Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.238
Filtrar
2.
Front Immunol ; 15: 1400247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983864

RESUMO

Early diagnosis and effective management of Primary immunodeficiency diseases (PIDs), particularly severe combined immunodeficiency (SCID), play a crucial role in minimizing associated morbidities and mortality. Newborn screening (NBS) serves as a valuable tool in facilitating these efforts. Timely detection and diagnosis are essential for swiftly implementing isolation measures and ensuring prompt referral for definitive treatment, such as allogeneic hematopoietic stem cell transplantation. The utilization of comprehensive protocols and screening assays, including T cell receptor excision circles (TREC) and kappa-deleting recombination excision circles (KREC), is essential in facilitating early diagnosis of SCID and other PIDs, but their successful application requires clinical expertise and proper implementation strategy. Unfortunately, a notable challenge arises from insufficient funding for the treatment of PIDs. To address these issues, a collaborative approach is imperative, involving advancements in technology, a well-functioning healthcare system, and active engagement from stakeholders. The integration of these elements is essential for overcoming the existing challenges in NBS for PIDs. By fostering synergy between technology providers, healthcare professionals, and governmental stakeholders, we can enhance the efficiency and effectiveness of early diagnosis and intervention, ultimately improving outcomes for individuals with PIDs.


Assuntos
Estudos de Viabilidade , Triagem Neonatal , Imunodeficiência Combinada Severa , Humanos , Triagem Neonatal/métodos , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/terapia , Recém-Nascido , Malásia , Países em Desenvolvimento , Diagnóstico Precoce
3.
Pediatr Allergy Immunol ; 35(6): e14171, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860449

RESUMO

BACKGROUND: Artemis deficiency is an autosomal recessive disorder characterized by a combined immunodeficiency with increased cellular radiosensitivity. In this review, the clinical and genetic characteristics of 15 patients with DCLRE1C variants are presented. METHODS: The demographic, clinical, immunologic, and genetic characteristics of patients with confirmed DCLRE1C variants diagnosed between 2013 and 2023 were collected retrospectively. Three patients were evaluated for radiosensitivity by the Comet assay, compared with age- and sex-matched healthy control. RESULTS: Seven patients who had severe infections in the first 6 months of life were diagnosed with T-B-NK+ SCID (severe combined immunodeficiency). Among them, four individuals underwent transplantation, and one of those died due to post-transplant complications in early life. Eight patients had hypomorphic variants. Half of them were awaiting a suitable donor, while the other half had already undergone transplantation. The majority of patients were born into a consanguineous family (93.3%). Most patients had recurrent sinopulmonary infections (73.3%), and one patient had no other infection than an acute respiratory infection before diagnosis. Two patients (13.3%) had autoimmunity in the form of autoimmune hemolytic anemia. Growth retardation was observed in only one patient (6.6%), and no malignancy was detected in the surviving 11 patients during the median (IQR) of 21.5 (12-45) months of follow-up. Three patients who had novel variants exhibited increased radiosensitivity and compromised DNA repair, providing a potential vulnerability to malignant transformation. CONCLUSION: Early diagnosis, radiation avoidance, and careful preparation for transplantation contribute to minimizing complications, enhancing life expectancy, and improving the patient's quality of life.


Assuntos
Proteínas de Ligação a DNA , Tolerância a Radiação , Imunodeficiência Combinada Severa , Humanos , Tolerância a Radiação/genética , Masculino , Feminino , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Lactente , Proteínas de Ligação a DNA/genética , Pré-Escolar , Estudos Retrospectivos , Endonucleases/genética , Proteínas Nucleares/genética , Criança , Estudos de Coortes
4.
J Clin Immunol ; 44(4): 98, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598033

RESUMO

Biallelic null or hypomorphic variants in JAK3 cause SCID and less frequently Omenn syndrome. We investigated homozygous hypomorphic JAK3 mutations in two patients, and expression and function of a novel JAK3R431P variant in Omenn syndrome. Immunophenotyping of PBMC from the patient with the novel JAK3R431P variant was undertaken, by flow cytometry and Phosflow after stimulation with IL-2, IL-7, and IL-15. JAK3 expression was investigated by Western blotting. We report two patients with homozygous hypomorphic JAK3 variants and clinical features of Omenn syndrome. One patient had a previously described JAK3R775H variant, and the second had a novel JAK3R431P variant. One patient with a novel JAK3R431P variant had normal expression of JAK3 in immortalised EBV-LCL cells but reduced phosphorylation of STAT5 after stimulation with IL-2, IL-7, and IL-15 consistent with impaired kinase activity. These results suggest the JAK3R431P variant to be hypomorphic. Both patients are alive and well after allogeneic haematopoietic stem cell transplantation. They have full donor chimerism, restitution of thymopoiesis and development of appropriate antibody responses following vaccination. We expand the phenotype of hypomorphic JAK3 deficiency and demonstrate the importance of functional testing of novel variants in disease-causing genes.


Assuntos
Janus Quinase 3 , Imunodeficiência Combinada Severa , Humanos , Lactente , Interleucina-15 , Interleucina-2 , Interleucina-7 , Janus Quinase 3/genética , Leucócitos Mononucleares , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia
5.
J Clin Immunol ; 44(5): 107, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676811

RESUMO

PURPOSE: Patients with adenosine deaminase 1 deficient severe combined immunodeficiency (ADA-SCID) are initially treated with enzyme replacement therapy (ERT) with polyethylene glycol-modified (PEGylated) ADA while awaiting definitive treatment with hematopoietic stem cell transplant (HSCT) or gene therapy. Beginning in 1990, ERT was performed with PEGylated bovine intestinal ADA (ADAGEN®). In 2019, a PEGylated recombinant bovine ADA (Revcovi®) replaced ADAGEN following studies in older patients previously treated with ADAGEN for many years. There are limited longitudinal data on ERT-naïve newborns treated with Revcovi. METHODS: We report our clinical experience with Revcovi as initial bridge therapy in three newly diagnosed infants with ADA-SCID, along with comprehensive biochemical and immunologic data. RESULTS: Revcovi was initiated at twice weekly dosing (0.2 mg/kg intramuscularly), and monitored by following plasma ADA activity and the concentration of total deoxyadenosine nucleotides (dAXP) in erythrocytes. All patients rapidly achieved a biochemically effective level of plasma ADA activity, and red cell dAXP were eliminated within 2-3 months. Two patients reconstituted B-cells and NK-cells within the first month of ERT, followed by naive T-cells one month later. The third patient reconstituted all lymphocyte subsets within the first month of ERT. One patient experienced declining lymphocyte counts with improvement following Revcovi dose escalation. Two patients developed early, self-resolving thrombocytosis, but no thromboembolic events occurred. CONCLUSION: Revcovi was safe and effective as initial therapy to restore immune function in these newly diagnosed infants with ADA-SCID, however, time course and degree of reconstitution varied. Revcovi dose may need to be optimized based on immune reconstitution, clinical status, and biochemical data.


Assuntos
Adenosina Desaminase , Agamaglobulinemia , Terapia de Reposição de Enzimas , Imunodeficiência Combinada Severa , Animais , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Adenosina Desaminase/deficiência , Adenosina Desaminase/genética , Agamaglobulinemia/terapia , Reconstituição Imune , Proteínas Recombinantes/uso terapêutico , Imunodeficiência Combinada Severa/terapia , Resultado do Tratamento
6.
Nat Commun ; 15(1): 3662, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688902

RESUMO

Hematopoietic stem cell gene therapy (GT) using a γ-retroviral vector (γ-RV) is an effective treatment for Severe Combined Immunodeficiency due to Adenosine Deaminase deficiency. Here, we describe a case of GT-related T-cell acute lymphoblastic leukemia (T-ALL) that developed 4.7 years after treatment. The patient underwent chemotherapy and haploidentical transplantation and is currently in remission. Blast cells contain a single vector insertion activating the LIM-only protein 2 (LMO2) proto-oncogene, confirmed by physical interaction, and low Adenosine Deaminase (ADA) activity resulting from methylation of viral promoter. The insertion is detected years before T-ALL in multiple lineages, suggesting that further hits occurred in a thymic progenitor. Blast cells contain known and novel somatic mutations as well as germline mutations which may have contributed to transformation. Before T-ALL onset, the insertion profile is similar to those of other ADA-deficient patients. The limited incidence of vector-related adverse events in ADA-deficiency compared to other γ-RV GT trials could be explained by differences in transgenes, background disease and patient's specific factors.


Assuntos
Adenosina Desaminase , Agamaglobulinemia , Terapia Genética , Vetores Genéticos , Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proto-Oncogene Mas , Imunodeficiência Combinada Severa , Humanos , Adenosina Desaminase/deficiência , Adenosina Desaminase/genética , Terapia Genética/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Imunodeficiência Combinada Severa/terapia , Imunodeficiência Combinada Severa/genética , Vetores Genéticos/genética , Agamaglobulinemia/terapia , Agamaglobulinemia/genética , Masculino , Retroviridae/genética
7.
Clin Rev Allergy Immunol ; 66(2): 192-209, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38689103

RESUMO

This study aims to perform an extensive review of the literature that evaluates various factors that affect the survival rates of patients with severe combined immunodeficiency (SCID) after hematopoietic stem cell transplantation (HSCT) in developed and developing countries. An extensive search of the literature was made in four different databases (PubMed, Embase, Scopus, and Web of Science). The search was carried out in December 2022 and updated in July 2023, and the terms such as "hematopoietic stem cell transplantation," "bone marrow transplant," "mortality," "opportunistic infections," and "survival" associated with "severe combined immunodeficiency" were sought based on the MeSH terms. The language of the articles was "English," and only articles published from 2000 onwards were selected. Twenty-three articles fulfilled the inclusion criteria for review and data extraction. The data collected corroborates that early HSCT, but above all, HSCT in patients without active infections, is related to better overall survival. The universal implementation of newborn screening for SCID will be a fundamental pillar for enabling most transplants to be carried out in this "ideal scenario" at an early age and free from infection. HSCT with an HLA-identical sibling donor is also associated with better survival rates, but this is the least common scenario. For this reason, transplantation with matched unrelated donors (MUD) and mismatched related donors (mMRD/Haploidentical) appear as alternatives. The results obtained with MUD are improving and show survival rates similar to those of MSD, as well as they do not require manipulation of the graft with expensive technologies. However, they still have high rates of complications after HSCT. Transplants with mMRD/Haplo are performed just in a few large centers because of the high costs of the technology to perform CD3/CD19 depletion and TCRαß/CD19 depletion or CD34 + selection techniques in vitro. The new possibility of in vivo T cell depletion using post-transplant cyclophosphamide could also be a viable alternative for performing mMRD transplants in centers that do not have this technology, especially in developing countries.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Imunodeficiência Combinada Severa , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Imunodeficiência Combinada Severa/terapia , Imunodeficiência Combinada Severa/mortalidade , Imunodeficiência Combinada Severa/diagnóstico , Prognóstico , Recém-Nascido , Lactente , Condicionamento Pré-Transplante/métodos
8.
Zhonghua Er Ke Za Zhi ; 62(5): 444-450, 2024 May 02.
Artigo em Chinês | MEDLINE | ID: mdl-38623012

RESUMO

Objective: To evaluate the efficacy of allogeneic hematopoietic stem cell transplantation for the treatment of combined immunodeficiency (CID) and explore prognostic risk factors. Methods: In this retrospective cohort study, clinical characteristics, laboratory tests and prognosis of 73 CID children who underwent allogeneic hematopoietic stem cell transplantation from February 2014 to April 2022 in the Children's Hospital of Fudan University were analyzed. Based on the subtypes of diseases, all patients were divided into severe combined immunodeficiency disease (SCID) group and other CID group. Based on the types of donors, all patients were divided into matched sibling donor group, matched unrelated donor group, unrelated cord blood group, and haploidentical donor group. Kaplan-Meier method and Log-Rank test were used to analyze the survival data. Cox regression was used to analyze prognostic factors. Results: Among the 73 patients, there were 61 (84%) males and 12 (16%) females. Fifty-five (75%) patients were SCID, and 18 (25%) patients were other CID. Donor source included 2 (3%) matched sibling donors (MSD), 3 (4%) matched unrelated donors (MUD), 64 (88%) unrelated cord blood (UCB), and 4 (5%) haploidentical donors. The age at transplant was 10.7 (5.9, 27.5) months, and the follow-up time was 36.2 (2.5, 62.9) months. The 3-year overall survival rate of 73 patients with CID was (67±6) %. No significant difference was found in the 3-year overall survival rates between patients with SCID (55 cases) and other CID (18 cases) ((64±7) % vs. (78±10) %, χ2=1.31, P=0.252). And no significant difference was found in the 3-year overall survival rates among patients who received MSD or MUD (5 cases), UCB (64 cases), and haploidentical donor (4 cases) transplant (100% vs. (66±6)% vs. (50±25) %, χ2=2.30, P=0.317). Cox regression analysis showed that the medical history of sepsis (HR=2.55, 95%CI 1.05-6.20, P=0.039) and hypoalbuminemia at transplant (HR=2.96, 95%CI 1.14-7.68, P=0.026) were independent risk factors for the prognosis of allogeneic hematopoietic stem cell transplantation in pediatric patients with CID. Conclusions: Allogeneic hematopoietic stem cell transplantation is an effective treatment for CID. The medical history of sepsis and hypoalbuminemia at transplant were risk factors for prognosis. Enhancing infection prevention and nutritional intervention before transplant can improve patient prognosis.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Imunodeficiência Combinada Severa , Transplante Homólogo , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Estudos Retrospectivos , Masculino , Feminino , Lactente , Prognóstico , Imunodeficiência Combinada Severa/terapia , Imunodeficiência Combinada Severa/mortalidade , Pré-Escolar , Criança , Fatores de Risco , Taxa de Sobrevida , Doadores não Relacionados , Resultado do Tratamento , Irmãos , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/mortalidade , Estimativa de Kaplan-Meier , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos
9.
J Clin Immunol ; 44(3): 79, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457046

RESUMO

Congenital athymia is a rare T-lymphocytopaenic condition, which requires early corrective treatment with thymus transplantation (TT). Athymic patients are increasingly identified through newborn screening (NBS) for severe combined immunodeficiency (SCID). Lack of relatable information resources contributes to challenging patient and family journeys during the diagnostic period following abnormal NBS results. Patient and Public Involvement and Engagement (PPIE) activities, including parental involvement in paediatrics, are valuable initiatives to improve clinical communication and parental information strategies. Parents of infants with suspected athymia were therefore invited to discuss the information they received during the diagnostic period following NBS with the aim to identify parental information needs and targeted strategies to address these adequately. Parents reported that athymia was not considered with them as a possible differential diagnosis until weeks after initial NBS results. Whilst appropriate clinical information about athymia and TT was available upon referral to specialist immunology services, improved access to easy-to-understand information from reliable sources, including from clinical nurse specialists and peer support systems, remained desirable. A roadmap concept, with written or digital information, addressing parental needs in real time during a potentially complex diagnostic journey, was proposed and is transferrable to other inborn errors of immunity (IEI) and rare diseases. This PPIE activity provides insight into the information needs of parents of infants with suspected athymia who are identified through SCID NBS, and highlights the role for PPIE in promoting patient- and family-centred strategies to improve IEI care.


Assuntos
Síndromes de Imunodeficiência , Imunodeficiência Combinada Severa , Timo/anormalidades , Lactente , Recém-Nascido , Humanos , Criança , Triagem Neonatal , Pais , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/terapia
10.
Nat Med ; 30(2): 488-497, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355973

RESUMO

Adenosine deaminase (ADA) deficiency leads to severe combined immunodeficiency (SCID). Previous clinical trials showed that autologous CD34+ cell gene therapy (GT) following busulfan reduced-intensity conditioning is a promising therapeutic approach for ADA-SCID, but long-term data are warranted. Here we report an analysis on long-term safety and efficacy data of 43 patients with ADA-SCID who received retroviral ex vivo bone marrow-derived hematopoietic stem cell GT. Twenty-two individuals (median follow-up 15.4 years) were treated in the context of clinical development or named patient program. Nineteen patients were treated post-marketing authorization (median follow-up 3.2 years), and two additional patients received mobilized peripheral blood CD34+ cell GT. At data cutoff, all 43 patients were alive, with a median follow-up of 5.0 years (interquartile range 2.4-15.4) and 2 years intervention-free survival (no need for long-term enzyme replacement therapy or allogeneic hematopoietic stem cell transplantation) of 88% (95% confidence interval 78.7-98.4%). Most adverse events/reactions were related to disease background, busulfan conditioning or immune reconstitution; the safety profile of the real world experience was in line with premarketing cohort. One patient from the named patient program developed a T cell leukemia related to treatment 4.7 years after GT and is currently in remission. Long-term persistence of multilineage gene-corrected cells, metabolic detoxification, immune reconstitution and decreased infection rates were observed. Estimated mixed-effects models showed that higher dose of CD34+ cells infused and younger age at GT affected positively the plateau of CD3+ transduced cells, lymphocytes and CD4+ CD45RA+ naive T cells, whereas the cell dose positively influenced the final plateau of CD15+ transduced cells. These long-term data suggest that the risk-benefit of GT in ADA remains favorable and warrant for continuing long-term safety monitoring. Clinical trial registration: NCT00598481 , NCT03478670 .


Assuntos
Agamaglobulinemia , Transplante de Células-Tronco Hematopoéticas , Imunodeficiência Combinada Severa , Humanos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Adenosina Desaminase/genética , Adenosina Desaminase/uso terapêutico , Bussulfano/efeitos adversos , Terapia Genética , Retroviridae/genética
11.
BMC Pediatr ; 24(1): 116, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350907

RESUMO

BACKGROUND: Severe combined immunodeficiencies (SCIDs) are hereditary disorders characterized by impaired T and B cell function, resulting in significant immune system dysfunction. Recombination-activating gene (RAG) mutations account for a substantial proportion of SCID cases. Here, we present two sibling cases of SCID caused by a novel RAG2 gene mutation. CASE PRESENTATION: The index case was an 8-year-old boy who had a history of recurring infections. After a comprehensive immunological workup, the initial diagnosis of agammaglobulinemia was revised to combined immunodeficiency (CID). The patient underwent hematopoietic stem cell transplantation (HSCT) but succumbed to cytomegalovirus (CMV) infection. His brother, a 4-month-old boy, presented with CMV chorioretinitis. Leaky SCID was diagnosed based on genetic tests and immunological findings. The patient received appropriate treatment and was considered for HSCT. Both siblings had a homozygous RAG2 gene variant, with the first case classified as a variant of uncertain significance (VUS). The presence of the same mutation in the second brother, and the clinical phenotype, supports considering the mutation as likely pathogenic. CONCLUSIONS: This case report highlights a novel RAG2 gene mutation associated with CID. The classification of a VUS may evolve with accumulating evidence, and additional studies are warranted to establish its pathogenicity. Proper communication between genetic counselors and immunologists, accurate documentation of patient information, increased public awareness, and precise utilization of genetic techniques are essential for optimal patient management.


Assuntos
Infecções por Citomegalovirus , Imunodeficiência Combinada Severa , Masculino , Humanos , Lactente , Criança , Irmãos , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Mutação , Linfócitos B , Infecções por Citomegalovirus/diagnóstico , Infecções por Citomegalovirus/complicações , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética
12.
Hum Gene Ther ; 35(7-8): 269-283, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38251667

RESUMO

Interleukin 7 Receptor alpha Severe Combined Immunodeficiency (IL7R-SCID) is a life-threatening disorder caused by homozygous mutations in the IL7RA gene. Defective IL7R expression in humans hampers T cell precursors' proliferation and differentiation during lymphopoiesis resulting in the absence of T cells in newborns, who succumb to severe infections and death early after birth. Previous attempts to tackle IL7R-SCID by viral gene therapy have shown that unregulated IL7R expression predisposes to leukemia, suggesting the application of targeted gene editing to insert a correct copy of the IL7RA gene in its genomic locus and mediate its physiological expression as a more feasible therapeutic approach. To this aim, we have first developed a CRISPR/Cas9-based IL7R-SCID disease modeling system that recapitulates the disease phenotype in primary human T cells and hematopoietic stem and progenitor cells (HSPCs). Then, we have designed a knockin strategy that targets IL7RA exon 1 and introduces through homology-directed repair a corrective, promoterless IL7RA cDNA followed by a reporter cassette through AAV6 transduction. Targeted integration of the corrective cassette in primary T cells restored IL7R expression and rescued functional downstream IL7R signaling. When applied to HSPCs further induced to differentiate into T cells in an Artificial Thymic Organoid system, our gene editing strategy overcame the T cell developmental block observed in IL7R-SCID patients, while promoting full maturation of T cells with physiological and developmentally regulated IL7R expression. Finally, genotoxicity assessment of the CRISPR/Cas9 platform in HSPCs using biased and unbiased technologies confirmed the safety of the strategy, paving the way for a new, efficient, and safe therapeutic option for IL7R-SCID patients.


Assuntos
Imunodeficiência Combinada Severa , Recém-Nascido , Humanos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Linfócitos T/metabolismo , Sistemas CRISPR-Cas , Células-Tronco Hematopoéticas/metabolismo , Edição de Genes/métodos , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/metabolismo
13.
J Clin Immunol ; 44(1): 39, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165471

RESUMO

Newborn screening (NBS) for severe combined immunodeficiency (SCID) has been introduced in various countries with the aim of reducing morbidity and mortality. However, studies analyzing outcomes before and after the implementation of NBS programs remain limited. This study sought to compare the outcomes of SCID patients identified through Switzerland's national SCID NBS program, introduced in January 2019, with those of a historical cohort diagnosed between 2007 and 2019. The study included seven patients (32%) identified through NBS, and 15 (68%) born before NBS implementation and diagnosed based on clinical signs. Children in the NBS group were younger at diagnosis (median age 9 days vs 9 months, P = .002) and at hematopoietic stem cell transplantation (HSCT, median age 5 months vs 11 months, P = .003) compared to the clinical group. The NBS group had a lower incidence of infections before HSCT (29% vs 93%, P = .004). Although not statistically significant, the overall survival rate on last follow-up was higher in the NBS group (86% vs 67%, P = .62). Importantly, patients with active infections undergoing HSCT had a significantly lower overall survival probability compared to those without (P = .01). In conclusion, the introduction of NBS in Switzerland has led to earlier and often asymptomatic diagnosis of affected children, enabling timely intervention, infection prevention, and prompt treatment. These factors have contributed to higher survival rates in the NBS group. These findings underscore the critical importance of NBS for SCID, offering potential life-saving benefits through early detection and intervention.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Imunodeficiência Combinada Severa , Criança , Recém-Nascido , Humanos , Lactente , Suíça/epidemiologia , Triagem Neonatal , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/epidemiologia , Imunodeficiência Combinada Severa/terapia , Morbidade
14.
J Allergy Clin Immunol Pract ; 12(5): 1139-1149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38246560

RESUMO

During the past 20 years, gene editing has emerged as a novel form of gene therapy. Since the publication of the first potentially therapeutic gene editing platform for genetic disorders, increasingly sophisticated editing technologies have been developed. As with viral vector-mediated gene addition, inborn errors of immunity are excellent candidate diseases for a corrective autologous hematopoietic stem cell gene editing strategy. Research on gene editing for inborn errors of immunity is still entirely preclinical, with no trials yet underway. However, with editing techniques maturing, scientists are investigating this novel form of gene therapy in context of an increasing number of inborn errors of immunity. Here, we present an overview of these studies and the recent progress moving these technologies closer to clinical benefit.


Assuntos
Edição de Genes , Terapia Genética , Humanos , Edição de Genes/métodos , Terapia Genética/métodos , Animais , Sistemas CRISPR-Cas , Agamaglobulinemia/genética , Agamaglobulinemia/terapia , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Imunodeficiência Combinada Severa/imunologia , Transplante de Células-Tronco Hematopoéticas
15.
Immunol Rev ; 322(1): 138-147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287514

RESUMO

Severe combined immunodeficiency (SCID) is a rare and life-threatening genetic disorder that severely impairs the immune system's ability to defend the body against infections. Often referred to as the "bubble boy" disease, SCID gained widespread recognition due to the case of David Vetter, a young boy who lived in a sterile plastic bubble to protect him from germs. SCID is typically present at birth, and it results from genetic mutations that affect the development and function of immune cells, particularly T cells and B cells. These immune cells are essential for identifying and fighting off infections caused by viruses, bacteria, and fungi. In SCID patients, the immune system is virtually non-existent, leaving them highly susceptible to recurrent, severe infections. There are several forms of SCID, with varying degrees of severity, but all share common features. Newborns with SCID often exhibit symptoms such as chronic diarrhea, thrush, skin rashes, and persistent infections that do not respond to standard treatments. Without prompt diagnosis and intervention, SCID can lead to life-threatening complications and a high risk of mortality. There are over 20 possible affected genes. Treatment options for SCID primarily involve immune reconstitution, with the most well-known approach being hematopoietic stem cell transplantation (HSCT). Alternatively, gene therapy is also available for some forms of SCID. Once treated successfully, SCID patients can lead relatively normal lives, but they may still require vigilant infection control measures and lifelong medical follow-up to manage potential complications. In conclusion, severe combined immunodeficiency is a rare but life-threatening genetic disorder that severely compromises the immune system's function, rendering affected individuals highly vulnerable to infections. Early diagnosis and appropriate treatment are fundamental. With this respect, newborn screening is progressively and dramatically improving the prognosis of SCID.


Assuntos
Agamaglobulinemia , Transplante de Células-Tronco Hematopoéticas , Imunodeficiência Combinada Severa , Masculino , Recém-Nascido , Humanos , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Linfócitos T , Diagnóstico Precoce , Mutação , Transplante de Células-Tronco Hematopoéticas/métodos
16.
J Allergy Clin Immunol ; 153(1): 330-334, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678573

RESUMO

BACKGROUND: Newborn screening (NBS) programs for severe combined immunodeficiency facilitate early diagnosis of severe combined immunodeficiency and promote early treatment with hematopoietic stem cell transplantation, resulting in improved clinical outcomes. Infants with congenital athymia are also identified through NBS because of severe T-cell lymphopenia. With the expanding introduction of NBS programs, referrals of athymic patients for treatment with thymus transplantation have recently increased at Great Ormond Street Hospital (GOSH) (London, United Kingdom). OBJECTIVE: We studied the impact of NBS on timely diagnosis and treatment of athymic infants with thymus transplantation at GOSH. METHODS: We compared age at referral and complications between athymic infants diagnosed after clinical presentation (n = 25) and infants identified through NBS (n = 19) who were referred for thymus transplantation at GOSH between October 2019 and February 2023. We assessed whether age at time of treatment influences thymic output at 6 and 12 months after transplantation. RESULTS: The infants referred after identification through NBS were significantly younger and had fewer complications, in particular fewer infections. All deaths occurred in the group of those who did not undergo NBS, including 6 patients before and 2 after thymus transplantation because of preexisting infections. In the absence of significant comorbidities or diagnostic uncertainties, timely treatment was achieved more frequently after NBS. Treatment when younger than age 4 months was associated with higher thymic output at 6 and 12 months after transplantation. CONCLUSION: NBS contributes to earlier recognition of congenital athymia, promoting referral of athymic patients for thymus transplantation before they acquire infections or other complications and facilitating treatment at a younger age, thus playing an important role in improving their outcomes.


Assuntos
Síndromes de Imunodeficiência , Imunodeficiência Combinada Severa , Lactente , Recém-Nascido , Humanos , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/terapia , Triagem Neonatal , Timo
17.
Immunol Rev ; 322(1): 148-156, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38033164

RESUMO

Severe combined immune deficiency due to adenosine deaminase deficiency (ADA SCID) is an inborn error of immunity with pan-lymphopenia, due to accumulated cytotoxic adenine metabolites. ADA SCID has been treated using gene therapy with a normal human ADA gene added to autologous hematopoietic stem cells (HSC) for over 30 years. Iterative improvements in vector design, HSC processing methods, and clinical HSC transplant procedures have led nearly all ADA SCID gene therapy patients to achieve consistently beneficial immune restoration with stable engraftment of ADA gene-corrected HSC over the duration of observation (as long as 20 years). One gene therapy for ADA SCID is approved by the European Medicines Agency (EMA) in the European Union (EU) and another is being advanced to licensure in the U.S. and U.K. Despite the clear-cut benefits and safety of this curative gene and cell therapy, it remains challenging to achieve sustained availability and access, especially for rare disorders like ADA SCID.


Assuntos
Agamaglobulinemia , Transplante de Células-Tronco Hematopoéticas , Imunodeficiência Combinada Severa , Humanos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Adenosina Desaminase/genética , Terapia Genética/métodos
18.
Blood Adv ; 8(7): 1820-1833, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38096800

RESUMO

ABSTRACT: Recombination-activating genes (RAG1 and RAG2) are critical for lymphoid cell development and function by initiating the variable (V), diversity (D), and joining (J) (V(D)J)-recombination process to generate polyclonal lymphocytes with broad antigen specificity. The clinical manifestations of defective RAG1/2 genes range from immune dysregulation to severe combined immunodeficiencies (SCIDs), causing life-threatening infections and death early in life without hematopoietic cell transplantation (HCT). Despite improvements, haploidentical HCT without myeloablative conditioning carries a high risk of graft failure and incomplete immune reconstitution. The RAG complex is only expressed during the G0-G1 phase of the cell cycle in the early stages of T- and B-cell development, underscoring that a direct gene correction might capture the precise temporal expression of the endogenous gene. Here, we report a feasibility study using the CRISPR/Cas9-based "universal gene-correction" approach for the RAG2 locus in human hematopoietic stem/progenitor cells (HSPCs) from healthy donors and RAG2-SCID patient. V(D)J-recombinase activity was restored after gene correction of RAG2-SCID-derived HSPCs, resulting in the development of T-cell receptor (TCR) αß and γδ CD3+ cells and single-positive CD4+ and CD8+ lymphocytes. TCR repertoire analysis indicated a normal distribution of CDR3 length and preserved usage of the distal TRAV genes. We confirmed the in vivo rescue of B-cell development with normal immunoglobulin M surface expression and a significant decrease in CD56bright natural killer cells. Together, we provide specificity, toxicity, and efficacy data supporting the development of a gene-correction therapy to benefit RAG2-deficient patients.


Assuntos
Proteínas de Homeodomínio , Imunodeficiência Combinada Severa , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , VDJ Recombinases
19.
BMC Med Genomics ; 16(1): 323, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082310

RESUMO

BACKGROUND: Severe combined immunodeficiency (SCID) is a group of fatal primary immunodeficiencies characterized by the severe impairment of T-cell differentiation. IL7R deficiency is a rare form of SCID that usually presents in the first months of life with severe and opportunistic infections, failure to thrive, and a high risk of mortality unless treated. Although recent improvements in early diagnosis have been achieved through newborn screening, few IL7R-related SCID patients had been reported in the Chinese population. CASE PRESENTATION: Here, we retrospectively analyzed a case of SCID in a 5-month-old girl with symptoms, including severe T-cell depletion, recurrent fever, oral ulcers, pneumonia, hepatosplenomegaly, bone marrow hemophagocytosis, and bacterial and viral infections. Whole-exome sequencing (WES), quantitative PCR (qPCR), and chromosome microarray analysis (CMA) were performed to identify the patient's genetic etiology. We identified a 268 kb deletion and a splicing variant, c.221 + 1G > A, in the proband. These two variants of IL7R were inherited from the father and mother. CONCLUSIONS: To our knowledge, this is the first report of whole IL7R gene deletion in combination with a pathogenic splicing variant in a patient with SCID. This deletion also expands the pathogenic variation spectrum of SCID caused by IL7R. The incorporation of exome-based copy number variant analysis makes WES a powerful molecular diagnostic technique for the clinical diagnosis of pediatric patients.


Assuntos
Imunodeficiência Combinada Severa , Viroses , Recém-Nascido , Feminino , Humanos , Criança , Lactente , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/terapia , Estudos Retrospectivos , Exoma , China , Subunidade alfa de Receptor de Interleucina-7/genética
20.
J Clin Immunol ; 44(1): 2, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099988

RESUMO

The DNA polymerase δ complex (PolD), comprising catalytic subunit POLD1 and accessory subunits POLD2, POLD3, and POLD4, is essential for DNA synthesis and is central to genome integrity. We identified, by whole exome sequencing, a homozygous missense mutation (c.1118A > C; p.K373T) in POLD3 in a patient with Omenn syndrome. The patient exhibited severely decreased numbers of naïve T cells associated with a restricted T-cell receptor repertoire and a defect in the early stages of TCR recombination. The patient received hematopoietic stem cell transplantation at age 6 months. He manifested progressive neurological regression and ultimately died at age 4 years. We performed molecular and functional analysis of the mutant POLD3 and assessed cell cycle progression as well as replication-associated DNA damage. Patient fibroblasts showed a marked defect in S-phase entry and an enhanced number of double-stranded DNA break-associated foci despite normal expression levels of PolD components. The cell cycle defect was rescued by transduction with WT POLD3. This study validates autosomal recessive POLD3 deficiency as a novel cause of profound T-cell deficiency and Omenn syndrome.


Assuntos
DNA Polimerase III , Imunodeficiência Combinada Severa , Masculino , Humanos , Lactente , Pré-Escolar , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Ciclo Celular , Dano ao DNA , Fibroblastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA