Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
1.
Biomed Phys Eng Express ; 10(5)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39173647

RESUMO

This study introduces a novel volume coil design that features two slotted end-plates connected by six rungs, resembling the traditional birdcage coil. The end rings are equipped with six evenly distributed circular slots, inspired by Mansfield's cavity resonator theory, which suggests that circular slots can generate a baseline resonant frequency. One notable advantage of this proposed coil design is its reduced reliance on electronic components compared to other volume coils, making it more efficient. Additionally, the dimensions of the coil can be theoretically computed in advance, enhancing its practicality. To evaluate the performance and safety of the coil, electromagnetic field and specific absorption rate simulations were simulated using a cylindrical saline phantom and the finite element method. Furthermore, a transceiver coil prototype optimized for 7 Tesla and driven in quadrature was constructed, enabling whole-body imaging of rats. The resonant frequency of the coil prototype obtained through experimental measurements closely matched the theoretical frequency derived from Mansfield's theory. To validate the coil design, phantom images were acquired to demonstrate its viability and assess its performance. These images also served to validate the magnetic field simulations. The experimental results aligned well with the simulation findings, confirming the reliability of the proposed coil design. Importantly, the prototype coil showcased significant improvements over a similarly-sized birdcage coil, indicating its potential for enhanced performance. The noise figure was lower in the prototype versus the birdcage coil (NFbirdcage-NFslotcage= 0.7). Phantom image data were also used to compute the image SNR, giving SNRslotcage/SNRbirdcage= 34.36/24.34. By proving the feasibility of the coil design through successful rat whole-body imaging, the study provides evidence supporting its potential as a viable option for high-field MRI applications on rodents.


Assuntos
Desenho de Equipamento , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Ondas de Rádio , Animais , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/instrumentação , Ratos , Simulação por Computador , Campos Eletromagnéticos , Análise de Elementos Finitos , Campos Magnéticos , Imagem Corporal Total/métodos , Imagem Corporal Total/instrumentação
2.
Phys Med ; 123: 103395, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843650

RESUMO

PURPOSE: Preclinical PET scanners often have limited axial field-of-view for whole-body (WB) scanning of the small-animal. Step-and-shoot(S&S) acquisition mode requires multiple bed positions (BPs) to cover the scan length. Alternatively, in Continuous Bed Motion(CBM) mode, data acquisition is performed while the bed is continuously moving. In this study, to reduce acquisition time and enhance image quality, the CBM acquisition protocol was optimized and implemented on the Xtrim-PET preclinical scanner for WB imaging. METHODS: The over-scan percentage(OS%) in CBM mode was optimized by Monte Carlo simulation. Bed movement speed was optimized considering ranges from 0.1 to 2.0 mm s-1, and absolute system sensitivities with the optimal OS% were calculated. The performance of the scanner in CBM mode was measured, and compared with S&S mode based on the NEMA-NU4 standard. RESULTS: The optimal trade-off between absolute sensitivity and uniformity of sensitivity profile was achieved at OS-50 %. In comparison to S&S mode with maximum ring differences (MRD) of 9 and 23, the calculated equivalent speeds in CBM(OS-50 %) mode were 0.3 and 0.14 mm s-1, respectively. In terms of data acquisition with equal sensitivity in both CBM(OS-50 %) and S&S(MRD-9) modes, the total scan time in CBM mode decreased by 25.9 %, 47.7 %, 54.7 %, and 58.2 % for scan lengths of 1 to 4 BPs, respectively. CONCLUSION: The CBM mode enhances WB PET scans for small-animals, offering rapid data acquisition, high system sensitivity, and uniform axial sensitivity, leading to improved image quality. Its efficiency and customizable scan length and bed speed make it a superior alternative.


Assuntos
Método de Monte Carlo , Tomografia por Emissão de Pósitrons , Imagem Corporal Total , Tomografia por Emissão de Pósitrons/instrumentação , Imagem Corporal Total/instrumentação , Imagem Corporal Total/métodos , Animais , Desenho de Equipamento , Processamento de Imagem Assistida por Computador/métodos , Movimento , Imagens de Fantasmas , Movimento (Física) , Simulação por Computador
3.
Magn Reson Med ; 92(4): 1788-1803, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38767407

RESUMO

PURPOSE: Peripheral nerve stimulation (PNS) limits the usability of state-of-the-art whole-body and head-only MRI gradient coils. We used detailed electromagnetic and neurodynamic modeling to set an explicit PNS constraint during the design of a whole-body gradient coil and constructed it to compare the predicted and experimentally measured PNS thresholds to those of a matched design without PNS constraints. METHODS: We designed, constructed, and tested two actively shielded whole-body Y-axis gradient coil winding patterns: YG1 is a conventional symmetric design without PNS-optimization, whereas YG2's design used an additional constraint on the allowable PNS threshold in the head-imaging landmark, yielding an asymmetric winding pattern. We measured PNS thresholds in 18 healthy subjects at five landmark positions (head, cardiac, abdominal, pelvic, and knee). RESULTS: The PNS-optimized design YG2 achieved 46% higher average experimental thresholds for a head-imaging landmark than YG1 while incurring a 15% inductance penalty. For cardiac, pelvic, and knee imaging landmarks, the PNS thresholds increased between +22% and +35%. For abdominal imaging, PNS thresholds did not change significantly between YG1 and YG2 (-3.6%). The agreement between predicted and experimental PNS thresholds was within 11.4% normalized root mean square error for both coils and all landmarks. The PNS model also produced plausible predictions of the stimulation sites when compared to the sites of perception reported by the subjects. CONCLUSION: The PNS-optimization improved the PNS thresholds for the target scan landmark as well as most other studied landmarks, potentially yielding a significant improvement in image encoding performance that can be safely used in humans.


Assuntos
Imageamento por Ressonância Magnética , Imagem Corporal Total , Humanos , Masculino , Adulto , Imagem Corporal Total/instrumentação , Feminino , Nervos Periféricos/diagnóstico por imagem , Nervos Periféricos/fisiologia , Desenho de Equipamento , Reprodutibilidade dos Testes , Estimulação Elétrica , Voluntários Saudáveis , Adulto Jovem , Cabeça/diagnóstico por imagem
4.
Phys Med Biol ; 69(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38648786

RESUMO

Objective.Image quality in whole-body MRI (WB-MRI) may be degraded by faulty radiofrequency (RF) coil elements or mispositioning of the coil arrays. Phantom-based quality control (QC) is used to identify broken RF coil elements but the frequency of these acquisitions is limited by scanner and staff availability. This work aimed to develop a scan-specific QC acquisition and processing pipeline to detect broken RF coil elements, which is sufficiently rapid to be added to the clinical WB-MRI protocol. The purpose of this is to improve the quality of WB-MRI by reducing the number of patient examinations conducted with suboptimal equipment.Approach.A rapid acquisition (14 s additional acquisition time per imaging station) was developed that identifies broken RF coil elements by acquiring images from each individual coil element and using the integral body coil. This acquisition was added to one centre's clinical WB-MRI protocol for one year (892 examinations) to evaluate the effect of this scan-specific QC. To demonstrate applicability in multi-centre imaging trials, the technique was also implemented on scanners from three manufacturers.Main results. Over the course of the study RF coil elements were flagged as potentially broken on five occasions, with the faults confirmed in four of those cases. The method had a precision of 80% and a recall of 100% for detecting faulty RF coil elements. The coil array positioning measurements were consistent across scanners and have been used to define the expected variation in signal.Significance. The technique demonstrated here can identify faulty RF coil elements and positioning errors and is a practical addition to the clinical WB-MRI protocol. This approach was fully implemented on systems from two manufacturers and partially implemented on a third. It has potential to reduce the number of clinical examinations conducted with suboptimal hardware and improve image quality across multi-centre studies.


Assuntos
Imageamento por Ressonância Magnética , Controle de Qualidade , Imagem Corporal Total , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/normas , Humanos , Imagem Corporal Total/instrumentação , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Ondas de Rádio
5.
Clin Nutr ; 41(1): 211-218, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915272

RESUMO

BACKGROUND: The accurate assessment of total body and regional body circumferences, volumes, and compositions are critical to monitor physical activity and dietary interventions, as well as accurate disease classifications including obesity, metabolic syndrome, sarcopenia, and lymphedema. We assessed body composition and anthropometry estimates provided by a commercial 3-dimensional optical (3DO) imaging system compared to criterion measures. METHODS: Participants of the Shape Up! Adults study were recruited for similar sized stratifications by sex, age (18-40, 40-60, >60 years), BMI (under, normal, overweight, obese), and across five ethnicities (non-Hispanic [NH] Black, NH White, Hispanic, Asian, Native Hawaiian/Pacific Islander). All participants received manual anthropometry assessments, duplicate whole-body 3DO (Styku S100), and dual-energy X-ray absorptiometry (DXA) scans. 3DO estimates provided by the manufacturer for anthropometry and body composition were compared to the criterion measures using concordance correlation coefficient (CCC) and Bland-Altman analysis. Test-retest precision was assessed by root mean square error (RMSE) and coefficient of variation. RESULTS: A total of 188 (102 female) participants were included. The overall fat free mass (FFM) as measured by DXA (54.1 ± 15.2 kg) and 3DO (55.3 ± 15.0 kg) showed a small mean difference of 1.2 ± 3.4 kg (95% limits of agreement -7.0 to +5.6) and the CCC was 0.97 (95% CI: 0.96-0.98). The CCC for FM was 0.95 (95% CI: 0.94-0.97) and the mean difference of 1.3 ± 3.4 kg (95% CI: -5.5 to +8.1) reflected the difference in FFM measures. 3DO anthropometry and body composition measurements showed high test-retest precision for whole body volume (1.1 L), fat mass (0.41 kg), percent fat (0.60%), arm and leg volumes, (0.11 and 0.21 L, respectively), and waist and hip circumferences (all <0.60 cm). No group differences were observed when stratified by body mass index, sex, or race/ethnicity. CONCLUSIONS: The anthropometric and body composition estimates provided by the 3DO scanner are precise and accurate to criterion methods if offsets are considered. This method offers a rapid, broadly available, and automated method of body composition assessment regardless of body size. Further studies are recommended to examine the relationship between measurements obtained by 3DO scans and metabolic health in healthy and clinical populations.


Assuntos
Antropometria/instrumentação , Composição Corporal , Imageamento Tridimensional/instrumentação , Imagem Corporal Total/instrumentação , Absorciometria de Fóton , Adolescente , Adulto , Antropometria/métodos , Índice de Massa Corporal , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Imagem Corporal Total/métodos , Adulto Jovem
6.
Acta Radiol ; 63(4): 458-466, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33709794

RESUMO

BACKGROUND: The low-tube-voltage scan generally needs a higher tube current than the conventional 120 kVp to maintain the image noise. In addition, the low-tube-voltage scan increases the photoelectric effect, which increases the radiation absorption in organs. PURPOSE: To compare the organ radiation dose caused by iodine contrast medium between low tube voltage with low contrast medium and that of conventional 120-kVp protocol with standard contrast medium. MATERIAL AND METHODS: After the propensity-matching analysis, 66 patients were enrolled including 33 patients with 120 kVp and 600 mgI/kg and 33 patients with 80 kVp and 300 mgI/kg (50% iodine reduction). The pre- and post-contrast phases were assessed in all patients. The Monte Carlo simulation tool was used to simulate the radiation dose. The computed tomography (CT) numbers for 10 organs and the organ doses were measured. The organ doses were normalized by the volume CT dose index, and the 120-kVp protocol was compared with the 80-kVp protocol. RESULTS: On contrast-enhanced CT, there were no significant differences in the mean CT numbers of the organs between 80-kVp and 120-kVp protocols except for the pancreas, kidneys, and small intestine. The normalized organ doses at 80 kVp were significantly lower than those of 120 kVp in all organs (e.g. liver, 1.6 vs. 1.9; pancreas, 1.5 vs. 1.8; spleen, 1.7 vs. 2.0) on contrast-enhanced CT. CONCLUSION: The low tube voltage with low-contrast-medium protocol significantly reduces organ doses at the same volume CT dose index setting compared with conventional 120-kVp protocol with standard contrast medium on contrast-enhanced CT.


Assuntos
Meios de Contraste , Doses de Radiação , Intensificação de Imagem Radiográfica/métodos , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Imagem Corporal Total/instrumentação , Imagem Corporal Total/métodos , Adulto , Feminino , Humanos , Iodo , Masculino , Pessoa de Meia-Idade
7.
BMC Med Imaging ; 21(1): 83, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001001

RESUMO

PURPOSE: The purpose of this study was to review our institutional experience with the EOS machine in order to identify the incidence and clinical significance of incidental extraspinal findings (IESF) in an adult spinal deformity population. METHODS: Our institutional database was queried for all full-length standing radiographs generated by the EOS machine. Dictations were reviewed and the number of incidental extraspinal findings were classified using a previously described system. All findings related to the spine were excluded. A subset of electronic medical records were reviewed to determine further workup for individual findings of suspected clinical significance. RESULTS: Original database query based on radiology reports returned a total of 1857 EOS studies. Duplicate studies, studies without the entire body, and patients with more than 1 study during the search period were excluded. 503 patient studies (55.5% female, mean age 59-years-old, range 18 to 91-years-old) met inclusion criteria. The overall rate of incidental extraspinal findings in our study was 60.4% (304 findings in 503 patients). Most findings were classified as Minor. The rate of Major and Moderate findings was 4.8%. The final rate of clinically significant incidental extraspinal findings was 0.8% and included 3 presumed metastatic lesions in long bones and 1 pulmonary nodule. CONCLUSION: To our knowledge this is the first study that reports the rate of incidental extraspinal findings on full body EOS studies. We report a low rate (0.8%) of clinically significant incidental extraspinal findings which is lower than that of CT or MRI. Further research is warranted in comparing EOS and standard radiography.


Assuntos
Osso e Ossos/diagnóstico por imagem , Achados Incidentais , Radiografia/métodos , Posição Ortostática , Imagem Corporal Total/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Ósseas/diagnóstico por imagem , Feminino , Impacto Femoroacetabular/diagnóstico por imagem , Humanos , Artropatias/diagnóstico por imagem , Pneumopatias/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Exposição à Radiação , Radiografia/instrumentação , Coluna Vertebral/anormalidades , Coluna Vertebral/diagnóstico por imagem , Imagem Corporal Total/instrumentação , Adulto Jovem
8.
Mol Imaging Biol ; 23(5): 703-713, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33768465

RESUMO

PURPOSE: In this study, a small animal PET insert (SimPET-X, Brightonix Imaging Inc.) for simultaneous PET/MR imaging studies is presented. This insert covers an 11-cm-long axial field-of-view (FOV) and enables imaging of mouse total-bodies and rat heads. PROCEDURES: SimPET-X comprises 16 detector modules to yield a ring diameter of 63 mm and an axial FOV of 110 mm. The detector module supports four detector blocks, each comprising two 4 × 4 SiPM arrays coupled with a 20 × 9 array of LSO crystals (1.2 × 1.2 × 10 mm3). The physical characteristics of SimPET-X were measured in accordance with the NEMA NU4-2008 standard protocol. In addition, we assessed the compatibility of SimPET-X with a small animal-dedicated MRI (M7, Aspect Imaging) and conducted phantom and animal studies. RESULTS: The radial spatial resolutions at the center based on 3D OSEM without and with the warm background were 0.73 mm and 0.99 mm, respectively. The absolute peak sensitivity of the system was 10.44% with an energy window of 100-900 keV and 8.27% with an energy window of 250-750 keV. The peak NECR and scatter fraction for the mouse phantom were 348 kcps at 26.2 MBq and 22.1% with an energy window of 250-750 keV, respectively. The standard deviation of pixel value in the uniform region of an NEMA IQ phantom was 4.57%. The spillover ratios for air- and water-filled chambers were 9.0% and 11.0%, respectively. In the hot-rod phantom image reconstructed using 3D OSEM-PSF, all small rods were resolved owing to the high spatial resolution of the SimPET-X system. There was no notable interference between SimPET-X and M7 MRI. SimPET-X provided high-quality mouse images with superior spatial resolution, sensitivity, and counting rate performance. CONCLUSION: SimPET-X yielded a remarkably improved sensitivity and NECR compared with SimPETTM.


Assuntos
Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Imagem Corporal Total/instrumentação , Animais , Desenho de Equipamento , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Camundongos , Imagem Molecular , Tomografia por Emissão de Pósitrons/métodos , Sensibilidade e Especificidade , Imagem Corporal Total/métodos
9.
Nat Commun ; 12(1): 455, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469005

RESUMO

The technology of magnetic resonance imaging is developing towards higher magnetic fields to improve resolution and contrast. However, whole-body imaging at 7 T or even higher flux densities remains challenging due to wave interference, tissue inhomogeneities, and high RF power deposition. Nowadays, proper RF excitation of a human body in prostate and cardiac MRI is only possible to achieve by using phased arrays of antennas attached to the body (so-called surface coils). Due to safety concerns, the design of such coils aims at minimization of the local specific absorption rate (SAR), keeping the highest possible RF signal in the region of interest. Most previously demonstrated approaches were based on resonant structures such as e.g. dipoles, capacitively-loaded loops, TEM-line sections. In this study, we show that there is a better compromise between the transmit signal [Formula: see text] and the local SAR using non-resonant surface coils generating a low electric field in the proximity of their conductors. With this aim, we propose and experimentally demonstrate a leaky-wave antenna implemented as a periodically-slotted microstrip transmission line. Due to its non-resonant radiation, it induces only slightly over half the peak local SAR compared to a state-of-the-art dipole antenna but has the same transmit efficiency in prostate imaging at 7 T. Unlike other antennas for MRI, the leaky-wave antenna does not require to be tuned and matched when placed on a body, which makes it easy-to-use in prostate imaging at 7 T MRI.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imagem Corporal Total/instrumentação , Absorção de Radiação , Radiação Eletromagnética , Desenho de Equipamento , Humanos , Campos Magnéticos/efeitos adversos , Imageamento por Ressonância Magnética/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Imagem Corporal Total/efeitos adversos , Imagem Corporal Total/métodos
10.
J Nucl Med ; 62(6): 861-870, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33008932

RESUMO

The world's first total-body PET scanner with an axial field of view (AFOV) of 194 cm is now in clinical and research use at our institution. The uEXPLORER PET/CT system is the first commercially available total-body PET scanner. Here we present a detailed physical characterization of this scanner based on National Electrical Manufacturers Association (NEMA) NU 2-2018 along with a new set of measurements devised to appropriately characterize the total-body AFOV. Methods: Sensitivity, count-rate performance, time-of-flight resolution, spatial resolution, and image quality were evaluated following the NEMA NU 2-2018 protocol. Additional measurements of sensitivity and count-rate capabilities more representative of total-body imaging were performed using extended-geometry phantoms based on the world-average human height (∼165 cm). Lastly, image quality throughout the long AFOV was assessed with the NEMA image quality (IQ) phantom imaged at 5 axial positions and over a range of expected total-body PET imaging conditions (low dose, delayed imaging, short scan duration). Results: Our performance evaluation demonstrated that the scanner provides a very high sensitivity of 174 kcps/MBq, a count-rate performance with a peak noise-equivalent count rate of approximately 2 Mcps for total-body imaging, and good spatial resolution capabilities for human imaging (≤3.0 mm in full width at half maximum near the center of the AFOV). Excellent IQ, excellent contrast recovery, and low noise properties were illustrated across the AFOV in both NEMA IQ phantom evaluations and human imaging examples. Conclusion: In addition to standard NEMA NU 2-2018 characterization, a new set of measurements based on extending NEMA NU 2-2018 phantoms and experiments was devised to characterize the physical performance of the first total-body PET system. The rationale for these extended measurements was evident from differences in sensitivity, count-rate-activity relationships, and noise-equivalent count-rate limits imposed by differences in dead time and randoms fraction between the NEMA NU 2 70-cm phantoms and the more representative total-body imaging phantoms. Overall, the uEXPLORER PET system provides ultra-high sensitivity that supports excellent spatial resolution and IQ throughout the field of view in both phantom and human imaging.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/instrumentação , Imagem Corporal Total/instrumentação , Humanos , Limite de Detecção , Imagens de Fantasmas , Controle de Qualidade , Fatores de Tempo
12.
Phys Med Biol ; 65(23): 235051, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33336650

RESUMO

The purpose of this work is to develop a validated Geant4 simulation model of a whole-body prototype PET scanner constructed from the four-layer depth-of-interaction detectors developed at the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Japan. The simulation model emulates the behaviour of the unique depth of interaction sensing capability of the scanner without needing to directly simulate optical photon transport in the scintillator and photodetector modules. The model was validated by evaluating and comparing performance metrics from the NEMA NU 2-2012 protocol on both the simulated and physical scanner, including spatial resolution, sensitivity, scatter fraction, noise equivalent count rates and image quality. The results show that the average sensitivities of the scanner in the field-of-view were 5.9 cps kBq-1 and 6.0 cps kBq-1 for experiment and simulation, respectively. The average spatial resolutions measured for point sources placed at several radial offsets were 5.2± 0.7 mm and 5.0± 0.8 mm FWHM for experiment and simulation, respectively. The peak NECR was 22.9 kcps at 7.4 kBq ml-1 for the experiment, while the NECR obtained via simulation was 23.3 kcps at the same activity. The scatter fractions were 44% and 41.3% for the experiment and simulation, respectively. Contrast recovery estimates performed in different regions of a simulated image quality phantom matched the experimental results with an average error of -8.7% and +3.4% for hot and cold lesions, respectively. The results demonstrate that the developed Geant4 model reliably reproduces the key NEMA NU 2-2012 performance metrics evaluated on the prototype PET scanner. A simplified version of the model is included as an advanced example in Geant4 version 10.5.


Assuntos
Método de Monte Carlo , Tomografia por Emissão de Pósitrons/instrumentação , Imagem Corporal Total/instrumentação , Desenho de Equipamento , Imagens de Fantasmas , Fótons
13.
Clin Nucl Med ; 45(11): e493-e494, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32604119

RESUMO

The whole-body absolute quantification of Lu-DOTATATE therapy was achieved using a high-speed 360° CZT SPECT/CT system. Twelve high-resolution swelling detectors may be positioned close to patients, providing a high-count sensitivity that is particularly advantageous for the low-count rate conditions of Lu imaging. After initially validating Lu quantification on phantom, serial whole-body SPECT/CT acquisitions of only 20 minutes were obtained for a 70-year-old woman treated by Lu-DOTATATE injections for a metastatic recurrence of a pancreatic neuroendocrine tumor. The progressive decrease in tumor uptake between the consecutive Lu-DOTATATE injections could be quantified, and thereby the corresponding dosimetry changes could be estimated.


Assuntos
Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/radioterapia , Octreotida/análogos & derivados , Compostos Organometálicos/uso terapêutico , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Imagem Corporal Total/instrumentação , Idoso , Estudos de Viabilidade , Feminino , Humanos , Tumores Neuroendócrinos/patologia , Octreotida/uso terapêutico , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/radioterapia , Imagens de Fantasmas , Radiometria
14.
Arterioscler Thromb Vasc Biol ; 40(5): 1123-1134, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32237905

RESUMO

Cardiovascular disease due to atherosclerosis is still the main cause of morbidity and mortality worldwide. This disease is a complex systemic disorder arising from a network of pathological processes within the arterial vessel wall, and, outside of the vasculature, in the hematopoietic system and organs involved in metabolism. Recent years have seen tremendous efforts in the development and validation of quantitative imaging technologies for the noninvasive evaluation of patients with atherosclerotic cardiovascular disease. Specifically, the advent of combined positron emission tomography and magnetic resonance imaging scanners has opened new exciting opportunities in cardiovascular imaging. In this review, we will describe how combined positron emission tomography/magnetic resonance imaging scanners can be leveraged to evaluate atherosclerotic cardiovascular disease at the whole-body level, with specific focus on preclinical animal models of disease, from mouse to nonhuman primates. We will broadly describe 3 major areas of application: (1) vascular imaging, for advanced atherosclerotic plaque phenotyping and evaluation of novel imaging tracers or therapeutic interventions; (2) assessment of the ischemic heart and brain; and (3) whole-body imaging of the hematopoietic system. Finally, we will provide insights on potential novel technical developments which may further increase the relevance of integrated positron emission tomography/magnetic resonance imaging in preclinical atherosclerosis studies.


Assuntos
Aterosclerose/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Imagem Corporal Total/métodos , Animais , Aterosclerose/patologia , Aterosclerose/terapia , Modelos Animais de Doenças , Desenho de Equipamento , Imageamento por Ressonância Magnética/instrumentação , Camundongos , Imagem Multimodal , Tomografia por Emissão de Pósitrons/instrumentação , Valor Preditivo dos Testes , Primatas , Reprodutibilidade dos Testes , Imagem Corporal Total/instrumentação
15.
BMC Cardiovasc Disord ; 20(1): 23, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31948395

RESUMO

Extracorporeal cardiopulmonary resuscitation (ECPR) can be associated with increased survival and neurologic benefits in selected patients with out-of-hospital cardiac arrest (OHCA). However, there remains insufficient evidence to recommend the routine use of ECPR for patients with OHCA. A novel integrated trauma workflow concept that utilizes a sliding computed tomography (CT) scanner and interventional radiology (IR) system, named a hybrid emergency room system (HERS), allowing emergency therapeutic interventions and CT examination without relocating trauma patients, has recently evolved in Japan. HERS can drastically shorten the ECPR implementation time and more quickly facilitate definitive interventions than the conventional advanced cardiovascular life support workflow. Herein, we discuss our novel workflow concept using HERS on ECPR for patients with OHCA.


Assuntos
Reanimação Cardiopulmonar , Prestação Integrada de Cuidados de Saúde/organização & administração , Serviço Hospitalar de Emergência/organização & administração , Circulação Extracorpórea , Modelos Organizacionais , Parada Cardíaca Extra-Hospitalar/terapia , Radiografia Intervencionista , Tomografia Computadorizada por Raios X , Imagem Corporal Total , Reanimação Cardiopulmonar/instrumentação , Procedimentos Clínicos/organização & administração , Circulação Extracorpórea/instrumentação , Humanos , Parada Cardíaca Extra-Hospitalar/diagnóstico por imagem , Parada Cardíaca Extra-Hospitalar/fisiopatologia , Equipe de Assistência ao Paciente/organização & administração , Desenvolvimento de Programas , Radiografia Intervencionista/instrumentação , Fatores de Tempo , Tempo para o Tratamento/organização & administração , Tomografia Computadorizada por Raios X/instrumentação , Imagem Corporal Total/instrumentação , Fluxo de Trabalho
16.
Phys Med Biol ; 65(5): 055013, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31978910

RESUMO

Using Cherenkov radiation in positron emission tomography (PET) has the potential to improve the time of flight (TOF) resolution and reduce the cost of detectors. In previous studies promising TOF results were achieved when lead fluoride (PbF2) crystals were used instead of a scintillator. In this work, a whole-body PbF2 Cherenkov TOF-PET scanner was simulated and optimized. Different configurations of the PbF2 crystals and their surface treatment were considered. Also evaluated was the influence of the crystal-photodetector coupling and of the detection efficiency of the photodetectors. Of special interest is a whole-body PbF2 Cherenkov TOF-PET scanner with a multi-layer detector, which improves the time resolution and reduces the parallax error, without compromising the detection efficiency. Images of a phantom were reconstructed for different configurations of the simulated whole-body PbF2 Cherenkov TOF-PET scanner and the quality of images was compared to that of a whole-body TOF-PET scanner with standard LSO scintillators. The TOF resolution of the whole-body PbF2 Cherenkov TOF-PET scanner with a multi-layer detector was 143 ps FWHM, out of which the fundamental limitation due to light production and transportation was only 22 ps FWHM.


Assuntos
Simulação por Computador , Método de Monte Carlo , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Tomografia por Emissão de Pósitrons/métodos , Imagem Corporal Total/métodos , Humanos , Imagem Corporal Total/instrumentação
17.
Proc Natl Acad Sci U S A ; 117(5): 2265-2267, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964808

RESUMO

A 194-cm-long total-body positron emission tomography/computed tomography (PET/CT) scanner (uEXPLORER), has been constructed to offer a transformative platform for human radiotracer imaging in clinical research and healthcare. Its total-body coverage and exceptional sensitivity provide opportunities for innovative studies of physiology, biochemistry, and pharmacology. The objective of this study is to develop a method to perform ultrahigh (100 ms) temporal resolution dynamic PET imaging by combining advanced dynamic image reconstruction paradigms with the uEXPLORER scanner. We aim to capture the fast dynamics of initial radiotracer distribution, as well as cardiac motion, in the human body. The results show that we can visualize radiotracer transport in the body on timescales of 100 ms and obtain motion-frozen images with superior image quality compared to conventional methods. The proposed method has applications in studying fast tracer dynamics, such as blood flow and the dynamic response to neural modulation, as well as performing real-time motion tracking (e.g., cardiac and respiratory motion, and gross body motion) without any external monitoring device (e.g., electrocardiogram, breathing belt, or optical trackers).


Assuntos
Imagem Molecular/instrumentação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/instrumentação , Imagem Corporal Total/instrumentação , Fluordesoxiglucose F18/administração & dosagem , Fluordesoxiglucose F18/farmacocinética , Humanos , Processamento de Imagem Assistida por Computador , Movimento (Física) , Traçadores Radioativos
18.
J Nucl Med ; 61(1): 144-151, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562224

RESUMO

The PennPET Explorer, a prototype whole-body imager currently operating with a 64-cm axial field of view, can image the major body organs simultaneously with higher sensitivity than that of commercial devices. We report here the initial human imaging studies on the PennPET Explorer, with each study designed to test specific capabilities of the device. Methods: Healthy subjects were imaged with FDG on the PennPET Explorer. Subsequently, clinical subjects with disease were imaged with 18F-FDG and 68Ga-DOTATATE, and research subjects were imaged with experimental radiotracers. Results: We demonstrated the ability to scan for a shorter duration or, alternatively, with less activity, without a compromise in image quality. Delayed images, up to 10 half-lives with 18F-FDG, revealed biologic insight and supported the ability to track biologic processes over time. In a clinical subject, the PennPET Explorer better delineated the extent of 18F-FDG-avid disease. In a second clinical study with 68Ga-DOTATATE, we demonstrated comparable diagnostic image quality between the PennPET scan and the clinical scan, but with one fifth the activity. Dynamic imaging studies captured relatively noise-free input functions for kinetic modeling approaches. Additional studies with experimental research radiotracers illustrated the benefits from the combination of large axial coverage and high sensitivity. Conclusion: These studies provided a proof of concept for many proposed applications for a PET scanner with a long axial field of view.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Imagem Corporal Total/métodos , Adulto , Idoso , Feminino , Fluordesoxiglucose F18/química , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador/métodos , Cinética , Masculino , Pessoa de Meia-Idade , Compostos Organometálicos/química , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Imagem Corporal Total/instrumentação
19.
Magn Reson Imaging ; 65: 75-82, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676265

RESUMO

Passive reduction of gradient coil (GC) cylinder vibration depends critically on a thorough knowledge of how all pertinent physical parameters affect the vibration response. In this paper, we employ a recently introduced linear elastodynamic Z-coil model to study how the displacement response of a whole-body GC cylinder (subject to exclusive excitation of its Z-coil windings) is affected by independent regularized variations in its: (i) length; (ii) radial thickness; (iii) mass density; (iv) Poisson ratio; and (v) Young modulus (stiffness). The results exhibit a rich variety of behaviors at different excitation frequencies, and in the parameter ranges of interest, the displacement response is found to be particularly sensitive to variations in cylinder geometry and mass density. The results also show that, with the exception of the stiffness, there are no optimal ranges of regularized values of the considered parameters that will reduce the displacement (and hence the vibration) of a GC cylinder at all frequencies of interest. For typical GC cylinder geometries and densities, and under the condition that only the Z-coil windings are excited, the model predicts that increasing the cylinder stiffness above 100 GPa will reduce vibration at all frequencies below 2000 Hz.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Imagem Corporal Total/instrumentação , Módulo de Elasticidade , Desenho de Equipamento , Modelos Lineares , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA