Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 16(7-12): 824-39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24933887

RESUMO

Vegetation and its associated microorganisms play an important role in the behaviour of soil contaminants. One of the most important elements is root exudation, since it can affect the mobility, and therefore, the bioavailability of soil contaminants. In this study, we evaluated the influence of root exudates on the mobility of fuel derived compounds in contaminated soils. Samples of humic acid, montmorillonite, and an A horizon from an alumi-umbric Cambisol were contaminated with volatile contaminants present in fuel: oxygenates (MTBE and ETBE) and monoaromatic compounds (benzene, toluene, ethylbenzene and xylene). Natural root exudates obtained from Holcus lanatus and Cytisus striatus and ten artificial exudates (components frequently found in natural exudates) were added to the samples, individually and as a mixture, to evaluate their effects on contaminant mobility. Fuel compounds were analyzed by headspace-gas chromatography-mass spectrometry. In general, the addition of natural and artificial exudates increased the mobility of all contaminants in humic acid. In A horizon and montmorillonite, natural or artificial exudates (as a mixture) decreased the contaminant mobility. However, artificial exudates individually had different effects: carboxylic components increased and phenolic components decreased the contaminant mobility. These results established a base for developing and improving phytoremediation processes of fuel-contaminated soils.


Assuntos
Cytisus/química , Holcus/química , Exsudatos de Plantas/química , Raízes de Plantas/química , Poluentes do Solo/metabolismo , Derivados de Benzeno/análise , Derivados de Benzeno/metabolismo , Biodegradação Ambiental , Cytisus/metabolismo , Gasolina , Holcus/metabolismo , Exsudatos de Plantas/isolamento & purificação , Raízes de Plantas/metabolismo , Solo/química , Poluentes do Solo/análise , Tolueno/análise , Tolueno/metabolismo , Xilenos/análise , Xilenos/metabolismo
2.
Environ Pollut ; 134(2): 209-16, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15589648

RESUMO

Stable carbon isotope ratios (delta(13)C) and leaf conductance (g(s)) were measured (2002, 2003) in Holcus lanatus L., Plantago lanceolata L. Ranunculus friesianus (Jord.), and Trifolium pratense L. at two levels of ozone (O(3)) with or without irrigation. In non-irrigated control plots, R. friesianus showed the least negative delta(13)C, and the smallest response to the treatments. Irrigation caused more negative delta(13)C, especially in H. lanatus. Irrespective of irrigation, O(3) increased delta(13)C in relationship to a decrease in g(s) in P. lanceolata and T. pratense. The strongest effect of O(3) on delta(13)C occurred in the absence of irrigation, suggesting that under field conditions lack of moisture in the top soil does not always lead to protection from O(3) uptake. It is concluded that in species such as T. pratense plants can maintain stomatal O(3) uptake during dry periods when roots can reach deeper soil layers where water is not limiting.


Assuntos
Isótopos de Carbono/análise , Oxidantes Fotoquímicos/toxicidade , Ozônio/toxicidade , Folhas de Planta/fisiologia , Agricultura/métodos , Ecossistema , Holcus/química , Holcus/fisiologia , Oxidantes Fotoquímicos/farmacocinética , Ozônio/farmacocinética , Folhas de Planta/química , Plantago/química , Plantago/fisiologia , Ranunculus/química , Ranunculus/fisiologia , Trifolium/química , Trifolium/fisiologia , Água/fisiologia , Tempo (Meteorologia)
3.
Chemosphere ; 53(5): 583-91, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12948542

RESUMO

A microcosm system was used to investigate and compare transfers of 14C labeled-1,2-dichlorobenzene (DCB), 1,2,4-trichlorobenzene (TCB) and hexachlorobenzene (HCB) in an air-soil-plant system using single grass tillers planted into spiked soil. This study was the second phase of a development investigation for eventual study of a range of xenobiotic pollutants. Recoveries from the system were excellent at >90%. The predominant loss pathway for 14C labeled-1,2-DCB and 1,2,4-TCB was volatilisation with 85% and 76% volatilisation of parent compound and volatile metabolites over 5 weeks respectively. Most of the added label in the hexachlorobenzene spiked system remained in soil. Mineralisation was <1% for all compounds. 14C plant burdens expressed as microg parent compound/g plant fresh weight were significant and suggest that plant uptake of chlorobenzenes from soil may be an important exposure pathway for grazing herbivores. Both shoot and root uptake of 14C was detected, with foliar uptake of volatilised compounds dominating shoot uptake, and being greatest in TCB spiked systems. The microcosm is shown as potentially an ideal system with which to investigate organic xenobiotic partitioning in air-soil-plant systems to improve understanding of the equilibria and kinetics of exchanges. However, limitations imposed by the lab based conditions must be recognized and data should be compared with field based data sets as a consequence.


Assuntos
Clorobenzenos/química , Holcus/química , Solo/análise , Radioisótopos de Carbono/química , Clorobenzenos/farmacocinética , Ecossistema , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA