Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.150
Filtrar
1.
Electrophoresis ; 44(21-22): 1682-1697, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37574258

RESUMO

For studying stem cell-derived islet organoids (SC-islets) in an organ-on-chip (OoC) platform, we have developed a reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method allowing for simultaneous determination of insulin, somatostatin-14, and glucagon, with improved matrix robustness compared to earlier methodology. Combining phenyl/hexyl-C18 separations using 2.1 mm inner diameter LC columns and triple quadrupole mass spectrometry, identification and quantification were secured with negligible variance in retention time and quantifier/qualifier ratios, negligible levels of carryover (<2%), and sufficient precision (±10% RSD) and accuracy (±15% relative error) with and without use of an internal standard. The obtained lower limits of quantification were 0.2 µg/L for human insulin, 0.1 µg/L for somatostatin-14, and 0.05 µg/L for glucagon. The here-developed RPLC-MS/MS method showed that the SC-islets have an insulin response dependent on glucose concentration, and the SC-islets produce and release somatostatin-14 and glucagon. The RPLC-MS/MS method for these peptide hormones was compatible with an unfiltered offline sample collection from SC-islets cultivated on a pumpless, recirculating OoC (rOoC) platform. The SC-islets background secretion of insulin was not significantly different on the rOoC device compared to a standard cell culture well-plate. Taken together, RPLC-MS/MS method is well suited for multi-hormone measurements of SC-islets on an OoC platform.


Assuntos
Glucagon , Ilhotas Pancreáticas , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Glucose , Ilhotas Pancreáticas/fisiologia , Insulina , Peptídeos , Somatostatina , Organoides , Células-Tronco
2.
Islets ; 15(1): 2231609, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37415423

RESUMO

Pancreatic islets are mini-organs composed of hundreds or thousands of ɑ, ß and δ-cells, which, respectively, secrete glucagon, insulin and somatostatin, key hormones for the regulation of blood glucose. In pancreatic islets, hormone secretion is tightly regulated by both internal and external mechanisms, including electrical communication and paracrine signaling between islet cells. Given its complexity, the experimental study of pancreatic islets has been complemented with computational modeling as a tool to gain a better understanding about how all the mechanisms involved at different levels of organization interact. In this review, we describe how multicellular models of pancreatic cells have evolved from the early models of electrically coupled ß-cells to models in which experimentally derived architectures and both electrical and paracrine signals have been considered.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Ilhotas Pancreáticas/fisiologia , Células Secretoras de Insulina/fisiologia , Insulina , Glucagon , Hormônios Pancreáticos
3.
Mol Metab ; 74: 101754, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321370

RESUMO

BACKGROUND: Over the last decades, various approaches have been explored to restore sufficient ß-cell mass in diabetic patients. Stem cells are certainly an attractive source of new ß-cells, but an alternative option is to induce the endogenous regeneration of these cells. SCOPE OF REVIEW: Since the exocrine and endocrine pancreatic glands have a common origin and a continuous crosstalk unites the two, we believe that analyzing the mechanisms that induce pancreatic regeneration in different conditions could further advance our knowledge in the field. In this review, we summarize the latest evidence on physiological and pathological conditions associated with the regulation of pancreas regeneration and proliferation, as well as the complex and coordinated signaling cascade mediating cell growth. MAJOR CONCLUSIONS: Unraveling the mechanisms involved in intracellular signaling and regulation of pancreatic cell proliferation and regeneration may inspire future investigations to discover potential strategies to cure diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Ilhotas Pancreáticas/fisiologia , Pâncreas/fisiologia , Células Secretoras de Insulina/fisiologia , Regeneração/fisiologia
4.
Diabetes Res Clin Pract ; 197: 110568, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738836

RESUMO

Islet ß-cell dysfunction is a basic pathophysiological characteristic of type 2 diabetes mellitus (T2DM). Appropriate assessment of islet ß-cell function is beneficial to better management of T2DM. Protecting islet ß-cell function is vital to delay the progress of type 2 diabetes mellitus. Therefore, the Pancreatic Islet ß-cell Expert Panel of the Chinese Diabetes Society and Endocrinology Society of Jiangsu Medical Association organized experts to draft the "Clinical expert consensus on the assessment and protection of pancreatic islet ß-cell function in type 2 diabetes mellitus." This consensus suggests that ß-cell function can be clinically assessed using blood glucose-based methods or methods that combine blood glucose and endogenous insulin or C-peptide levels. Some measures, including weight loss and early and sustained euglycemia control, could effectively protect islet ß-cell function, and some newly developed drugs, such as Sodium-glucose cotransporter-2 inhibitor and Glucagon-like peptide-1 receptor agonists, could improve islet ß-cell function, independent of glycemic control.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Glicemia , Consenso , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Insulina/farmacologia , Ilhotas Pancreáticas/fisiologia
5.
Nat Commun ; 14(1): 878, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797282

RESUMO

Intrahepatic islet transplantation is the standard cell therapy for ß cell replacement. However, the shortage of organ donors and an unsatisfactory engraftment limit its application to a selected patients with type 1 diabetes. There is an urgent need to identify alternative strategies based on an unlimited source of insulin producing cells and innovative scaffolds to foster cell interaction and integration to orchestrate physiological endocrine function. We previously proposed the use of decellularized lung as a scaffold for ß cell replacement with the final goal of engineering a vascularized endocrine organ. Here, we prototyped this technology with the integration of neonatal porcine islet and healthy subject-derived blood outgrowth endothelial cells to engineer a xenogeneic vascularized endocrine pancreas. We validated ex vivo cell integration and function, its engraftment and performance in a preclinical model of diabetes. Results showed that this technology not only is able to foster neonatal pig islet maturation in vitro, but also to perform in vivo immediately upon transplantation and for over 18 weeks, compared to normal performance within 8 weeks in various state of the art preclinical models. Given the recent progress in donor pig genetic engineering, this technology may enable the assembly of immune-protected functional endocrine organs.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Células Endoteliais , Ilhotas Pancreáticas/fisiologia , Transplante das Ilhotas Pancreáticas/métodos , Células Secretoras de Insulina/metabolismo , Pâncreas
6.
Tissue Eng Part B Rev ; 29(4): 334-346, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36475851

RESUMO

Diabetes is a disease that plagues over 463 million people globally. Approximately 40 million of these patients have type 1 diabetes mellitus (T1DM), and the global incidence is increasing by up to 5% per year. T1DM is where the body's immune system attacks the pancreas, specifically the pancreatic beta cells, with antibodies to prevent insulin production. Although current treatments such as exogenous insulin injections have been successful, exorbitant insulin costs and meticulous administration present the need for alternative long-term solutions to glucose dysregulation caused by diabetes. Encapsulated islet transplantation (EIT) is a tissue-engineered solution to diabetes. Donor islets are encapsulated in a semipermeable hydrogel, allowing the diffusion of oxygen, glucose, and insulin but preventing leukocyte infiltration and antibody access to the transplanted cells. Although successful in small animal models, EIT is still far from commercial use owing to necessary long-term systemic immunosuppressants and consistent immune rejection. Most published research has focused on tailoring the characteristics of the capsule material to promote clinical viability. However, most studies have been limited in scope to biochemical changes. Current mechanobiology studies on the effect of substrate stiffness on the function of leukocytes, especially macrophages-primary foreign body response (FBR) orchestrators, show promise in tailoring a favorable response to tissue-engineered therapies such as EIT. In this review, we explore strategies to improve the clinical viability of EIT. A brief overview of the immune system, the FBR, and current biochemical approaches will be elucidated throughout this exploration. Furthermore, an argument for using substrate stiffness as a capsule design parameter to increase EIT efficacy and clinical viability will be posed.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Diabetes Mellitus Tipo 1/terapia , Insulina , Engenharia Tecidual , Glucose , Ilhotas Pancreáticas/fisiologia
7.
Diabetes ; 71(12): 2584-2596, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36084321

RESUMO

Pancreatic islets are highly interconnected structures that produce pulses of insulin and other hormones, maintaining normal homeostasis of glucose and other nutrients. Normal stimulus-secretion and intercellular coupling are essential to regulated secretory responses, and these hallmarks are known to be altered in diabetes. In the current study, we used calcium imaging of isolated human islets to assess their collective behavior. The activity occurred in the form of calcium oscillations, was synchronized across different regions of islets through calcium waves, and was glucose dependent: higher glucose enhanced the activity, elicited a greater proportion of global calcium waves, and led to denser and less fragmented functional networks. Hub regions were identified in stimulatory conditions, and they were characterized by long active times. Moreover, calcium waves were found to be initiated in different subregions and the roles of initiators and hubs did not overlap. In type 2 diabetes, glucose dependence was retained, but reduced activity, locally restricted waves, and more segregated networks were detected compared with control islets. Interestingly, hub regions seemed to suffer the most by losing a disproportionately large fraction of connections. These changes affected islets from donors with diabetes in a heterogeneous manner.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Humanos , Cálcio , Ilhotas Pancreáticas/fisiologia , Insulina , Glucose
8.
Can J Diabetes ; 46(4): 419-427, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35589534

RESUMO

The coronavirus-2019 (COVID-19) pandemic has had significant impact on research directions and productivity in the past 2 years. Despite these challenges, since 2020, more than 2,500 peer-reviewed articles have been published on pancreatic islet biology. These include updates on the roles of isocitrate dehydrogenase, pyruvate kinase and incretin hormones in insulin secretion, as well as the discovery of inceptor and signalling by circulating RNAs. The year 2020 also brought advancements in in vivo and in vitro models, including a new transgenic mouse for assessing beta-cell proliferation, a "pancreas-on-a-chip" to study glucose-stimulated insulin secretion and successful genetic editing of primary human islet cells. Islet biologists evaluated the functionality of stem-cell-derived islet-like cells coated with semipermeable biomaterials to prevent autoimmune attack, revealing the importance of cell maturation after transplantation. Prompted by observations that COVID-19 symptoms can worsen for people with obesity or diabetes, researchers examined how islets are directly affected by severe acute respiratory syndrome coronavirus 2. Herein, we highlight novel functional insights, technologies and therapeutic approaches that emerged between March 2020 and July 2021, written for both scientific and lay audiences. We also include a response to these advancements from patient stakeholders, to help lend a broader perspective to developments and challenges in islet research.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Biologia , Diabetes Mellitus Tipo 1/terapia , Humanos , Insulina , Ilhotas Pancreáticas/fisiologia , Camundongos
9.
Sci Rep ; 12(1): 4681, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304495

RESUMO

A bioartificial pancreas (BAP) encapsulating high pancreatic islets concentration is a promising alternative for type 1 diabetes therapy. However, the main limitation of this approach is O2 supply, especially until graft neovascularization. Here, we described a methodology to design an optimal O2-balanced BAP using statistical design of experiment (DoE). A full factorial DoE was first performed to screen two O2-technologies on their ability to preserve pseudo-islet viability and function under hypoxia and normoxia. Then, response surface methodology was used to define the optimal O2-carrier and islet seeding concentrations to maximize the number of viable pseudo-islets in the BAP containing an O2-generator under hypoxia. Monitoring of viability, function and maturation of neonatal pig islets for 15 days in vitro demonstrated the efficiency of the optimal O2-balanced BAP. The findings should allow the design of a more realistic BAP for humans with high islets concentration by maintaining the O2 balance in the device.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Pâncreas Artificial , Diabetes Mellitus Tipo 1/terapia , Humanos , Hipóxia , Ilhotas Pancreáticas/fisiologia , Transplante das Ilhotas Pancreáticas/métodos , Pâncreas/fisiologia
10.
Front Endocrinol (Lausanne) ; 13: 822191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222280

RESUMO

Type 1 diabetes (T1D) is a widespread disease, affecting approximately 41.5 million people worldwide. It is generally treated with exogenous insulin, maintaining physiological blood glucose levels but also leading to long-term therapeutic complications. Pancreatic islet cell transplantation offers a potential alternative treatment to insulin injections. Shortage of human organ donors has raised the interest for porcine islet xenotransplantation. Neonatal porcine islets are highly available, can proliferate and mature in vitro as well as after transplantation in vivo. Despite promising preclinical results, delayed insulin secretion caused by immaturity and immunogenicity of the neonatal porcine islets remains a challenge for their clinical application. Multipotent mesenchymal stromal cells (MSCs) are known to have pro-angiogenic, anti-inflammatory and immunomodulatory effects. The current state of research emphasizes the great potential of co-culture and co-transplantation of islet cells with MSCs. Studies have shown enhanced islet proliferation and maturation, insulin secretion and graft survival, resulting in an improved graft outcome. This review summarizes the immunomodulatory and anti-inflammatory properties of MSC in the context of islet transplantation.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Animais , Sobrevivência Celular , Técnicas de Cocultura , Sobrevivência de Enxerto , Humanos , Imunomodulação , Células-Tronco Mesenquimais/imunologia , Neovascularização Fisiológica , Suínos , Transplante Heterólogo
11.
PLoS One ; 17(1): e0262584, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35030228

RESUMO

The equine neonate is considered to have impaired glucose tolerance due to delayed maturation of the pancreatic endocrine system. Few studies have investigated insulin sensitivity in newborn foals using dynamic testing methods. The objective of this study was to assess insulin sensitivity by comparing the insulin-modified frequently sampled intravenous glucose tolerance test (I-FSIGTT) between neonatal foals and adult horses. This study was performed on healthy neonatal foals (n = 12), 24 to 60 hours of age, and horses (n = 8), 3 to 14 years of age using dextrose (300 mg/kg IV) and insulin (0.02 IU/kg IV). Insulin sensitivity (SI), acute insulin response to glucose (AIRg), glucose effectiveness (Sg), and disposition index (DI) were calculated using minimal model analysis. Proxy measurements were calculated using fasting insulin and glucose concentrations. Nonparametric statistical methods were used for analysis and reported as median and interquartile range (IQR). SI was significantly higher in foals (18.3 L·min-1· µIU-1 [13.4-28.4]) compared to horses (0.9 L·min-1· µIU-1 [0.5-1.1]); (p < 0.0001). DI was higher in foals (12 × 103 [8 × 103-14 × 103]) compared to horses (4 × 102 [2 × 102-7 × 102]); (p < 0.0001). AIRg and Sg were not different between foals and horses. The modified insulin to glucose ratio (MIRG) was lower in foals (1.72 µIUinsulin2/10·L·mgglucose [1.43-2.68]) compared to horses (3.91 µIU insulin2/10·L·mgglucose [2.57-7.89]); (p = 0.009). The homeostasis model assessment of beta cell function (HOMA-BC%) was higher in horses (78.4% [43-116]) compared to foals (23.2% [17.8-42.2]); (p = 0.0096). Our results suggest that healthy neonatal foals are insulin sensitive in the first days of life, which contradicts current literature regarding the equine neonate. Newborn foals may be more insulin sensitive immediately after birth as an evolutionary adaptation to conserve energy during the transition to extrauterine life.


Assuntos
Animais Recém-Nascidos/metabolismo , Cavalos/fisiologia , Resistência à Insulina/genética , Fatores Etários , Animais , Glicemia/análise , Feminino , Teste de Tolerância a Glucose/métodos , Teste de Tolerância a Glucose/veterinária , Cavalos/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/fisiologia , Masculino , Pâncreas/metabolismo
12.
Biochim Biophys Acta Mol Basis Dis ; 1868(4): 166339, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35017029

RESUMO

The pancreatic islet vasculature is of fundamental importance to the ß-cell response to obesity-associated insulin resistance. To explore islet vascular alterations in the pathogenesis of type 2 diabetes, we evaluated two insulin resistance models: ob/ob mice, which sustain large ß-cell mass and hyperinsulinemia, and db/db mice, which progress to diabetes due to secondary ß-cell compensation failure for insulin secretion. Time-dependent changes in islet vasculature and blood flow were investigated using tomato lectin staining and in vivo live imaging. Marked islet capillary dilation was observed in ob/ob mice, but this adaptive change was blunted in db/db mice. Islet blood flow volume was augmented in ob/ob mice, whereas it was reduced in db/db mice. The protein concentrations of total and phosphorylated endothelial nitric oxide synthase (eNOS) at Ser1177 were increased in ob/ob islets, while they were diminished in db/db mice, indicating decreased eNOS activity. This was accompanied by an increased retention of advanced glycation end-products in db/db blood vessels. Amelioration of diabetes by Elovl6 deficiency involved a restoration of capillary dilation, blood flow, and eNOS phosphorylation in db/db islets. Our findings suggest that the disability of islet capillary dilation due to endothelial dysfunction impairs local islet blood flow, which may play a role in the loss of ß-cell function and further exacerbate type 2 diabetes.


Assuntos
Vasos Sanguíneos/metabolismo , Ilhotas Pancreáticas/fisiologia , Animais , Velocidade do Fluxo Sanguíneo , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Elongases de Ácidos Graxos/deficiência , Elongases de Ácidos Graxos/genética , Feminino , Produtos Finais de Glicação Avançada/metabolismo , Insulina/metabolismo , Resistência à Insulina , Ilhotas Pancreáticas/anatomia & histologia , Ilhotas Pancreáticas/irrigação sanguínea , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação
13.
J Gerontol A Biol Sci Med Sci ; 77(3): 405-415, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34562079

RESUMO

Aging is associated with a decline in peripheral insulin sensitivity and an increased risk of impaired glucose tolerance and type 2 diabetes. During conditions of reduced insulin sensitivity, pancreatic ß cells undergo adaptive responses to increase insulin secretion and maintain euglycemia. However, the existence and nature of ß-cell adaptations and/or alterations during aging are still a matter of debate. In this study, we investigated the effects of aging on ß-cell function from control (3-month-old) and aged (20-month-old) mice. Aged animals were further categorized into 2 groups: high insulin sensitive (aged-HIS) and low insulin sensitive (aged-LIS). Aged-LIS mice were hyperinsulinemic, glucose intolerant, and displayed impaired glucose-stimulated insulin and C-peptide secretion, whereas aged-HIS animals showed characteristics in glucose homeostasis similar to controls. In isolated ß cells, we observed that glucose-induced inhibition of KATP channel activity was reduced with aging, particularly in the aged-LIS group. Glucose-induced islet NAD(P)H production was decreased in aged mice, suggesting impaired mitochondrial function. In contrast, voltage-gated Ca2+ currents were higher in aged-LIS ß cells, and pancreatic islets of both aged groups displayed increased glucose-induced Ca2+ signaling and augmented insulin secretion compared with controls. Morphological analysis of pancreas sections also revealed augmented ß-cell mass with aging, especially in the aged-LIS group, as well as ultrastructural ß-cell changes. Altogether, these findings indicate that aged mouse ß cells compensate for the aging-induced alterations in the stimulus-secretion coupling, particularly by adjusting their Ca2+ influx to ensure insulin secretion. These results also suggest that decreased peripheral insulin sensitivity exacerbates the effects of aging on ß cells.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Células Secretoras de Insulina , Ilhotas Pancreáticas , Envelhecimento , Animais , Cálcio , Glucose , Insulina/farmacologia , Ilhotas Pancreáticas/fisiologia , Masculino , Camundongos
14.
Peptides ; 147: 170704, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826505

RESUMO

The pancreatic islets contain beta-cells and alpha-cells, which are responsible for secreting two principal gluco-regulatory hormones; insulin and glucagon, respectively. However, they also contain delta-cells, a relatively sparse cell type that secretes somatostatin (SST). These cells have a complex morphology allowing them to establish an extensive communication network throughout the islet, despite their scarcity. Delta-cells are electrically excitable cells, and SST secretion is released in a glucose- and KATP-dependent manner. SST hyperpolarises the alpha-cell membrane and suppresses exocytosis. In this way, islet SST potently inhibits glucagon release. Recent studies investigating the activity of delta-cells have revealed they are electrically coupled to beta-cells via gap junctions, suggesting the delta-cell is more than just a paracrine inhibitor. In this Review, we summarize delta-cell morphology, function, and the role of SST signalling for regulating islet hormonal output. A distinguishing feature of this Review is that we attempt to use the discovery of this gap junction pathway, together with what is already known about delta-cells, to reframe the role of these cells in both health and disease. In particular, we argue that the discovery of gap junction communication between delta-cells and beta-cells provides new insights into the contribution of delta-cells to the islet hormonal defects observed in both type 1 and type 2 diabetes. This reappraisal of the delta-cell is important as it may offer novel insights into how the physiology of this cell can be utilised to restore islet function in diabetes.


Assuntos
Diabetes Mellitus/patologia , Junções Comunicantes/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/fisiologia , Animais , Glucagon/metabolismo , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/ultraestrutura , Somatostatina/metabolismo
15.
Peptides ; 148: 170709, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34896576

RESUMO

Insulin secretion and pancreatic beta-cell proliferation are tightly regulated by several signals such as hormones, nutrients, and neurotransmitters. However, the autonomic control of beta cells is not fully understood. In this review, we describe mechanisms involved in insulin secretion as well as metabolic and mitogenic actions on its target tissues. Since pancreatic islets are physically connected to the brain by nerves, parasympathetic and sympathetic neurotransmitters can directly potentiate or repress insulin secretion and beta-cell proliferation. Finally, we highlight the role of the autonomic nervous system in metabolic diseases such as diabetes and obesity.


Assuntos
Sistema Nervoso Autônomo/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Animais , Proliferação de Células , Humanos , Ilhotas Pancreáticas/inervação , Ilhotas Pancreáticas/fisiologia , Camundongos , Neurotransmissores/metabolismo , Neurotransmissores/fisiologia , Ratos , Roedores/metabolismo , Roedores/fisiologia
16.
Nature ; 600(7890): 720-726, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34880500

RESUMO

The liberation of energy stores from adipocytes is critical to support survival in times of energy deficit; however, uncontrolled or chronic lipolysis associated with insulin resistance and/or insulin insufficiency disrupts metabolic homeostasis1,2. Coupled to lipolysis is the release of a recently identified hormone, fatty-acid-binding protein 4 (FABP4)3. Although circulating FABP4 levels have been strongly associated with cardiometabolic diseases in both preclinical models and humans4-7, no mechanism of action has yet been described8-10. Here we show that hormonal FABP4 forms a functional hormone complex with adenosine kinase (ADK) and nucleoside diphosphate kinase (NDPK) to regulate extracellular ATP and ADP levels. We identify a substantial effect of this hormone on beta cells and given the central role of beta-cell function in both the control of lipolysis and development of diabetes, postulate that hormonal FABP4 is a key regulator of an adipose-beta-cell endocrine axis. Antibody-mediated targeting of this hormone complex improves metabolic outcomes, enhances beta-cell function and preserves beta-cell integrity to prevent both type 1 and type 2 diabetes. Thus, the FABP4-ADK-NDPK complex, Fabkin, represents a previously unknown hormone and mechanism of action that integrates energy status with the function of metabolic organs, and represents a promising target against metabolic disease.


Assuntos
Proteínas de Ligação a Ácido Graxo , Ilhotas Pancreáticas , Fosfotransferases , Adipócitos/metabolismo , Diabetes Mellitus/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/fisiologia , Lipólise , Nucleosídeos/metabolismo , Fosfotransferases/metabolismo
17.
Genes (Basel) ; 12(11)2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34828301

RESUMO

Emerging evidence suggests that several of the lysosomal cathepsin proteases are genetically associated with type 1 diabetes (T1D) and participate in immune-mediated destruction of the pancreatic ß cells. We previously reported that the T1D candidate gene cathepsin H is downregulated by pro-inflammatory cytokines in human pancreatic islets and regulates ß-cell function, apoptosis, and disease progression in children with new-onset T1D. In the present study, the objective was to investigate the expression patterns of all 15 known cathepsins in ß-cell model systems and examine their role in the regulation of cytokine-induced apoptosis. Real-time qPCR screening of the cathepsins in human islets, 1.1B4 and INS-1E ß-cell models identified several cathepsins that were expressed and regulated by pro-inflammatory cytokines. Using small interfering RNAs to knock down (KD) the cytokine-regulated cathepsins, we identified an anti-apoptotic function of cathepsin C as KD increased cytokine-induced apoptosis. KD of cathepsin C correlated with increased phosphorylation of JNK and p38 mitogen-activated protein kinases, and elevated chemokine CXCL10/IP-10 expression. This study suggests that cathepsin C is a modulator of ß-cell survival, and that immune modulation of cathepsin expression in islets may contribute to immune-mediated ß-cell destruction in T1D.


Assuntos
Apoptose , Catepsina C/fisiologia , Citocinas/farmacologia , Células Secretoras de Insulina , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Catepsina C/genética , Células Cultivadas , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/fisiologia , Modelos Biológicos , Ratos
18.
Lancet Diabetes Endocrinol ; 9(10): 708-724, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480875

RESUMO

Type 1 diabetes is characterised by autoimmune-mediated destruction of pancreatic ß-cell mass. With the advent of insulin therapy a century ago, type 1 diabetes changed from a progressive, fatal disease to one that requires lifelong complex self-management. Replacing the lost ß-cell mass through transplantation has proven successful, but limited donor supply and need for lifelong immunosuppression restricts widespread use. In this Review, we highlight incremental advances over the past 20 years and remaining challenges in regenerative medicine approaches to restoring ß-cell mass and function in type 1 diabetes. We begin by summarising the role of endocrine islets in glucose homoeostasis and how this is altered in disease. We then discuss the potential regenerative capacity of the remaining islet cells and the utility of stem cell-derived ß-like cells to restore ß-cell function. We conclude with tissue engineering approaches that might improve the engraftment, function, and survival of ß-cell replacement therapies.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Ilhotas Pancreáticas/fisiologia , Medicina Regenerativa , Animais , Contagem de Células , Proliferação de Células/fisiologia , Diabetes Mellitus Tipo 1/fisiopatologia , História do Século XXI , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/fisiologia , Células Secretoras de Insulina/transplante , Ilhotas Pancreáticas/citologia , Transplante das Ilhotas Pancreáticas/história , Transplante das Ilhotas Pancreáticas/métodos , Transplante das Ilhotas Pancreáticas/tendências , Regeneração/fisiologia , Medicina Regenerativa/história , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Engenharia Tecidual/história , Engenharia Tecidual/métodos , Engenharia Tecidual/tendências
19.
Front Endocrinol (Lausanne) ; 12: 695467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566887

RESUMO

Background: It has been demonstrated that activated islet stellate cells (ISCs) play a critical role in islet fibrogenesis and significantly contribute to the progression of type 2 diabetes mellitus. However, the key molecules responsible for ISCs activation have not yet been determined. This study aimed to identify the potential key genes involved in diabetes-induced activation of ISCs. Method: Stellate cells were isolated from three 10-week-old healthy male Wistar rats and three Goto-Kakizaki (GK) rats. Cells from each rat were primary cultured under the same condition. A Genome-wide transcriptional sequence of stellate cells was generated using the Hiseq3000 platform. The identified differentially expressed genes were validated using quantitative real-time PCR and western blotting in GK rats, high fat diet (HFD) rats, and their controls. Results: A total of 204 differentially expressed genes (DEGs) between GK. ISCs and Wistar ISCs (W.ISCs) were identified, accounting for 0.58% of all the 35,362 genes detected. After the Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses, the mRNA levels of these genes were further confirmed by real-time PCR in cultured ISCs. We then selected Fos, Pdpn, Bad as the potential key genes for diabetes-induced activation of ISCs. Finally, we confirmed the protein expression levels of FOS, podoplanin, and Bad by western blotting and immunofluorescence in GK rats, HFD rats, and their controls. The results showed that the expression level of FOS was significantly decreased, while podoplanin and Bad were significantly increased in GK.ISCs and HFD rats compared with controls, which were consistent with the expression of α-smooth muscle actin. Conclusions: A total of 204 DEGs were found between the GK.ISCs and W.ISCs. After validating the expression of potential key genes from GK rats and HFD rats, Fos, Pdpn, and Bad might be potential key genes involved in diabetes-induced activation of ISCs.


Assuntos
Ilhotas Pancreáticas/fisiologia , Pâncreas/patologia , Células Estreladas do Pâncreas/fisiologia , Transcriptoma , Animais , Proliferação de Células/genética , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Progressão da Doença , Fibrose/genética , Ilhotas Pancreáticas/metabolismo , Masculino , Especificidade de Órgãos/genética , Pâncreas/metabolismo , Células Estreladas do Pâncreas/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar
20.
Front Endocrinol (Lausanne) ; 12: 732431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589059

RESUMO

Diabetes is a complex disease that affects over 400 million people worldwide. The life-long insulin injections and continuous blood glucose monitoring required in type 1 diabetes (T1D) represent a tremendous clinical and economic burdens that urges the need for a medical solution. Pancreatic islet transplantation holds great promise in the treatment of T1D; however, the difficulty in regulating post-transplantation immune reactions to avoid both allogenic and autoimmune graft rejection represent a bottleneck in the field of islet transplantation. Cell replacement strategies have been performed in hepatic, intramuscular, omentum, and subcutaneous sites, and have been performed in both animal models and human patients. However more optimal transplantation sites and methods of improving islet graft survival are needed to successfully translate these studies to a clinical relevant therapy. In this review, we summarize the current progress in the field as well as methods and sites of islet transplantation, including stem cell-derived functional human islets. We also discuss the contribution of immune cells, vessel formation, extracellular matrix, and nutritional supply on islet graft survival. Developing new transplantation sites with emerging technologies to improve islet graft survival and simplify immune regulation will greatly benefit the future success of islet cell therapy in the treatment of diabetes.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Transplante das Ilhotas Pancreáticas/tendências , Animais , Sobrevivência de Enxerto , Humanos , Ilhotas Pancreáticas/fisiologia , Transplante das Ilhotas Pancreáticas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA