Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 847
Filtrar
1.
Bioorg Chem ; 144: 107174, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320369

RESUMO

Ursonic acid (UNA) is a natural pentacyclic triterpene found in some medicinal plants and foods. The reproductive protective effect of UNA was evaluated in a mouse model of oligozoospermia induced by busulfan (BUS) at 30 mg/kg b.w.. The mice were initially divided into groups with UNA concentrations of 10, 30, 50, 100 mg/kg. Subsequently, based on sperm parameters, the optimal concentration of 50 mg/kg was identified. As a control, an additional group was supplemented with ursolic acid at a concentration of 50 mg/kg. The results indicated that BUS caused the loss of spermatogenic cells in testis, the decrease of sperm in epididymis, the disorder of testicular cytoskeleton, the decrease of serum sex hormones such as testosterone which induced an increase in feedback of androgen receptor and other testosterone-related proteins, the increase of malondialdehyde and reactive oxygen species levels and the increase of ferroptosis in testis while UNA successfully reversed these injuries. High-throughput sequencing revealed that UNA administration significantly upregulated the expression of genes associated with spermatogenesis, such as Tnp1, Tnp2, Prm1, among others. These proteins are crucial in the histone to protamine transition during sperm chromatin remodeling. Network pharmacology analysis reveals a close association between UNA and proteins related to the transformation of histones to protamine. Molecular docking studies reveal that UNA can interact with the ferroptosis-inhibiting gene SLC7A11, thereby modulating ferroptosis. Taken together, UNA alleviated BUS-induced oligozoospermia by regulating hormone secretion, mitigating oxidative stress and promoting recovery of spermatogenesis by inhibiting the ferroptosis.


Assuntos
Ferroptose , Oligospermia , Triterpenos , Humanos , Masculino , Camundongos , Animais , Oligospermia/induzido quimicamente , Oligospermia/tratamento farmacológico , Simulação de Acoplamento Molecular , Sêmen/metabolismo , Espermatogênese/fisiologia , Testosterona/farmacologia , Histonas/farmacologia , Protaminas/genética , Protaminas/metabolismo , Protaminas/farmacologia
2.
Cell Physiol Biochem ; 58(1): 1-13, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38219048

RESUMO

BACKGROUND/AIMS: Factors influencing gene expression through chemical modifications of histones may play an important role in the regulation of the autophagy process in cancers. RING1A or RING1B are responsible for the catalytical activity of Polycomb repressive complex 1 (PRC1) which monoubiquitylate histone H2A. The aim of the study was to determine the effect of the RING1A/B protein inhibition on the autophagy process in endometrial cancer cells and the anticancer effectiveness of RING1 inhibitor PRT4165 in combination with autophagy inhibitors. METHODS: The expression of autophagy genes and proteins were analyzed in endometrial cancer cells HEC-1A and Ishikawa grown in different glucose concentrations and treated with PRT4165. To assess the effectiveness of PRT4165 used alone or in combination with HCQ or Lys05, IC50 and the combination index (CI) were calculated. Flow cytometry method was used to estimate apoptotic cells after treatment. RESULTS: The results confirm the impact of RINGs on autophagy and apoptosis in endometrial cancer cells. PRT4165 inhibitor causes changes in the expression of ATG genes and autophagy markers and the effect depends on glucose concentration and cell types. However, the anticancer effectiveness of PRT4165 was lower when it was used in combination with autophagy inhibitors, suggesting that such a combination is not a promising anticancer strategy. CONCLUSION: The results indicate the importance of the RINGs in the process of autophagy and apoptosis. Further potentially more effective combinations of PRT4165 with autophagy modulators should be sought.


Assuntos
Neoplasias do Endométrio , Indanos , Feminino , Humanos , Autofagia , Linhagem Celular Tumoral , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Glucose/farmacologia , Histonas/farmacologia , Piridinas/farmacologia
3.
Adv Biol (Weinh) ; 8(3): e2300334, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38213020

RESUMO

Repeat dipeptides such as poly(proline-arginine) (polyPR) are generated from the hexanucleotide GGGGCC repeat expansions in the C9orf72 gene. These dipeptides are often considered as the genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In the study, fluorescein isothiocyanate (FITC) labeled PR20 is used to investigate PR20-induced cell death. The findings reveal that the cell death induced by PR20 is dependent on its nuclear distribution and can be blocked by a nuclear import inhibitor called importazole. Further investigation reveals that BRD4 inhibitors, such as JQ-1 and I-BET762, restrict cytoplasmic localization of PR20, thereby reducing its cytotoxic effect. Mechanistically, the inhibition of BRD4 leads to an increase in the expression of numerous histones, resulting in the accumulation of histones in the cytoplasm. These cytoplasmic histones associate with PR20 and limit its distribution within the nucleus. Notably, the ectopic expression of histones alone is enough to confer protection to cells treated with PR20. In addition, phenylephrine (PE) induces cellular hypertrophy and cytoplasmic distribution of histone, which also helps protect cells from PR20-induced cell death. The research suggests that temporarily inducing the presence of cytoplasmic histones may alleviate the neurotoxic effects of dipeptide repeat proteins.


Assuntos
Histonas , Proteínas Nucleares , Histonas/genética , Histonas/metabolismo , Histonas/farmacologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteína C9orf72/farmacologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/farmacologia , Expansão das Repetições de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , Dipeptídeos/genética , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Morte Celular/genética
4.
Vascul Pharmacol ; 154: 107251, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38052330

RESUMO

BACKGROUND: Hypertension is a prevalent cardiovascular disease characterized by elevated blood pressure and increased vascular resistance. HDAC inhibitors have emerged as potential therapeutic agents due to their ability to modulate gene expression and cellular processes. YPX-C-05, a novel hydroxamic acid-based HDAC inhibitor, shows promise in its vasodilatory effects and potential targets for hypertension treatment. In this study, we aimed to elucidate the mechanisms underlying YPX-C-05's vasodilatory effects and explore its therapeutic potential in hypertension. METHODS: To determine the ex vivo vasodilatory effects of YPX-C-05, isolated aortic rings precontracted with phenylephrine were used. We assessed YPX-C-05's inhibitory effects on HDACs and its impact on histone H4 deacetylation levels in endothelial cells. Network pharmacology analysis was employed to predict putative targets of YPX-C-05 for hypertension treatment. To investigate the involvement of the PI3K/Akt/eNOS pathway, we employed enzyme-linked immunosorbent assay and to assess the levels of NO, ET-1, BH2, and BH4 in human umbilical vein endothelial cells. And we also analyzed the mRNA expression of eNOS and ET-1. Furthermore, Western blotting was conducted to quantify the phosphorylated and total Akt and eNOS levels in human umbilical vein endothelial cell lysates following treatment with YPX-C-05. In order to elucidate the vasodilatory mechanism of YPX-C-05, we employed pharmacological inhibitors for evaluation purposes. Furthermore, we evaluated the chronic antihypertensive effects of YPX-C-05 on N-omega-nitro-L-arginine-induced hypertensive mice in an in vivo model. Vascular remodeling was assessed through histological analysis. RESULTS: Our findings demonstrated that YPX-C-05 exerts significant vasodilatory effects in isolated aortic rings precontracted with phenylephrine. Furthermore, YPX-C-05 exhibited inhibitory effects on HDACs and increased histone H4 acetylation in endothelial cells. Network pharmacology analysis predicted YPX-C-05 might activate endothelial eNOS via PI3K/Akt signaling pathway. Inhibition of the PI3K/Akt/eNOS pathway attenuated the vasodilatory effects of YPX-C-05, as evidenced by reduced levels of phosphorylated Akt and eNOS in human umbilical vein endothelial cell lysates. The chronic administration of YPX-C-05 in N-omega-nitro-L-arginine-induced hypertensive mice resulted in significant antihypertensive effects. Histological analysis demonstrated a reduction in vascular remodeling, further supporting the therapeutic potential of YPX-C-05 in hypertension. CONCLUSION: This study demonstrates for the first time that the novel hydroxamic acid-based HDAC inhibitor YPX-C-05 produces significant antihypertensive and vasodilatory effects through the PI3K/Akt/eNOS pathway. Our findings support the developing prospect of YPX-C-05 as a novel antihypertensive drug.


Assuntos
Hipertensão , Proteínas Proto-Oncogênicas c-akt , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Anti-Hipertensivos/farmacologia , Remodelação Vascular , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/metabolismo , Histonas/metabolismo , Histonas/farmacologia , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Arginina , Fenilefrina/metabolismo , Fenilefrina/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo
5.
Clin Transl Sci ; 16(12): 2765-2778, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37926919

RESUMO

Neutrophil elastase (NE), a major inflammatory mediator in chronic obstructive pulmonary disease (COPD) airways, impairs macrophage function, contributing to persistence of airway inflammation. We hypothesized that NE activates a novel mechanism of macrophage-induced inflammation: release of macrophage extracellular traps (METs). The METs are composed of extracellular DNA decorated with granule proteinases and oxidants and may trigger persistent airway inflammation in COPD. To test the hypothesis, human blood monocytes were isolated from whole blood of subjects with COPD recruited following informed written consent. Patient demographics and clinical data were collected. Cells were cultured in media with GM-CSF to differentiate into blood monocyte derived macrophages (BMDMs). The BMDMs were treated with FITC-NE and unlabeled NE to determine intracellular localization by confocal microscopy and intracellular proteinase activity by DQ-Elastin assay. After NE exposure, released extracellular traps were quantified by abundance of extracellular DNA in conditioned media using the Pico Green assay. BMDM cell lysates were analyzed by Western analysis for proteolytic degradation of histone H3 or H4 or upregulation of peptidyl arginine deiminase (PAD) 2 and 4, two potential mechanisms to mediate extracellular trap DNA release. We observed that NE was taken up by COPD BMDM, localized to the cytosol and nucleus, and retained proteinase activity in the cell. NE induced MET release at doses as low as 50 nM. NE treatment caused histone H3 clipping but no effect on histone H4 nor PAD 2 or 4 abundance or activity. In summary, NE activated COPD MET release by clipping histone H3, a prerequisite for chromatin decondensation.


Assuntos
Armadilhas Extracelulares , Elastase de Leucócito , Doença Pulmonar Obstrutiva Crônica , Humanos , DNA , Armadilhas Extracelulares/metabolismo , Histonas/metabolismo , Histonas/farmacologia , Inflamação/metabolismo , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Elastase de Leucócito/farmacologia , Macrófagos/metabolismo , Neutrófilos , Doença Pulmonar Obstrutiva Crônica/metabolismo
6.
Environ Sci Technol ; 57(48): 19341-19351, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37934861

RESUMO

Polystyrene nanoplastics (PS-NPs) are emerging environmental contaminants that are ubiquitously detected in various environments and have toxic effects on various organisms. Nevertheless, the transgenerational reproductive toxicity and underlying mechanisms of PS-NPs remain largely unknown, especially for photoaged PS-NPs under ultraviolet irradiation. In this study, only the parental generation (P0) was exposed to virgin and aged PS-NPs at environmentally relevant concentrations (0.1-100 µg/L), and subsequent generations (F1-F4) were cultured under normal conditions. Ultraviolet irradiation induced the generation of environmentally persistent free radicals and reactive oxygen species, which altered the physical and chemical characteristics of PS-NPs. The results of toxicity testing suggested that exposure to aged PS-NPs caused a more severe decrease in brood size, egg ejection rate, number of fertilized eggs, and hatchability than did the virgin PS-NPs in the P0, F1, and F2 generations. Additionally, a single maternal exposure to aged PS-NPs resulted in transgenerational effects on fertility in the F1 and F2 generations. Increased levels of H3K4 and H3K9 methylation were observed in the F1 and F2 generations, which were concomitant with the transgenerational downregulation of the expression of associated genes, such as spr-5, set-17, and met-2. On the basis of correlation analyses, the levels of histone methylation and the expression of these genes were significantly correlated to transgenerational reproductive effects. Further research showed that transgenerational effects on fertility were not observed in spr-5(by134), met-2(n4256), and set-17(n5017) mutants. Overall, maternal exposure to aged PS-NPs induced transgenerational reproductive effects via H3K4 and H3K9 methylation, and the spr-5, met-2, and set-17 genes were involved in the regulation of transgenerational toxicity. This study provides new insights into the potential risks of photoaging PS-NPs in the environment.


Assuntos
Caenorhabditis elegans , Histonas , Animais , Feminino , Caenorhabditis elegans/genética , Histonas/genética , Histonas/farmacologia , Metilação , Poliestirenos/toxicidade , Microplásticos
8.
Rev Argent Microbiol ; 55(4): 296-306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37296064

RESUMO

Chromatin remodeling enzymes are important "writers", "readers" and "erasers" of the epigenetic code. These proteins are responsible for the placement, recognition, and removal of molecular marks in histone tails that trigger structural and functional changes in chromatin. This is also the case for histone deacetylases (HDACs), i.e., enzymes that remove acetyl groups from histone tails, signaling heterochromatin formation. Chromatin remodeling is necessary for cell differentiation processes in eukaryotes, and fungal pathogenesis in plants includes many adaptations to cause disease. Macrophomina phaseolina (Tassi) Goid. is a nonspecific, necrotrophic ascomycete phytopathogen that causes charcoal root disease. M. phaseolina is a frequent and highly destructive pathogen in crops such as common beans (Phaseolus vulgaris L.), particularly under both water and high temperature stresses. Here, we evaluated the effects of the classical HDAC inhibitor trichostatin A (TSA) on M. phaseolinain vitro growth and virulence. During inhibition assays, the growth of M. phaseolina in solid media, as well as the size of the microsclerotia, were reduced (p<0.05), and the colony morphology was remarkably affected. Under greenhouse experiments, treatment with TSA reduced (p<0.05) fungal virulence in common bean cv. BAT 477. Tests of LIPK, MAC1 and PMK1 gene expression during the interaction of fungi with BAT 477 revealed noticeable deregulation. Our results provide additional evidence about the role of HATs and HDACs in important biological processes of M. phaseolina.


Assuntos
Ascomicetos , Histonas , Histonas/farmacologia , Histona Desacetilases/farmacologia , Virulência
9.
J Toxicol Sci ; 48(6): 323-332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258237

RESUMO

We have developed an early detection method for bladder carcinogens with high sensitivity and specificity using immunohistochemistry of γ-H2AX, a well-known marker of DNA damage. To investigate the potential application of γ-H2AX as a biomarker for early detection of hepatocarcinogens, we examined γ-H2AX formation in the liver of rats treated with several different chemicals for 28 days. Six-week-old male F344 rats were orally treated for 28 days with five hepatocarcinogens: N-nitrosodiethylamine (DEN), di(2-ethylhexyl) phthalate, 1,4-dioxane (DO), 3,3'-dimethylbenzidine dihydrochloride, or thioacetamide (TAA), or with two non-hepatocarcinogens: 4-chloro-o-phenylenediamine and N-ethyl-N-nitrosourea. At the end of the treatment period, immunohistochemistry for γ-H2AX and Ki67 and expression analysis of DNA repair-related genes were performed. Significant increases in γ-H2AX-positive hepatocytes with upregulation of Rad51 mRNA expression were induced by three of five hepatocarcinogens (DEN, DO, and TAA), whereas no changes were seen for the other two hepatocarcinogens and the two non-hepatocarcinogens. Significant increases in Ki67 expression with upregulation of Brip1, Xrcc5, and Lig4 were observed in rats treated with TAA, a nongenotoxic hepatocarcinogen, suggesting that both direct DNA damage and secondary DNA damage due to cell replication stress may be associated with γ-H2AX formation. These results suggest that γ-H2AX immunostaining has potential value for early detection of hepatocarcinogens, but examination of the effects of more chemicals is needed, as is whether γ-H2AX immunostaining should be combined with other markers to increase sensitivity. γ-H2AX immunostaining using formalin-fixed paraffin-embedded specimens can be easily incorporated into existing 28-day repeated-dose toxicity studies, and further improvements in this method are expected.


Assuntos
Carcinogênese , Carcinógenos , Ratos , Masculino , Animais , Ratos Endogâmicos F344 , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Carcinogênese/metabolismo , Carcinógenos/toxicidade , Fígado/metabolismo , Tioacetamida/toxicidade , Tioacetamida/metabolismo , Histonas/metabolismo , Histonas/farmacologia , Fosfoproteínas/metabolismo
10.
Pain Physician ; 26(3): E213-E222, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37192244

RESUMO

BACKGROUND: Clinically, neuropathic pain is a severe side effect of oxaliplatin chemotherapy, which usually leads to dose reduction or cessation of treatment. Due to the unawareness of detailed mechanisms of oxaliplatin-induced neuropathic pain, it is difficult to develop an effective therapy and limits its clinical use. OBJECTIVES: The aim of the present study was to identify the role of sirtuin 1 (SIRT1) reduction in epigenetic regulation of the expression of voltage-gated sodium channels 1.7 (Nav1.7) in the dorsal root ganglion (DRG) during oxaliplatin-induced neuropathic pain. STUDY DESIGN: Controlled animal study. SETTING: University laboratory. METHODS: The von Frey test was performed to evaluate pain behavior in rats. Real-time quantitative polymerase chain reaction, western blotting, electrophysiological recording, chromatin immunoprecipitation, and small interfering RNA (siRNA) were used to illustrate the mechanisms. RESULTS: In the present study, we found that both the activity and expression of SIRT1 were significantly decreased in rat DRG following oxaliplatin treatment. The activator of SIRT1, resveratrol, not only increased the activity and expression of SIRT1, but also attenuated the mechanical allodynia following oxaliplatin treatment. In addition, local knockdown of SIRT1 by intrathecal injection of SIRT1 siRNA caused mechanical allodynia in naive rats. Besides, oxaliplatin treatment enhanced the action potential firing frequency of DRG neurons and the expression of Nav1.7 in DRG and activation of SIRT1 by resveratrol reversed this effect. Furthermore, blocking Nav1.7 by ProTx II (a selective Nav1.7 channel blocker) reversed oxaliplatin-induced mechanical allodynia. In addition, histone H3 hyperacetylation at the Nav1.7 promoter in DRG of rats following oxaliplatin treatment was significantly suppressed by activation of SIRT1 with resveratrol. Moreover, both the expression of Nav1.7 and histone H3 acetylation at the Nav1.7 promoter were upregulated in the DRG by local knockdown of SIRT1 with SIRT1 siRNA in naive rats. LIMITATIONS: More underlying mechanism(s) of SIRT1 reduction after oxaliplatin treatment needs to be explored in future research. CONCLUSIONS: These findings suggest that reduction of SIRT1-mediated epigenetic upregulation of Nav1.7 in the DRG contributes to the development of oxaliplatin-induced neuropathic pain in rats. The intrathecal drug delivery treatment of activating SIRT1 might be a novel therapeutic option for oxaliplatin-induced neuropathic pain.


Assuntos
Neuralgia , Sirtuína 1 , Ratos , Animais , Oxaliplatina/efeitos adversos , Oxaliplatina/metabolismo , Regulação para Cima , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/genética , Ratos Sprague-Dawley , Histonas/genética , Histonas/metabolismo , Histonas/farmacologia , Epigênese Genética , Resveratrol/efeitos adversos , Resveratrol/metabolismo , Neuralgia/metabolismo , Gânglios Espinais/metabolismo , RNA Interferente Pequeno/metabolismo
11.
Breast Cancer ; 30(5): 727-738, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37166625

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) has an aggressive phenotype and poor outcome, however no specific targeted therapy has been established for TNBC lacking germline BRCA1/2 pathogenic variants. To develop a novel therapeutic strategy, we explored the potential of resveratrol (RSV) for TNBC treatment. METHODS: We investigated the effects of RSV on malignant phenotypes of TNBC cells as well as on apoptosis induced by ABT263, a specific inhibitor of BCL-2 and BCL-xL, using morphological observation, migration assay, ß-galactosidase staining, and Hoechst staining. To elucidate the underlying mechanisms of RSV-mediated effects, expression levels and histone acetylation levels of cadherin 1 (CDH1, E-cadherin) and cyclin dependent kinase inhibitor 1A (CDKN1A, p21) were determined by RT-qPCR, western blotting, and chromatin immunoprecipitation. Furthermore, knockdown analysis was conducted to evaluate the involvement of E-cadherin and/or p21 in RSV potentiation on cytotoxic activity of ABT263. RESULTS: RSV treatment induced epithelial-like cellular morphology and suppressed the migration capacity in MDA-MB-231 and BT-549-Luc TNBC cells. ß-galactosidase-positive cells were increased after RSV treatment, indicating the induction of cellular senescence, in MDA-MB-231 cells but not in BT-549-Luc cells. RSV increased the expression and histone acetylation of CDH1 and CDKN1A in both cells. Interestingly, pre-treatment with RSV enhanced the induction of apoptosis in the ABT263-treated MDA-MB-231 and BT-549-Luc cells, and knockdown of CDKN1A decreased ABT263-induced apoptosis in RSV-treated MDA-MB-231 cells. CONCLUSIONS: RSV represses the metastatic capacity and enhances the cytotoxic activity of ABT263 in TNBC cells. Our results suggested that RSV can potentially be used as a repressor of metastasis or a sensitizer to ABT263 for TNBC treatment via up-regulation of CDH1 and CDKN1A through epigenetic mechanisms.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Histonas/genética , Histonas/metabolismo , Histonas/farmacologia , Proliferação de Células , Epigênese Genética , Linhagem Celular Tumoral , Proteína BRCA2/genética , Antineoplásicos/uso terapêutico , Apoptose , Caderinas/genética , Caderinas/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-36744325

RESUMO

This study was conducted to assess the impact of hubble-bubble smoking on global DNA methylation, DNA fragmentation; protamine deficiency of spermatozoa, and to determine whether the transcription levels of the protamine and histone genes are different in hubble-bubble smokers compared to nonsmokers. Five hundred semen samples were collected from males with an average age of 32.2 ± 6.1 years (300 hubble-bubble smokers "60%" and 200 nonsmokers "40%"). The nucleic acid was isolated from purified sperm, then ELISA and qPCR were used to evaluate the global DNA methylation and transcription level of protamine and histone, respectively. A significant elevation in global DNA methylation, protamine deficiency, and DNA fragmentation was found in hubble-bubble smokers compared to nonsmokers (P < 0.0001). A significant decline was shown in transcription levels of protamine and histone genes in hubble-bubble compared to nonsmokers (P < 0.0001). Additionally, a down-regulation in the transcription levels of protamine and histone was revealed in hubble-bubble compared to nonsmokers with fold change (0.0001 and 0.007, respectively). In conclusion, this study provided proof that hubble-bubble smoking has a negative impact on global DNA methylation, DNA fragmentation, protamine deficiency, and the transcription of protamine and histone genes in spermatozoa, and these findings influence negatively males' fecundity.


Assuntos
Histonas , Infertilidade Masculina , Humanos , Masculino , Adulto , Histonas/genética , Histonas/metabolismo , Histonas/farmacologia , Metilação de DNA , Sêmen/metabolismo , Protaminas/genética , Protaminas/metabolismo , Protaminas/farmacologia , Espermatozoides , Fumar/efeitos adversos , Fumar/genética , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo
13.
Odontology ; 111(3): 658-667, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36482237

RESUMO

Dental plaque bacteria produce high concentrations of short-chain fatty acids (SCFAs), as bacterial metabolites. SCFA-treated gingival epithelial cells undergo cell death. Our previous reports demonstrated that butyrate-induced cell death depends on autophagy and reactive oxygen species (ROS). However, the precise mechanisms underlying SCFA-induced gingival epithelial cell death is poorly understood. Butyrate is a strong histone deacetylase (HDAC) inhibitor. Therefore, we determined the involvement of HDAC inhibitory activity in SCFA-induced gingival epithelial cells. Ca9-22 cells were used as an in vitro counterpart of gingival epithelial cells. Ca9-22 cells were treated with HDAC inhibitors in the presence or absence of C646, a P300 histone acetyltransferase (HAT) inhibitor, and compared the number of dead cells, which are measured using SYTOX Green dye. Acetylation levels of histone H3 were examined using western blotting. Changes in transcriptomes during the butyrate and C646 treatment were examined using RNA sequencing analysis. The butyrate or propionate-treatment of Ca9-22 cells induced acetylation of histone H3, while the C646 treatment strongly reduced the elevated acetylation levels. Accordingly, butyrate or propionate-induced cell death was inhibited by the C646 treatment. Similar results were obtained when other HDAC inhibitors were used. Whole transcriptome analysis revealed that the expression of numerous genes was altered by butyrate-induced histone acetylation. Moreover, some autophagy and ROS-related genes found in the altered genes might induce cell death. This study suggests the need for HDAC-inhibitory activity of bacterial metabolites to induce cell death, and the effects might enhance autophagy and ROS production.


Assuntos
Histonas , Propionatos , Humanos , Histonas/metabolismo , Histonas/farmacologia , Propionatos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Histona Desacetilases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Células Epiteliais/metabolismo , Butiratos/metabolismo , Butiratos/farmacologia , Morte Celular , Bactérias , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/farmacologia , Antígenos de Neoplasias/farmacologia
14.
Anal Cell Pathol (Amst) ; 2022: 2522597, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276611

RESUMO

Background and Purpose. Breast cancer ranks first in the incidence of female tumors. Triple-negative breast cancer (TNBC), one type of breast cancer, is more aggressive and has a worse prognosis. Demethylzeylasteral (T-96) is isolated from Tripterygium wilfordii Hook F. Our previous study found that T96 could inhibit TNBC invasion via suppressing the canonical and noncanonical TGF-ß signaling pathways. However, the antitumor effects and mechanisms of T-96 on TNBC have not been studied. This study is aimed at investigating the antitumor effect and mechanism of T-96 on breast cancer. Experimental approach. MTT assay, Live and Dead cell assay, and TUNEL were used to observe the antitumor effect of breast cancer cells treated with T-96. siRNA of LSD1, Co-IP, and molecular docking were used to explore the direct target and mechanism of T-96. Subcutaneous murine xenograft models were used to detect the efficacy of T-96 antitumor activity in vivo. Key Results. T-96 was more susceptible to inducing the apoptosis of highly metastatic TNBC cell lines (SUM-1315). An abnormal level of histone methylation is a crucial characteristic of metastatic cancer cells. LSD1 is a histone demethylase. We found that T-96 could significantly decrease the protein expression of LSD1, increase its target protein PTEN expression and enhance histone methylation. T-96 could also down-regulate the PI3K/AKT signaling pathway, which could be blocked by PTEN. Knockdown of LSD1 by siRNA blocked the pharmacological activity of T-96. And the molecular docking predicted T-96 processed affinity toward LSD1 through hydrogen bonding. Finally, T-96 was evaluated in a murine xenograft model of SUM-1315 cells. And T-96 could significantly inhibit tumor growth without showing marked toxicity. Conclusions & Implications. The results illustrated that T-96 exerted antitumor activity in highly metastatic TNBC by inactivating the LSD1 function.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Camundongos , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Histonas/genética , Histonas/metabolismo , Histonas/farmacologia , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Apoptose , Epigênese Genética , Fator de Crescimento Transformador beta/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células
15.
Sci Rep ; 12(1): 17961, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289430

RESUMO

Nanoparticles in medicine can integrate actively targeted imaging agents and drug delivery vehicles, and combining multiple types of therapeutics in a single particle has numerous advantages, especially in multiple myeloma. MM is an incurable hematological disorder characterized by clonal proliferation of plasma cells in the bone marrow. In this study, we evaluated the anti-myeloma activity of 3 nanocomposites (3NPs): As4S4/ZnS/Fe3O4 (1:4:1), As4S4/ZnS/Fe3O4 with folic acid (FA), and As4S4/ZnS/Fe3O4 with FA and albumin with reduced survival MM cell lines and primary MM samples by each of 3NP. Cytotoxic effects of 3NPs were associated with caspase- and mitochondria-dependent apoptosis induction and reduced c-Myc expression. Modulation of cell cycle regulators, such as p-ATM/ATM and p-ATR/ATR, and increases in p-Chk2, cyclin B1, and histones were accompanied by G2/M arrest triggered by 3NPs. In addition, 3NPs activated several myeloma-related signaling, including JNK1/2/3, ERK1/2 and mTOR. To overcome BM microenvironment-mediated drug resistance, nanocomposites retained its anti-MM activity in the presence of stroma. 3NPs significantly decreased the stem cell-like side population in MM cells, even in the context of stroma. We observed strong synergistic effects of 3NPs combined with lenalidomide, pomalidomide, or melphalan, suggesting the potential of these combinations for future clinical studies.


Assuntos
Mieloma Múltiplo , Nanocompostos , Humanos , Albuminas/metabolismo , Apoptose , Caspases/metabolismo , Linhagem Celular Tumoral , Ciclina B1/metabolismo , Ácido Fólico/farmacologia , Histonas/farmacologia , Lenalidomida/farmacologia , Melfalan/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral
16.
J Environ Sci Health B ; 57(10): 775-785, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048159

RESUMO

Glyphosate [N-(phosphonomethyl)glycine] is one of the most popular herbicides worldwide. Globally, the use of glyphosate is increasing, and its residues have been found in drinking water and food products. The data regarding the possible toxic effects of this herbicide are controversial. Therefore, the aim of this study was to evaluate the effects of glyphosate at environmental concentrations in zebrafish (Danio rerio) embryos. Embryos were exposed to 0, 1, 100, and 1,000 µg/L glyphosate for 96 h, and mortality, heart rate, and hatching rate were evaluated. After the experiment, RNA was extracted from the embryos for transcriptional analysis. No mortality was recorded, and exposure to 100 µg/L and 1,000 µg/L of glyphosate resulted in lower heart rates at 48 h. In addition, RNA-seq analysis revealed that glyphosate exposure induced subtle changes in gene transcription profiles. We found 30 differentially expressed genes; however, the highest glyphosate concentration (1,000 µg/L) induced the greatest number of differentially expressed genes involved in oocyte maturation, metabolic processes, histone deacetylation, and nervous system development.


Assuntos
Água Potável , Herbicidas , Animais , Embrião não Mamífero , Glicina/análogos & derivados , Herbicidas/farmacologia , Histonas/metabolismo , Histonas/farmacologia , RNA/metabolismo , RNA/farmacologia , Transcriptoma , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Glifosato
17.
Crit Care ; 26(1): 260, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042461

RESUMO

OBJECTIVE: Histone proteins are physiologically involved in DNA packaging and gene regulation but are extracellularly released by neutrophil/monocyte extracellular traps and mediate thrombo-inflammatory pathways, associated to the severity of many human pathologies, including bacterial/fungal sepsis and COVID-19. Prominent and promising laboratory features in classic and viral sepsis emphasize monocyte distribution width (MDW), due to its ability to distinguish and stratify patients at higher risk of critical conditions or death. No data are available on the roles of histones as MDW modifiers. DESIGN: Comparison of MDW index was undertaken by routine hematology analyzer on whole blood samples from patients with COVID-19 and Sepsis. The impact of histones on the MDW characteristics was assessed by the in vitro time-dependent treatment of healthy control whole blood with histones and histones plus lipopolysaccharide to simulate viral and classical sepsis, respectively. MEASUREMENTS AND MAIN RESULTS: We demonstrated the breadth of early, persistent, and significant increase of MDW index in whole blood from healthy subject treated in vitro with histones, highlighting changes similar to those found in vivo in classic and viral sepsis patients. These findings are mechanistically associated with the histone-induced modifications of cell volume, cytoplasmic granularity and vacuolization, and nuclear structure alterations of the circulating monocyte population. CONCLUSIONS: Histones may contribute to the pronounced and persistent monocyte alterations observed in both acute classical and viral sepsis. Assessment of the biological impact of circulating histone released during COVID-19 and sepsis on these blood cells should be considered as key factor modulating both thrombosis and inflammatory processes, as well as the importance of neutralization of their cytotoxic and procoagulant activities by several commercially available drugs (e.g., heparins and heparinoids).


Assuntos
COVID-19 , Sepse , Histonas/metabolismo , Histonas/farmacologia , Humanos , Monócitos/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-35943582

RESUMO

Serotonin plays a decisive role in long-term synaptic plasticity and long-term memory in mollusks. Previously, we demonstrated that histone acetylation is a regulatory mechanism of long-term memory in terrestrial snail. At the behavioral level, many studies were done in Helix to elucidate the role of histone acetylation and serotonin. However, the impact of histone acetylation on long-term potentiation of synaptic efficiency in electrophysiological studies in Helix has been studied only in one paper. Here we investigated effects of serotonin, histone deacetylases inhibitors sodium butyrate and trichostatin A, and a serotonergic receptor inhibitor methiothepin on long-term potentiation of synaptic responses in vitro. We demonstrated that methiothepin drastically declined the EPSPs amplitudes when long-term potentiation was induced, while co-application either of histone deacetylase inhibitors sodium butyrate or trichostatin A with methiothepin prevented the weakening of potentiation. We showed that single serotonin application in combination with histone deacetylase blockade could mimic the effect of repeated serotonin applications and be enough for sustained long-lasting synaptic changes. The data obtained demonstrated that histone deacetylases blockade ameliorated deficits in synaptic plasticity induced by different paradigms (methiothepin treatment, the weak training protocol with single application of serotonin), suggesting that histone acetylation contributes to the serotonin-mediated synaptic plasticity.


Assuntos
Histonas , Serotonina , Animais , Histonas/farmacologia , Serotonina/farmacologia , Ácido Butírico/farmacologia , Plasticidade Neuronal/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/farmacologia , Histona Desacetilases/fisiologia
19.
Elife ; 112022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35604006

RESUMO

The endocannabinoid system consists mainly of 2-arachidonoylglycerol and anandamide, as well as cannabinoid receptor type 1 and type 2 (CB2). Based on previous studies, we hypothesized that a circulating peptide previously identified as osteogenic growth peptide (OGP) maintains a bone-protective CB2 tone. We tested OGP activity in mouse models and cells, and in human osteoblasts. We show that the OGP effects on osteoblast proliferation, osteoclastogenesis, and macrophage inflammation in vitro, as well as rescue of ovariectomy-induced bone loss and prevention of ear edema in vivo are all abrogated by genetic or pharmacological ablation of CB2. We also demonstrate that OGP binds at CB2 and may act as both an agonist and positive allosteric modulator in the presence of other lipophilic agonists. In premenopausal women, OGP circulating levels significantly decline with age. In adult mice, exogenous administration of OGP completely prevented age-related bone loss. Our findings suggest that OGP attenuates age-related bone loss by maintaining a skeletal CB2 tone. Importantly, they also indicate the occurrence of an endogenous peptide that signals via CB2 receptor in health and disease.


Assuntos
Histonas , Peptídeos e Proteínas de Sinalização Intercelular , Osteogênese , Receptor CB2 de Canabinoide , Animais , Feminino , Histonas/metabolismo , Histonas/farmacologia , Hormônios , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Osteogênese/fisiologia , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose/prevenção & controle , Peptídeos/metabolismo , Receptor CB2 de Canabinoide/metabolismo
20.
Arch Pharm (Weinheim) ; 355(7): e2200076, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35393652

RESUMO

Compounds containing both thiazole and arylsulfone moieties are recognized for their high biological activity and ability to fight a variety of ailments. Thus, in this context, new derivatives of (thiazol-2-yl)hydrazone with an arylsulfone moiety were synthesized as CPTH2 analogs with potent anti-histone lysine acetyl-transferase activity. Compounds 3, 4, 10b, and 11b showed an excellent inhibitory effect on P300 (E1A-associated protein p300), compared to CPTH2. Among all the tested derivatives, compound 10b revealed the highest activity against both P300 and pCAF. In addition, the new hits were tested for anticancer efficacy against two leukemia cell lines. Most of them showed a moderate to potent antitumor effect on the k562 and CCRF-CEM cell lines. Interestingly, the activity of compound 10b against the k562 cell line was found to be higher than that of CPTH2. Furthermore, it showed a good safety profile, better than CPTH2 on normal cells. Molecular docking analysis was carried out to reveal the crucial binding contacts in the inhibition of the P300 and pCAF enzymes.


Assuntos
Antineoplásicos , Lisina Acetiltransferases , Apoptose , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/farmacologia , Histonas/metabolismo , Histonas/farmacologia , Hidrazonas/química , Hidrazonas/farmacologia , Lisina/farmacologia , Lisina Acetiltransferases/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA