Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 574
Filtrar
1.
Arch Microbiol ; 206(5): 230, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649511

RESUMO

During the past few decades, a wealth of knowledge has been made available for the transcription machinery in bacteria from the structural, functional and mechanistic point of view. However, comparatively little is known about the homooligomerization of the multisubunit M. tuberculosis RNA polymerase (RNAP) enzyme and its functional relevance. While E. coli RNAP has been extensively studied, many aspects of RNAP of the deadly pathogenic M. tuberculosis are still unclear. We used biophysical and biochemical methods to study the oligomerization states of the core and holoenzymes of M. tuberculosis RNAP. By size exclusion chromatography and negative staining Transmission Electron Microscopy (TEM) studies and quantitative analysis of the TEM images, we demonstrate that the in vivo reconstituted RNAP core enzyme (α2ßß'ω) can also exist as dimers in vitro. Using similar methods, we also show that the holoenzyme (core + σA) does not dimerize in vitro and exist mostly as monomers. It is tempting to suggest that the oligomeric changes that we see in presence of σA factor might have functional relevance in the cellular process. Although reported previously in E. coli, to our knowledge we report here for the first time the study of oligomeric nature of M. tuberculosis RNAP in presence and absence of σA factor.


Assuntos
Proteínas de Bactérias , RNA Polimerases Dirigidas por DNA , Mycobacterium tuberculosis , Multimerização Proteica , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/química , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Holoenzimas/química , Holoenzimas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Microscopia Eletrônica de Transmissão , Fator sigma/metabolismo , Fator sigma/química , Fator sigma/genética , Cromatografia em Gel
2.
Methods Mol Biol ; 2740: 37-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393468

RESUMO

The identification of protein phosphatase 1 (PP1) holoenzyme substrates has proven to be a challenging task. PP1 can form different holoenzyme complexes with a variety of regulatory subunits, and many of those are cell cycle regulated. Although several methods have been used to identify PP1 substrates, their cell cycle specificity is still an unmet need. Here, we present a new strategy to investigate PP1 substrates throughout the cell cycle using clustered regularly interspersed short palindromic repeats (CRISPR)-Cas9 genome editing and generate cell lines with endogenously tagged PP1 regulatory subunit (regulatory interactor of protein phosphatase one, RIPPO). RIPPOs are tagged with the auxin-inducible degron (AID) or ascorbate peroxidase 2 (APEX2) modules, and PP1 substrate identification is conducted by SILAC proteomic-based approaches. Proteins in close proximity to RIPPOs are first identified through mass spectrometry (MS) analyses using the APEX2 system; then a list of differentially phosphorylated proteins upon RIPPOs rapid degradation (achieved via the AID system) is compiled via SILAC phospho-mass spectrometry. The "in silico" overlap between the two proteomes will be enriched for PP1 putative substrates. Several methods including fluorescence resonance energy transfer (FRET), proximity ligation assays (PLA), and in vitro assays can be used as substrate validations approaches.


Assuntos
Proteômica , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Fosforilação , Ciclo Celular , Linhagem Celular , Holoenzimas/química , Holoenzimas/metabolismo
3.
Biophys J ; 123(7): 824-838, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38414237

RESUMO

The binding of calcium/calmodulin (CAM) to calcium/calmodulin-dependent protein kinase II (CaMKII) initiates an ATP-driven cascade that triggers CaMKII autophosphorylation. The autophosphorylation in turn increases the CaMKII affinity for CAM. Here, we studied the ATP dependence of CAM association with the actin-binding CaMKIIß isoform using single-molecule total internal reflection fluorescence microscopy. Rhodamine-CAM associations/dissociations to surface-immobilized Venus-CaMKIIß were resolved with 0.5 s resolution from video records, batch-processed with a custom algorithm. CAM occupancy was determined simultaneously with spot-photobleaching measurement of CaMKII holoenzyme stoichiometry. We show the ATP-dependent increase of the CAM association requires dimer formation for both the α and ß isoforms. The study of mutant ß holoenzymes revealed that the ATP-dependent increase in CAM affinity results in two distinct states. The phosphorylation-defective (T287.306-307A) holoenzyme resides only in the low-affinity state. CAM association is further reduced in the T287A holoenzyme relative to T287.306-307A. In the absence of ATP, the affinity of CAM for the T287.306-307A mutant and the wild-type monomer are comparable. The affinity of the ATP-binding impaired (K43R) mutant is even weaker. In ATP, the K43R holoenzyme resides in the low-affinity state. The phosphomimetic mutant (T287D) resides only in a 1000-fold higher-affinity state, with mean CAM occupancy of more than half of the 14-mer holoenzyme stoichiometry in picomolar CAM. ATP promotes T287D holoenzyme disassembly but does not elevate CAM occupancy. Single Poisson distributions characterized the ATP-dependent CAM occupancy of mutant holoenzymes. In contrast, the CAM occupancy of the wild-type population had a two-state distribution with both low- and high-affinity states represented. The low-affinity state was the dominant state, a result different from published in vitro assays. Differences in assay conditions can alter the balance between activating and inhibitory autophosphorylation. Bound ATP could be sufficient for CaMKII structural function, while antagonistic autophosphorylations may tune CaMKII kinase-regulated action-potential frequency decoding in vivo.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Calmodulina , Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Cálcio/metabolismo , Imagem Individual de Molécula , Trifosfato de Adenosina/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Fosforilação
4.
Cells ; 12(24)2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38132153

RESUMO

The serine/threonine protein kinase CK2 is implicated in the regulation of fundamental processes in eukaryotic cells. CK2 consists of two catalytic α or α' isoforms and two regulatory CK2ß subunits. These three proteins exist in a free form, bound to other cellular proteins, as tetrameric holoenzymes composed of CK2α2/ß2, CK2αα'/ß2, or CK2α'2/ß2 as well as in higher molecular forms of the tetramers. The catalytic domains of CK2α and CK2α' share a 90% identity. As CK2α contains a unique C-terminal sequence. Both proteins function as protein kinases. These properties raised the question of whether both isoforms are just backups of each other or whether they are regulated differently and may then function in an isoform-specific manner. The present review provides observations that the regulation of both CK2α isoforms is partly different concerning the subcellular localization, post-translational modifications, and aggregation. Up to now, there are only a few isoform-specific cellular binding partners. The expression of both CK2α isoforms seems to vary in different cell lines, in tissues, in the cell cycle, and with differentiation. There are different reports about the expression and the functions of the CK2α isoforms in tumor cells and tissues. In many cases, a cell-type-specific expression and function is known, which raises the question about cell-specific regulators of both isoforms. Another future challenge is the identification or design of CK2α'-specific inhibitors.


Assuntos
Caseína Quinase II , Humanos , Animais , Caseína Quinase II/química , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo
5.
Nature ; 622(7982): 402-409, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37758951

RESUMO

Transposable elements are genomic parasites that expand within and spread between genomes1. PIWI proteins control transposon activity, notably in the germline2,3. These proteins recognize their targets through small RNA co-factors named PIWI-interacting RNAs (piRNAs), making piRNA biogenesis a key specificity-determining step in this crucial genome immunity system. Although the processing of piRNA precursors is an essential step in this process, many of the molecular details remain unclear. Here, we identify an endoribonuclease, precursor of 21U RNA 5'-end cleavage holoenzyme (PUCH), that initiates piRNA processing in the nematode Caenorhabditis elegans. Genetic and biochemical studies show that PUCH, a trimer of Schlafen-like-domain proteins (SLFL proteins), executes 5'-end piRNA precursor cleavage. PUCH-mediated processing strictly requires a 7-methyl-G cap (m7G-cap) and a uracil at position three. We also demonstrate how PUCH interacts with PETISCO, a complex that binds to piRNA precursors4, and that this interaction enhances piRNA production in vivo. The identification of PUCH concludes the search for the 5'-end piRNA biogenesis factor in C. elegans and uncovers a type of RNA endonuclease formed by three SLFL proteins. Mammalian Schlafen (SLFN) genes have been associated with immunity5, exposing a molecular link between immune responses in mammals and deeply conserved RNA-based mechanisms that control transposable elements.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Endorribonucleases , RNA de Interação com Piwi , Animais , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Elementos de DNA Transponíveis/genética , Endorribonucleases/química , Endorribonucleases/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , RNA de Interação com Piwi/química , RNA de Interação com Piwi/genética , RNA de Interação com Piwi/metabolismo , Análogos de Capuz de RNA/química , Análogos de Capuz de RNA/metabolismo
6.
Biochim Biophys Acta Rev Cancer ; 1878(5): 188953, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37437699

RESUMO

Protein phosphatase 2A (PP2A) inactivation is common in cancer, leading to sustained activation of pro-survival and growth-promoting pathways. PP2A consists of a scaffolding A-subunit, a catalytic C-subunit, and a regulatory B-subunit. The functional complexity of PP2A holoenzymes arises mainly through the vast repertoire of regulatory B-subunits, which determine both their substrate specificity and their subcellular localization. Therefore, a major challenge for developing more effective therapeutic strategies for cancer is to identify the specific PP2A complexes to be targeted. Of note, the development of small molecules specifically directed at PP2A-B56α has opened new therapeutic avenues in both solid and hematological tumors. Here, we focus on the B56/PR61 family of PP2A regulatory subunits, which have a central role in directing PP2A tumor suppressor activity. We provide an overview of the mechanisms controlling the formation and regulation of these complexes, the pathways they control, and the mechanisms underlying their deregulation in cancer.


Assuntos
Neoplasias , Proteína Fosfatase 2 , Humanos , Proteína Fosfatase 2/genética , Processamento de Proteína Pós-Traducional , Domínio Catalítico , Holoenzimas/química , Holoenzimas/metabolismo
7.
Trends Biochem Sci ; 48(8): 713-725, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37173206

RESUMO

Dynamic protein phosphorylation and dephosphorylation are essential regulatory mechanisms that ensure proper cellular signaling and biological functions. Deregulation of either reaction has been implicated in several human diseases. Here, we focus on the mechanisms that govern the specificity of the dephosphorylation reaction. Most cellular serine/threonine dephosphorylation is catalyzed by 13 highly conserved phosphoprotein phosphatase (PPP) catalytic subunits, which form hundreds of holoenzymes by binding to regulatory and scaffolding subunits. PPP holoenzymes recognize phosphorylation site consensus motifs and interact with short linear motifs (SLiMs) or structural elements distal to the phosphorylation site. We review recent advances in understanding the mechanisms of PPP site-specific dephosphorylation preference and substrate recruitment and highlight examples of their interplay in the regulation of cell division.


Assuntos
Fosfoproteínas Fosfatases , Humanos , Fosforilação , Fosfoproteínas Fosfatases/metabolismo , Domínio Catalítico , Holoenzimas/química , Holoenzimas/metabolismo , Especificidade por Substrato
8.
Nature ; 613(7945): 775-782, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442503

RESUMO

CRISPR-associated transposons (CAST) are programmable mobile genetic elements that insert large DNA cargos using an RNA-guided mechanism1-3. CAST elements contain multiple conserved proteins: a CRISPR effector (Cas12k or Cascade), a AAA+ regulator (TnsC), a transposase (TnsA-TnsB) and a target-site-associated factor (TniQ). These components are thought to cooperatively integrate DNA via formation of a multisubunit transposition integration complex (transpososome). Here we reconstituted the approximately 1 MDa type V-K CAST transpososome from Scytonema hofmannii (ShCAST) and determined its structure using single-particle cryo-electon microscopy. The architecture of this transpososome reveals modular association between the components. Cas12k forms a complex with ribosomal subunit S15 and TniQ, stabilizing formation of a full R-loop. TnsC has dedicated interaction interfaces with TniQ and TnsB. Of note, we observe TnsC-TnsB interactions at the C-terminal face of TnsC, which contribute to the stimulation of ATPase activity. Although the TnsC oligomeric assembly deviates slightly from the helical configuration found in isolation, the TnsC-bound target DNA conformation differs markedly in the transpososome. As a consequence, TnsC makes new protein-DNA interactions throughout the transpososome that are important for transposition activity. Finally, we identify two distinct transpososome populations that differ in their DNA contacts near TniQ. This suggests that associations with the CRISPR effector can be flexible. This ShCAST transpososome structure enhances our understanding of CAST transposition systems and suggests ways to improve CAST transposition for precision genome-editing applications.


Assuntos
Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , Edição de Genes , Holoenzimas , Complexos Multiproteicos , RNA Guia de Sistemas CRISPR-Cas , Transposases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Edição de Genes/métodos , Transposases/química , Transposases/metabolismo , Transposases/ultraestrutura , RNA Guia de Sistemas CRISPR-Cas/genética , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Microscopia Crioeletrônica , Subunidades Ribossômicas/química , Subunidades Ribossômicas/metabolismo , Subunidades Ribossômicas/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura
9.
Science ; 379(6627): 100-105, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36520947

RESUMO

The World Health Organization declared mpox (or monkeypox) a public health emergency of international concern in July 2022, and prophylactic and therapeutic measures are in urgent need. The monkeypox virus (MPXV) has its own DNA polymerase F8, together with the processive cofactors A22 and E4, constituting the polymerase holoenzyme for genome replication. Here, we determined the holoenzyme structure in complex with DNA using cryo-electron microscopy at the global resolution of ~2.8 angstroms. The holoenzyme possesses an architecture that suggests a "forward sliding clamp" processivity mechanism for viral DNA replication. MPXV polymerase has a DNA binding mode similar to that of other B-family DNA polymerases from different species. These findings reveal the mechanism of the MPXV genome replication and may guide the development of anti-poxvirus drugs.


Assuntos
DNA Polimerase Dirigida por DNA , Monkeypox virus , Mpox , Humanos , Microscopia Crioeletrônica , Replicação do DNA , DNA Viral/genética , DNA Polimerase Dirigida por DNA/química , Holoenzimas/química , Monkeypox virus/enzimologia , Replicação Viral
10.
Nature ; 608(7924): 813-818, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35831498

RESUMO

Telomeres are the physical ends of linear chromosomes. They are composed of short repeating sequences (such as TTGGGG in the G-strand for Tetrahymena thermophila) of double-stranded DNA with a single-strand 3' overhang of the G-strand and, in humans, the six shelterin proteins: TPP1, POT1, TRF1, TRF2, RAP1 and TIN21,2. TPP1 and POT1 associate with the 3' overhang, with POT1 binding the G-strand3 and TPP1 (in complex with TIN24) recruiting telomerase via interaction with telomerase reverse transcriptase5 (TERT). The telomere DNA ends are replicated and maintained by telomerase6, for the G-strand, and subsequently DNA polymerase α-primase7,8 (PolαPrim), for the C-strand9. PolαPrim activity is stimulated by the heterotrimeric complex CTC1-STN1-TEN110-12 (CST), but the structural basis of the recruitment of PolαPrim and CST to telomere ends remains unknown. Here we report cryo-electron microscopy (cryo-EM) structures of Tetrahymena CST in the context of the telomerase holoenzyme, in both the absence and the presence of PolαPrim, and of PolαPrim alone. Tetrahymena Ctc1 binds telomerase subunit p50, a TPP1 orthologue, on a flexible Ctc1 binding motif revealed by cryo-EM and NMR spectroscopy. The PolαPrim polymerase subunit POLA1 binds Ctc1 and Stn1, and its interface with Ctc1 forms an entry port for G-strand DNA to the POLA1 active site. We thus provide a snapshot of four key components that are required for telomeric DNA synthesis in a single active complex-telomerase-core ribonucleoprotein, p50, CST and PolαPrim-that provides insights into the recruitment of CST and PolαPrim and the handoff between G-strand and C-strand synthesis.


Assuntos
DNA Primase , Complexo Shelterina , Telomerase , Tetrahymena , Microscopia Crioeletrônica , DNA/genética , DNA/metabolismo , DNA Primase/química , DNA Primase/metabolismo , DNA Primase/ultraestrutura , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/ultraestrutura , Ligação Proteica , Complexo Shelterina/química , Complexo Shelterina/metabolismo , Complexo Shelterina/ultraestrutura , Telomerase/química , Telomerase/metabolismo , Telomerase/ultraestrutura , Telômero/genética , Telômero/metabolismo , Tetrahymena/química , Tetrahymena/enzimologia , Tetrahymena/metabolismo , Tetrahymena/ultraestrutura
11.
Cell Res ; 32(3): 302-314, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35110668

RESUMO

Methanobactins (Mbns) are a family of copper-binding peptides involved in copper uptake by methanotrophs, and are potential therapeutic agents for treating diseases characterized by disordered copper accumulation. Mbns are produced via modification of MbnA precursor peptides at cysteine residues catalyzed by the core biosynthetic machinery containing MbnB, an iron-dependent enzyme, and MbnC. However, mechanistic details underlying the catalysis of the MbnBC holoenzyme remain unclear. Here, we present crystal structures of MbnABC complexes from two distinct species, revealing that the leader peptide of the substrate MbnA binds MbnC for recruitment of the MbnBC holoenzyme, while the core peptide of MbnA resides in the catalytic cavity created by the MbnB-MbnC interaction which harbors a unique tri-iron cluster. Ligation of the substrate sulfhydryl group to the tri-iron center achieves a dioxygen-dependent reaction for oxazolone-thioamide installation. Structural analysis of the MbnABC complexes together with functional investigation of MbnB variants identified a conserved catalytic aspartate residue as a general base required for MbnBC-mediated MbnA modification. Together, our study reveals the similar architecture and function of MbnBC complexes from different species, demonstrating an evolutionarily conserved catalytic mechanism of the MbnBC holoenzymes.


Assuntos
Cobre , Ferro , Catálise , Cobre/metabolismo , Holoenzimas/química , Imidazóis , Oligopeptídeos
12.
EMBO J ; 41(3): e109360, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34918374

RESUMO

The vacuolar ATPase (V-ATPase) is a rotary motor proton pump that is regulated by an assembly equilibrium between active holoenzyme and autoinhibited V1 -ATPase and Vo proton channel subcomplexes. Here, we report cryo-EM structures of yeast V-ATPase assembled in vitro from lipid nanodisc reconstituted Vo and mutant V1 . Our analysis identified holoenzymes in three active rotary states, indicating that binding of V1 to Vo provides sufficient free energy to overcome Vo autoinhibition. Moreover, the structures suggest that the unequal spacing of Vo 's proton-carrying glutamic acid residues serves to alleviate the symmetry mismatch between V1 and Vo motors, a notion that is supported by mutagenesis experiments. We also uncover a structure of free V1 bound to Oxr1, a conserved but poorly characterized factor involved in the oxidative stress response. Biochemical experiments show that Oxr1 inhibits V1 -ATPase and causes disassembly of the holoenzyme, suggesting that Oxr1 plays a direct role in V-ATPase regulation.


Assuntos
Proteínas Mitocondriais/química , Estresse Oxidativo , Proteínas de Saccharomyces cerevisiae/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Holoenzimas/química , Mutagênese , Ligação Proteica , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/genética , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/genética
13.
Science ; 374(6575): 1579-1586, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941388

RESUMO

DNA methylation affects gene expression and maintains genome integrity. The DNA-dependent RNA polymerase IV (Pol IV), together with the RNA-dependent RNA polymerase RDR2, produces double-stranded small interfering RNA precursors essential for establishing and maintaining DNA methylation in plants. We determined the cryo­electron microscopy structures of the Pol IV­RDR2 holoenzyme and the backtracked transcription elongation complex. These structures reveal that Pol IV and RDR2 form a complex with their active sites connected by an interpolymerase channel, through which the Pol IV­generated transcript is handed over to the RDR2 active site after being backtracked, where it is used as the template for double-stranded RNA (dsRNA) synthesis. Our results describe a 'backtracking-triggered RNA channeling' mechanism underlying dsRNA synthesis and also shed light on the evolutionary trajectory of eukaryotic RNA polymerases.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Arabidopsis/genética , RNA Polimerases Dirigidas por DNA/química , RNA de Cadeia Dupla/biossíntese , RNA de Plantas/biossíntese , RNA Polimerase Dependente de RNA/química , Motivos de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Metilação de DNA , DNA de Plantas/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Holoenzimas/química , Modelos Moleculares , Complexos Multiproteicos/química , Conformação Proteica , Domínios Proteicos , RNA Polimerase II/química , RNA Interferente Pequeno/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo
14.
ACS Chem Biol ; 16(12): 2808-2815, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34780684

RESUMO

Protein phosphorylation, which regulates many critical aspects of cell biology, is dynamically governed by kinases and phosphatases. Many diseases are associated with dysregulated hyperphosphorylation of critical proteins, such as retinoblastoma protein in cancer. Although kinase inhibitors have been widely applied in the clinic, growing evidence of off-target effects and increasing drug resistance prompts the need to develop a new generation of drugs. Here, we propose a proof-of-concept study of phosphorylation targeting chimeras (PhosTACs). Similar to PROTACs in their ability to induce ternary complexes, PhosTACs focus on recruiting a Ser/Thr phosphatase to a phosphosubstrate to mediate its dephosphorylation. However, distinct from PROTACs, PhosTACs can uniquely provide target gain-of-function opportunities to manipulate protein activity. In this study, we applied a chemical biology approach to evaluate the feasibility of PhosTACs by recruiting the scaffold and catalytic subunits of the PP2A holoenzyme to protein substrates such as PDCD4 and FOXO3a for targeted protein dephosphorylation. For FOXO3a, this dephosphorylation resulted in the transcriptional activation of a FOXO3a-responsive reporter gene.


Assuntos
Quimera/metabolismo , Fosfoproteínas/química , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Reguladoras de Apoptose , Domínio Catalítico , Ativação Enzimática , Proteína Forkhead Box O3 , Células HeLa , Holoenzimas/química , Humanos , Fosforilação , Proteínas de Ligação a RNA , Relação Estrutura-Atividade
15.
Biochem Soc Trans ; 49(5): 1927-1939, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623385

RESUMO

Telomerase ribonucleoprotein was discovered over three decades ago as a specialized reverse transcriptase that adds telomeric repeats to the ends of linear eukaryotic chromosomes. Telomerase plays key roles in maintaining genome stability; and its dysfunction and misregulation have been linked to different types of cancers and a spectrum of human genetic disorders. Over the years, a wealth of genetic and biochemical studies of human telomerase have illuminated its numerous fascinating features. Yet, structural studies of human telomerase have lagged behind due to various challenges. Recent technical developments in cryo-electron microscopy have allowed for the first detailed visualization of the human telomerase holoenzyme, revealing unprecedented insights into its active site and assembly. This review summarizes the cumulative work leading to the recent structural advances, as well as highlights how the future structural work will further advance our understanding of this enzyme.


Assuntos
Telomerase/química , Telomerase/metabolismo , Biocatálise , Domínio Catalítico , Microscopia Crioeletrônica/métodos , Disceratose Congênita/enzimologia , Disceratose Congênita/genética , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Modelos Moleculares , Mutação , Telomerase/genética , Telômero/metabolismo , Homeostase do Telômero
16.
Nature ; 596(7873): 603-607, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34381213

RESUMO

Single-particle cryogenic electron microscopy (cryo-EM) has become a standard technique for determining protein structures at atomic resolution1-3. However, cryo-EM studies of protein-free RNA are in their early days. The Tetrahymena thermophila group I self-splicing intron was the first ribozyme to be discovered and has been a prominent model system for the study of RNA catalysis and structure-function relationships4, but its full structure remains unknown. Here we report cryo-EM structures of the full-length Tetrahymena ribozyme in substrate-free and bound states at a resolution of 3.1 Å. Newly resolved peripheral regions form two coaxially stacked helices; these are interconnected by two kissing loop pseudoknots that wrap around the catalytic core and include two previously unforeseen (to our knowledge) tertiary interactions. The global architecture is nearly identical in both states; only the internal guide sequence and guanosine binding site undergo a large conformational change and a localized shift, respectively, upon binding of RNA substrates. These results provide a long-sought structural view of a paradigmatic RNA enzyme and signal a new era for the cryo-EM-based study of structure-function relationships in ribozymes.


Assuntos
Microscopia Crioeletrônica , Conformação de Ácido Nucleico , RNA Catalítico/química , RNA Catalítico/ultraestrutura , Tetrahymena thermophila , Apoenzimas/química , Apoenzimas/ultraestrutura , Holoenzimas/química , Holoenzimas/ultraestrutura , Modelos Moleculares , Tetrahymena thermophila/enzimologia , Tetrahymena thermophila/genética
17.
Proteins ; 89(9): 1216-1225, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33983654

RESUMO

The main protease Mpro , 3CLpro is an important target from coronaviruses. In spite of having 96% sequence identity among Mpros from SARS-CoV-1 and SARS-CoV-2; the inhibitors used to block the activity of SARS-CoV-1 Mpro so far, were found to have differential inhibitory effect on Mpro of SARS-CoV-2. The possible reason could be due to the difference of few amino acids among the peptidases. Since, overall 3-D crystallographic structure of Mpro from SARS-CoV-1 and SARS-CoV-2 is quite similar and mapping a subtle structural variation is seemingly impossible. Hence, we have attempted to study a structural comparison of SARS-CoV-1 and SARS-CoV-2 Mpro in apo and inhibitor bound states using protein structure network (PSN) based approach at contacts level. The comparative PSNs analysis of apo Mpros from SARS-CoV-1 and SARS-CoV-2 uncovers small but significant local changes occurring near the active site region and distributed throughout the structure. Additionally, we have shown how inhibitor binding perturbs the PSG and the communication pathways in Mpros . Moreover, we have also investigated the network connectivity on the quaternary structure of Mpro and identified critical residue pairs for complex formation using three centrality measurement parameters along with the modularity analysis. Taken together, these results on the comparative PSN provide an insight into conformational changes that may be used as an additional guidance towards specific drug development.


Assuntos
Proteases 3C de Coronavírus/química , SARS-CoV-2/enzimologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Apoenzimas/antagonistas & inibidores , Apoenzimas/química , Apoenzimas/metabolismo , Sítios de Ligação , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Modelos Moleculares , Inibidores de Proteases/farmacologia , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos
18.
Nature ; 593(7859): 449-453, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33883742

RESUMO

Telomerase adds telomeric repeats at chromosome ends to compensate for the telomere loss that is caused by incomplete genome end replication1. In humans, telomerase is upregulated during embryogenesis and in cancers, and mutations that compromise the function of telomerase result in disease2. A previous structure of human telomerase at a resolution of 8 Å revealed a vertebrate-specific composition and architecture3, comprising a catalytic core that is flexibly tethered to an H and ACA (hereafter, H/ACA) box ribonucleoprotein (RNP) lobe by telomerase RNA. High-resolution structural information is necessary to develop treatments that can effectively modulate telomerase activity as a therapeutic approach against cancers and disease. Here we used cryo-electron microscopy to determine the structure of human telomerase holoenzyme bound to telomeric DNA at sub-4 Å resolution, which reveals crucial DNA- and RNA-binding interfaces in the active site of telomerase as well as the locations of mutations that alter telomerase activity. We identified a histone H2A-H2B dimer within the holoenzyme that was bound to an essential telomerase RNA motif, which suggests a role for histones in the folding and function of telomerase RNA. Furthermore, this structure of a eukaryotic H/ACA RNP reveals the molecular recognition of conserved RNA and protein motifs, as well as interactions that are crucial for understanding the molecular pathology of many mutations that cause disease. Our findings provide the structural details of the assembly and active site of human telomerase, which paves the way for the development of therapeutic agents that target this enzyme.


Assuntos
Microscopia Crioeletrônica , DNA/química , DNA/ultraestrutura , Telomerase/química , Telomerase/ultraestrutura , Telômero , Sítios de Ligação , Domínio Catalítico , DNA/genética , DNA/metabolismo , Histonas/química , Histonas/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/ultraestrutura , Humanos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA/química , RNA/metabolismo , RNA/ultraestrutura , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Telômero/ultraestrutura
19.
J Mol Biol ; 433(13): 167009, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33901538

RESUMO

Poxviruses are enveloped viruses with a linear, double-stranded DNA genome. Viral DNA synthesis is achieved by a functional DNA polymerase holoenzyme composed of three essential proteins. For vaccinia virus (VACV) these are E9, the catalytic subunit, a family B DNA polymerase, and the heterodimeric processivity factor formed by D4 and A20. The A20 protein links D4 to the catalytic subunit. High-resolution structures have been obtained for the VACV D4 protein in complex with an N-terminal fragment of A20 as well as for E9. In addition, biochemical studies provided evidence that a poxvirus-specific insertion (insert 3) in E9 interacts with the C-terminal residues of A20. Here, we provide solution structures of two different VACV A20 C-terminal constructs containing residues 304-426, fused at their C-terminus to either a BAP (Biotin Acceptor Peptide)-tag or a short peptide containing the helix of E9 insert 3. Together with results from titration studies, these structures shed light on the molecular interface between the catalytic subunit and the processivity factor component A20. The interface comprises hydrophobic residues conserved within the Chordopoxvirinae subfamily. Finally, we constructed a HADDOCK model of the VACV A20304-426-E9 complex, which is in excellent accordance with previous experimental data.


Assuntos
DNA Polimerase Dirigida por DNA/química , Domínios Proteicos , Vaccinia virus/enzimologia , Proteínas Virais/química , Sequência de Aminoácidos , Domínio Catalítico/genética , Cristalografia por Raios X , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Modelos Moleculares , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Homologia de Sequência de Aminoácidos , Soluções/química , Vaccinia virus/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
20.
Biochem J ; 478(4): 943-959, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33565573

RESUMO

Members of the glycoside hydrolase family 4 (GH4) employ an unusual glycosidic bond cleavage mechanism utilizing NAD(H) and a divalent metal ion, under reducing conditions. These enzymes act upon a diverse range of glycosides, and unlike most other GH families, homologs here are known to accommodate both α- and ß-anomeric specificities within the same active site. Here, we report the catalytic properties and the crystal structures of TmAgu4B, an α-d-glucuronidase from the hyperthermophile Thermotoga maritima. The structures in three different states include the apo form, the NADH bound holo form, and the ternary complex with NADH and the reaction product d-glucuronic acid, at 2.15, 1.97 and 1.85 Šresolutions, respectively. These structures reveal the step-wise route of conformational changes required in the active site to achieve the catalytically competent state, and illustrate the direct role of residues that determine the reaction mechanism. Furthermore, a structural transition of a helical region in the active site to a turn geometry resulting in the rearrangement of a unique arginine residue governs the exclusive glucopyranosiduronic acid recognition in TmAgu4B. Mutational studies show that modifications of the glycone binding site geometry lead to catalytic failure and indicate overlapping roles of specific residues in catalysis and substrate recognition. The data highlight hitherto unreported molecular features and associated active site dynamics that determine the structure-function relationships within the unique GH4 family.


Assuntos
Proteínas de Bactérias/química , Apoenzimas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Ditiotreitol/metabolismo , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Glicosídeo Hidrolases/metabolismo , Holoenzimas/química , Cinética , Manganês/metabolismo , Modelos Moleculares , Família Multigênica , Mutagênese Sítio-Dirigida , NAD/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Thermotoga maritima/enzimologia , Thermotoga maritima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA