers. While the mutation reduces global levels of both H3K36 dimethylation (H3K36me2) and trimethylation (H3K36me3) by dominantly inhibiting their respective specific methyltransferases, the relative contribution of these methylation states to the chromatin and phenotypic changes associated with H3K36M remains unclear. Here, we specifically deplete H3K36me2 or H3K36me3 in mesenchymal cells, using CRISPR-Cas9 to separately knock out the corresponding methyltransferases NSD1/2 or SETD2. By profiling and comparing the epigenomic and transcriptomic landscapes of these cells with cells expressing the H3.3K36M oncohistone, we find that the loss of H3K36me2 could largely recapitulate H3.3K36M's effect on redistribution of H3K27 trimethylation (H3K27me3) and gene expression. Consistently, knockout of Nsd1/2, but not Setd2, phenocopies the differentiation blockade and hypersensitivity to the DNA-hypomethylating agent induced by H3K36M. Together, our results support a functional divergence between H3K36me2 and H3K36me3 and their nonredundant roles in H3K36M-driven oncogenesis.


Assuntos
Carcinogênese/genética , Epigênese Genética , Histonas/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Antimetabólitos Antineoplásicos/farmacologia , Sistemas CRISPR-Cas , Linhagem Celular , Cromatina/química , Cromatina/metabolismo , Citarabina/farmacologia , Decitabina/farmacologia , Edição de Genes , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Lisina/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Metilação/efeitos dos fármacos , Camundongos , Mutação , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Fenótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Transcriptoma/efeitos dos fármacos
7.
Hepatology ; 73(5): 1797-1815, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33058300

RESUMO

BACKGROUND AND AIMS: Trimethylation of Lys36 on histone 3 (H3K36me3) catalyzed by histone methyltransferase SET domain-containing 2 (SETD2) is one of the most conserved epigenetic marks from yeast to mammals. SETD2 is frequently mutated in multiple cancers and acts as a tumor suppressor. APPROACH AND RESULTS: Here, using a liver-specific Setd2 depletion model, we found that Setd2 deficiency is sufficient to trigger spontaneous HCC. Meanwhile, Setd2 depletion significantly increased tumor and tumor size of a diethylnitrosamine-induced HCC model. The mechanistic study showed that Setd2 suppresses HCC not only through modulating DNA damage response, but also by regulating lipid metabolism in the liver. Setd2 deficiency down-regulated H3K36me3 enrichment and expression of cholesterol efflux genes and caused lipid accumulation. High-fat diet enhanced lipid accumulation and promoted the development of HCC in Setd2-deficient mice. Chromatin immunoprecipitation sequencing analysis further revealed that Setd2 depletion induced c-Jun/activator protein 1 (AP-1) activation in the liver, which was trigged by accumulated lipid. c-Jun acts as an oncogene in HCC and functions through inhibiting p53 in Setd2-deficient cells. CONCLUSIONS: We revealed the roles of Setd2 in HCC and the underlying mechanisms in regulating cholesterol homeostasis and c-Jun/AP-1 signaling.


Assuntos
Carcinoma Hepatocelular/etiologia , Histona-Lisina N-Metiltransferase/deficiência , Metabolismo dos Lipídeos , Neoplasias Hepáticas/etiologia , Fígado/metabolismo , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Colesterol/sangue , Imunoprecipitação da Cromatina , Edição de Genes , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células Hep G2 , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Triglicerídeos/sangue
8.
Biochem Biophys Res Commun ; 558: 202-208, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33036756

RESUMO

The process of autophagy is dysregulated in many cancers including clear cell renal cell carcinoma (ccRCC). Autophagy involves the coordination of numerous autophagy-related (ATG) genes, as well as processes involving the actin cytoskeleton. The histone methyltransferase SETD2, frequently inactivated in ccRCC, has recently been shown to also methylate cytoskeletal proteins, which in the case of actin lysine 68 trimethylation (ActK68me3) regulates actin polymerization dynamics. Here we show that cells lacking SETD2 exhibit autophagy defects, as well as decreased interaction of the actin nucleation promoting factor WHAMM with its target actin, which is required for initiation of autophagy. Interestingly, the WHAMM actin binding deficit could be rescued with pharmacologic induction of actin polymerization in SETD2-null cells using Jasplakinolide. These data indicate that the decreased interaction between WHAMM and its target actin in SETD2-null cells was secondary to altered actin dynamics rather than loss of the SETD2 ActK68me3 mark itself, and underscores the importance of the functional defect in actin polymerization in SETD2-null cells exhibiting autophagy defects.


Assuntos
Actinas/metabolismo , Carcinoma de Células Renais/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias Renais/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Autofagia/genética , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular , Linhagem Celular Tumoral , Regulação para Baixo , Técnicas de Inativação de Genes , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia
9.
BMC Med Genomics ; 13(1): 181, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33276791

RESUMO

BACKGROUND: Wolf-Hirschhorn syndrome is a well-characterized genomic disorder caused by 4p16.3 deletions. Wolf-Hirschhorn syndrome patients exhibit characteristic facial dysmorphism, growth retardation, developmental delay, intellectual disability and seizure disorders. Recently, NSD2 gene located within the 165 kb Wolf-Hirschhorn syndrome critical region was identified as the key causal gene responsible for most if not all phenotypes of Wolf-Hirschhorn syndrome. So far, eight NSD2 loss of function variants have been reported in patients from different parts of the world, all were de novo variants. METHODS: In our study, we performed whole exome sequencing for two patients from one family. We also reviewed more NSD2 mutation cases in pervious literature. RESULTS: A novel loss of function NSD2 variant, c.1577dupG (p.Asn527Lysfs*14), was identified in a Chinese family in the proband and her father both affected with intellectual disability. After reviewing more NSD2 mutation cases in pervious literature, we found none of them had facial features that can be recognized as Wolf-Hirschhorn syndrome. In addition, we have given our proband growth hormone and followed up with this family for 7.5 years. CONCLUSIONS: Here we reported the first familial NSD2 variant and the long-term effect of growth hormone therapy for patients. Our results suggested NSD2 mutation might cause a distinct intellectual disability and short stature syndrome.


Assuntos
Fácies , Histona-Lisina N-Metiltransferase/genética , Terapia de Reposição Hormonal , Hormônio do Crescimento Humano/uso terapêutico , Mutação com Perda de Função , Proteínas Repressoras/genética , Síndrome de Wolf-Hirschhorn/genética , Povo Asiático/genética , Pré-Escolar , Nanismo/tratamento farmacológico , Nanismo/genética , Feminino , Seguimentos , Transtornos do Crescimento/tratamento farmacológico , Transtornos do Crescimento/genética , Histona-Lisina N-Metiltransferase/deficiência , Humanos , Deficiência Intelectual/genética , Masculino , Microcefalia/genética , Linhagem , Fenótipo , Proteínas Repressoras/deficiência , Resultado do Tratamento , Sequenciamento do Exoma , Síndrome de Wolf-Hirschhorn/tratamento farmacológico
10.
Nat Genet ; 52(10): 1088-1098, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32929285

RESUMO

De novo DNA methylation (DNAme) in mammalian germ cells is dependent on DNMT3A and DNMT3L. However, oocytes and spermatozoa show distinct patterns of DNAme. In mouse oocytes, de novo DNAme requires the lysine methyltransferase (KMTase) SETD2, which deposits H3K36me3. We show here that SETD2 is dispensable for de novo DNAme in the male germline. Instead, the lysine methyltransferase NSD1, which broadly deposits H3K36me2 in euchromatic regions, plays a critical role in de novo DNAme in prospermatogonia, including at imprinted genes. However, males deficient in germline NSD1 show a more severe defect in spermatogenesis than Dnmt3l-/- males. Notably, unlike DNMT3L, NSD1 safeguards a subset of genes against H3K27me3-associated transcriptional silencing. In contrast, H3K36me2 in oocytes is predominantly dependent on SETD2 and coincides with H3K36me3. Furthermore, females with NSD1-deficient oocytes are fertile. Thus, the sexually dimorphic pattern of DNAme in mature mouse gametes is orchestrated by distinct profiles of H3K36 methylation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Histona-Lisina N-Metiltransferase/genética , Espermatogênese/genética , Animais , Metilação de DNA/genética , DNA Metiltransferase 3A , Feminino , Histona-Lisina N-Metiltransferase/deficiência , Histonas/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Proteínas do Grupo Polycomb/genética , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/metabolismo , Fatores de Transcrição/genética
11.
Cell Rep ; 32(11): 108126, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937141

RESUMO

SETD1A encodes a histone methyltransferase whose de novo mutations are identified in schizophrenia (SCZ) patients and confer a large increase in disease risk. Here, we generate Setd1a mutant mice carrying the frameshift mutation that closely mimics a loss-of-function variant of SCZ. Our Setd1a (+/-) mice display various behavioral abnormalities relevant to features of SCZ, impaired excitatory synaptic transmission in layer 2/3 (L2/3) pyramidal neurons of the medial prefrontal cortex (mPFC), and altered expression of diverse genes related to neurodevelopmental disorders and synaptic functions in the mPFC. RNAi-mediated Setd1a knockdown (KD) specifically in L2/3 pyramidal neurons of the mPFC only recapitulates impaired sociality among multiple behavioral abnormalities of Setd1a (+/-) mice. Optogenetics-assisted selective stimulation of presynaptic neurons combined with Setd1a KD reveals that Setd1a at postsynaptic site is essential for excitatory synaptic transmission. Our findings suggest that reduced SETD1A may attenuate excitatory synaptic function and contribute to the pathophysiology of SCZ.


Assuntos
Comportamento Animal , Histona-Lisina N-Metiltransferase/deficiência , Esquizofrenia/fisiopatologia , Sinapses/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Camundongos Endogâmicos ICR , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Córtex Pré-Frontal/metabolismo , Terminações Pré-Sinápticas/fisiologia , Células Piramidais/metabolismo , Esquizofrenia/genética , Comportamento Social
12.
Cells ; 9(8)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781660

RESUMO

The methylation of histone H3 at lysine 79 is a feature of open chromatin. It is deposited by the conserved histone methyltransferase DOT1. Recently, DOT1 localization and H3K79 methylation (H3K79me) have been correlated with enhancers in C. elegans and mammalian cells. Since earlier research implicated H3K79me in preventing heterochromatin formation both in yeast and leukemic cells, we sought to inquire whether a H3K79me deficiency would lead to higher levels of heterochromatic histone modifications, specifically H3K9me2, at developmental enhancers in C. elegans. Therefore, we used H3K9me2 ChIP-seq to compare its abundance in control and dot-1.1 loss-of-function mutant worms, as well as in rde-4; dot-1.1 and rde-1; dot-1.1 double mutants. The rde-1 and rde-4 genes are components of the RNAi pathway in C. elegans, and RNAi is known to initiate H3K9 methylation in many organisms, including C. elegans. We have previously shown that dot-1.1(-) lethality is rescued by rde-1 and rde-4 loss-of-function. Here we found that H3K9me2 was elevated in enhancer, but not promoter, regions bound by the DOT-1.1/ZFP-1 complex in dot-1.1(-) worms. We also found increased H3K9me2 at genes targeted by the ALG-3/4-dependent small RNAs and repeat regions. Our results suggest that ectopic H3K9me2 in dot-1.1(-) could, in some cases, be induced by small RNAs.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Animais , Caenorhabditis elegans/genética , Elementos Facilitadores Genéticos , Histona-Lisina N-Metiltransferase/deficiência , Metilação , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Interferência de RNA
13.
Commun Biol ; 3(1): 278, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483278

RESUMO

Histone H3 lysine 4 methylation (H3K4me) is extensively regulated by numerous writer and eraser enzymes in mammals. Nine H3K4me enzymes are associated with neurodevelopmental disorders to date, indicating their important roles in the brain. However, interplay among H3K4me enzymes during brain development remains largely unknown. Here, we show functional interactions of a writer-eraser duo, KMT2A and KDM5C, which are responsible for Wiedemann-Steiner Syndrome (WDSTS), and mental retardation X-linked syndromic Claes-Jensen type (MRXSCJ), respectively. Despite opposite enzymatic activities, the two mouse models deficient for either Kmt2a or Kdm5c shared reduced dendritic spines and increased aggression. Double mutation of Kmt2a and Kdm5c clearly reversed dendritic morphology, key behavioral traits including aggression, and partially corrected altered transcriptomes and H3K4me landscapes. Thus, our study uncovers common yet mutually suppressive aspects of the WDSTS and MRXSCJ models and provides a proof of principle for balancing a single writer-eraser pair to ameliorate their associated disorders.


Assuntos
Anormalidades Múltiplas/genética , Agressão , Anormalidades Craniofaciais/genética , Espinhas Dendríticas/metabolismo , Transtornos do Crescimento/genética , Histona Desmetilases/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Hipertricose/genética , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteína de Leucina Linfoide-Mieloide/genética , Animais , Modelos Animais de Doenças , Histona Desmetilases/deficiência , Histona-Lisina N-Metiltransferase/deficiência , Masculino , Metilação , Camundongos , Proteína de Leucina Linfoide-Mieloide/deficiência
14.
Gastroenterology ; 159(2): 682-696.e13, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32360551

RESUMO

BACKGROUND & AIMS: SETDB1, a histone methyltransferase that trimethylates histone H3 on lysine 9, promotes development of several tumor types. We investigated whether SETDB1 contributes to development of pancreatic ductal adenocarcinoma (PDAC). METHODS: We performed studies with Ptf1aCre; KrasG12D; Setdb1f/f, Ptf1aCre; KrasG12D; Trp53f/+; Setdb1f/f, and Ptf1aCre; KrasG12D; Trp53f/f; Setdb1f/f mice to investigate the effects of disruption of Setdb1 in mice with activated KRAS-induced pancreatic tumorigenesis, with heterozygous or homozygous disruption of Trp53. We performed microarray analyses of whole-pancreas tissues from Ptf1aCre; KrasG12D; Setdb1f/f, and Ptf1aCre; KrasG12D mice and compared their gene expression patterns. Chromatin immunoprecipitation assays were performed using acinar cells isolated from pancreata with and without disruption of Setdb1. We used human PDAC cells for SETDB1 knockdown and inhibitor experiments. RESULTS: Loss of SETDB1 from pancreas accelerated formation of premalignant lesions in mice with pancreata that express activated KRAS. Microarray analysis revealed up-regulated expression of genes in the apoptotic pathway and genes regulated by p53 in SETDB1-deficient pancreata. Deletion of Setdb1 from pancreas prevented formation of PDACs, concomitant with increased apoptosis and up-regulated expression of Trp53 in mice heterozygous for disruption of Trp53. In contrast, pancreata of mice with homozygous disruption of Trp53 had no increased apoptosis, and PDACs developed. Chromatin immunoprecipitation revealed that SETDB1 bound to the Trp53 promoter to regulate its expression. Expression of an inactivated form of SETDB1 in human PDAC cells with wild-type TP53 resulted in TP53-induced apoptosis. CONCLUSIONS: We found that the histone methyltransferase SETDB1 is required for development of PDACs, induced by activated KRAS, in mice. SETDB1 inhibits apoptosis by regulating expression of p53. SETDB1 might be a therapeutic target for PDACs that retain p53 function.


Assuntos
Apoptose , Carcinoma Ductal Pancreático/enzimologia , Transformação Celular Neoplásica/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias Pancreáticas/enzimologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Sítios de Ligação , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos Knockout , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
15.
Mol Brain ; 13(1): 85, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471461

RESUMO

Genetic and epigenetic factors contribute to the development of the spinal cord. Failure in correct exertion of the developmental programs, including neurulation, neural tube closure and neurogenesis of the diverse spinal cord neuronal subtypes results in defects of variable severity. We here report on the histone methyltransferase Disruptor of Telomeric 1 Like (DOT1L), which mediates histone H3 lysine 79 (H3K79) methylation. Conditional inactivation of DOT1L using Wnt1-cre as driver (Dot1l-cKO) showed that DOT1L expression is essential for spinal cord neurogenesis and localization of diverse neuronal subtypes, similar to its function in the development of the cerebral cortex and cerebellum. Transcriptome analysis revealed that DOT1L deficiency favored differentiation over progenitor proliferation. Dot1l-cKO mainly decreased the numbers of dI1 interneurons expressing Lhx2. In contrast, Lhx9 expressing dI1 interneurons did not change in numbers but localized differently upon Dot1l-cKO. Similarly, loss of DOT1L affected localization but not generation of dI2, dI3, dI5, V0 and V1 interneurons. The resulting derailed interneuron patterns might be responsible for increased cell death, occurrence of which was restricted to the late developmental stage E18.5. Together our data indicate that DOT1L is essential for subtype-specific neurogenesis, migration and localization of dorsal and ventral interneurons in the developing spinal cord, in part by regulating transcriptional activation of Lhx2.


Assuntos
Diferenciação Celular , Histona-Lisina N-Metiltransferase/metabolismo , Interneurônios/citologia , Interneurônios/metabolismo , Medula Espinal/citologia , Medula Espinal/embriologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/genética , Movimento Celular , Proliferação de Células , Galinhas , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Proteínas de Homeodomínio/metabolismo , Integrases/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Camundongos Transgênicos , Neurogênese/genética , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteína Wnt1/metabolismo
16.
Blood ; 135(25): 2271-2285, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32202636

RESUMO

SETD2, the histone H3 lysine 36 methyltransferase, previously identified by us, plays an important role in the pathogenesis of hematologic malignancies, but its role in myelodysplastic syndromes (MDSs) has been unclear. In this study, low expression of SETD2 correlated with shortened survival in patients with MDS, and the SETD2 levels in CD34+ bone marrow cells of those patients were increased by decitabine. We knocked out Setd2 in NUP98-HOXD13 (NHD13) transgenic mice, which phenocopies human MDS, and found that loss of Setd2 accelerated the transformation of MDS into acute myeloid leukemia (AML). Loss of Setd2 enhanced the ability of NHD13+ hematopoietic stem and progenitor cells (HSPCs) to self-renew, with increased symmetric self-renewal division and decreased differentiation and cell death. The growth of MDS-associated leukemia cells was inhibited though increasing the H3K36me3 level by using epigenetic modifying drugs. Furthermore, Setd2 deficiency upregulated hematopoietic stem cell signaling and downregulated myeloid differentiation pathways in the NHD13+ HSPCs. Our RNA-seq and chromatin immunoprecipitation-seq analysis indicated that S100a9, the S100 calcium-binding protein, is a target gene of Setd2 and that the addition of recombinant S100a9 weakens the effect of Setd2 deficiency in the NHD13+ HSPCs. In contrast, downregulation of S100a9 leads to decreases of its downstream targets, including Ikba and Jnk, which influence the self-renewal and differentiation of HSPCs. Therefore, our results demonstrated that SETD2 deficiency predicts poor prognosis in MDS and promotes the transformation of MDS into AML, which provides a potential therapeutic target for MDS-associated acute leukemia.


Assuntos
Anemia Refratária com Excesso de Blastos/patologia , Calgranulina B/fisiologia , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/fisiologia , Leucemia Mieloide Aguda/etiologia , Anemia Refratária com Excesso de Blastos/genética , Anemia Refratária com Excesso de Blastos/metabolismo , Animais , Calgranulina B/biossíntese , Calgranulina B/genética , Transformação Celular Neoplásica , Células Cultivadas , Decitabina/farmacologia , Regulação para Baixo , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/patologia , Código das Histonas/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/biossíntese , Histona-Lisina N-Metiltransferase/genética , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Síndromes Mielodisplásicas/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Prognóstico , Proteínas Recombinantes/uso terapêutico , Fatores de Tempo , Análise Serial de Tecidos , Transcriptoma
17.
Nature ; 579(7797): 118-122, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103178

RESUMO

It has long been assumed that lifespan and healthspan correlate strongly, yet the two can be clearly dissociated1-6. Although there has been a global increase in human life expectancy, increasing longevity is rarely accompanied by an extended healthspan4,7. Thus, understanding the origin of healthy behaviours in old people remains an important and challenging task. Here we report a conserved epigenetic mechanism underlying healthy ageing. Through genome-wide RNA-interference-based screening of genes that regulate behavioural deterioration in ageing Caenorhabditis elegans, we identify 59 genes as potential modulators of the rate of age-related behavioural deterioration. Among these modulators, we found that a neuronal epigenetic reader, BAZ-2, and a neuronal histone 3 lysine 9 methyltransferase, SET-6, accelerate behavioural deterioration in C. elegans by reducing mitochondrial function, repressing the expression of nuclear-encoded mitochondrial proteins. This mechanism is conserved in cultured mouse neurons and human cells. Examination of human databases8,9 shows that expression of the human orthologues of these C. elegans regulators, BAZ2B and EHMT1, in the frontal cortex increases with age and correlates positively with the progression of Alzheimer's disease. Furthermore, ablation of Baz2b, the mouse orthologue of BAZ-2, attenuates age-dependent body-weight gain and prevents cognitive decline in ageing mice. Thus our genome-wide RNA-interference screen in C. elegans has unravelled conserved epigenetic negative regulators of ageing, suggesting possible ways to achieve healthy ageing.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Epigênese Genética , Envelhecimento Saudável/genética , Histona-Lisina N-Metiltransferase/metabolismo , Fatores Genéricos de Transcrição/metabolismo , Envelhecimento/genética , Animais , Proteínas de Caenorhabditis elegans/genética , Cognição , Disfunção Cognitiva , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Histonas/metabolismo , Humanos , Longevidade/genética , Lisina/metabolismo , Masculino , Memória , Metilação , Camundongos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Proteínas/genética , Interferência de RNA , Aprendizagem Espacial , Fatores Genéricos de Transcrição/deficiência , Fatores Genéricos de Transcrição/genética
18.
Cell Death Dis ; 11(1): 69, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988284

RESUMO

Inactivating mutations in the SETD2 gene, encoding for a nonredundant histone H3 methyltransferase and regulator of transcription, is a frequent molecular feature in clear cell renal cell carcinomas (ccRCC). SETD2 deficiency is associated with recurrence of ccRCC and bears low prognostic values. Targeting autophagy, a conserved catabolic process with critical functions in maintenance of cellular homeostasis and cell conservation under stress condition, is emerging as a potential therapeutic strategy to combat ccRCC. Epigenetics-based pathways are now appreciated as key components in the regulation of autophagy. However, whether loss of function in the SETD2 histone modifying enzyme occurring in ccRCC cells may impact on their ability to undergo autophagy remained to be explored. Here, we report that SETD2 deficiency in RCC cells is associated with the aberrant accumulation of both free ATG12 and of an additional ATG12-containing complex, distinct from the ATG5-ATG12 complex. Rescue of SETD2 functions in the SETD2 deficiency in RCC cells, or reduction of SETD2 expression level in RCC cells wild type for this enzyme, demonstrates that SETD2 deficiency in RCC is directly involved in the acquisition of these alterations in the autophagic process. Furthermore, we revealed that deficiency in SETD2, known regulator of alternative splicing, is associated with increased expression of a short ATG12 spliced isoform at the depend of the canonical long ATG12 isoform in RCC cells. The defect in the ATG12-dependent conjugation system was found to be associated with a decrease autophagic flux, in accord with the role for this ubiquitin-like protein conjugation system in autophagosome formation and expansion. Finally, we report that SETD2 and ATG12 gene expression levels are associated with favorable respective unfavorable prognosis in ccRCC patients. Collectively, our findings bring further argument for considering the SETD2 gene status of ccRCC tumors, when therapeutic interventions, such as targeting the autophagic process, are considered to combat these kidney cancers.


Assuntos
Proteína 12 Relacionada à Autofagia/metabolismo , Autofagia/genética , Carcinoma de Células Renais/genética , Histona-Lisina N-Metiltransferase/genética , Neoplasias Renais/genética , Processamento Alternativo/genética , Proteína 12 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/mortalidade , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/mortalidade , Mutação , Prognóstico , RNA Interferente Pequeno
19.
Cell Rep ; 30(1): 173-186.e6, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914384

RESUMO

Pathogenic mutations in either one of the epigenetic modifiers EHMT1, MBD5, MLL3, or SMARCB1 have been identified to be causative for Kleefstra syndrome spectrum (KSS), a neurodevelopmental disorder with clinical features of both intellectual disability (ID) and autism spectrum disorder (ASD). To understand how these variants lead to the phenotypic convergence in KSS, we employ a loss-of-function approach to assess neuronal network development at the molecular, single-cell, and network activity level. KSS-gene-deficient neuronal networks all develop into hyperactive networks with altered network organization and excitatory-inhibitory balance. Interestingly, even though transcriptional data reveal distinct regulatory mechanisms, KSS target genes share similar functions in regulating neuronal excitability and synaptic function, several of which are associated with ID and ASD. Our results show that KSS genes mainly converge at the level of neuronal network communication, providing insights into the pathophysiology of KSS and phenotypically congruent disorders.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Rede Nervosa/metabolismo , Animais , Deleção Cromossômica , Cromossomos Humanos Par 9/genética , Anormalidades Craniofaciais/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Cardiopatias Congênitas/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Inibição Neural , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Ratos Wistar , Sinapses/metabolismo
20.
Connect Tissue Res ; 61(5): 498-508, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31096797

RESUMO

PURPOSE: Periodontal ligament mesenchymal stem cells (PDLSCs) are important for periodontal tissue regeneration, but how these cells are regulated remains unclear. PRDM (PRDI-BF1 and RIZ homology domain containing) genes play key roles in cell proliferation and differentiation. The present study aimed to investigate the role of one PRDM gene, PRDM9, in the proliferation, migration and chemotaxis potential of PDLSCs. MATERIALS AND METHODS: Cell proliferation was examined on the basis of the cell doubling time, cell counting kit-8 (CCK8) assays, and flow cytometry analysis of the cell cycle. Gene expression was detected by Western blotting and real-time RT-PCR. Scratch migration and Transwell chemotaxis assays were used to analyse cell migration and chemotaxis abilities. Microarray analysis and ChIP assays were used to examine the downstream genes of PRDM9 and the corresponding mechanism. RESULTS: The results showed that knock-down of PRDM9 enhanced cell proliferation by promoting cell cycle progression and rapid transition from the G1 to S phase via downregulation of p21 and p27 and upregulation of cyclin E. Additionally, depletion of PRDM9 increased the migration and chemotaxis potential of PDLSCs. Microarray results showed that 13 genes, including IGFBP5, IFI44L, and POSTN, were upregulated and 34 genes, including PIP, were downregulated after the depletion of PRDM9. Furthermore, we observed that the depletion of PRDM9 promoted the transcription of IGFBP5 by increasing H3K4me3 methylation in the IGFBP5 promoter. CONCLUSION: These discoveries indicated that depletion of PRDM9 increased the cell proliferation, migration and chemotaxis potential of PDLSCs and revealed important downstream genes.


Assuntos
Proliferação de Células , Quimiotaxia , Técnicas de Silenciamento de Genes , Histona-Lisina N-Metiltransferase/deficiência , Ligamento Periodontal/metabolismo , Células-Tronco/metabolismo , Adulto , Feminino , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA