Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Virulence ; 15(1): 2383559, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39066684

RESUMO

A variety of animals can be infected by encephalomyocarditis virus (EMCV). EMCV is the established causative agent of myocarditis and encephalitis in some animals. EMCV causes high fatality in suckling and weaning piglets, making pigs the most susceptible domestic animal species. Importantly, EMCV has zoonotic potential to infect the human population. The ability of the pathogen to avoid and undermine the initial defence mechanism of the host contributes to its virulence and pathogenicity. A large body of literature highlights the intricate strategies employed by EMCV to escape the innate immune machinery to suit its "pathogenic needs." Here, we also provide examples on how EMCV interacts with certain host proteins to dampen the infection process. Hence, this concise review aims to summarize these findings in a compendium of decades of research on this exciting yet underappreciated topic.


Assuntos
Infecções por Cardiovirus , Vírus da Encefalomiocardite , Interações Hospedeiro-Patógeno , Imunidade Inata , Vírus da Encefalomiocardite/patogenicidade , Vírus da Encefalomiocardite/imunologia , Vírus da Encefalomiocardite/fisiologia , Animais , Infecções por Cardiovirus/virologia , Infecções por Cardiovirus/imunologia , Infecções por Cardiovirus/veterinária , Suínos , Humanos , Interações Hospedeiro-Patógeno/imunologia , Miocardite/virologia , Miocardite/imunologia , Virulência , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia
2.
Nat Commun ; 15(1): 4153, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755212

RESUMO

Viral myocarditis, an inflammatory disease of the heart, causes significant morbidity and mortality. Type I interferon (IFN)-mediated antiviral responses protect against myocarditis, but the mechanisms are poorly understood. We previously identified A Disintegrin And Metalloproteinase domain 9 (ADAM9) as an important factor in viral pathogenesis. ADAM9 is implicated in a range of human diseases, including inflammatory diseases; however, its role in viral infection is unknown. Here, we demonstrate that mice lacking ADAM9 are more susceptible to encephalomyocarditis virus (EMCV)-induced death and fail to mount a characteristic type I IFN response. This defect in type I IFN induction is specific to positive-sense, single-stranded RNA (+ ssRNA) viruses and involves melanoma differentiation-associated protein 5 (MDA5)-a key receptor for +ssRNA viruses. Mechanistically, ADAM9 binds to MDA5 and promotes its oligomerization and thereby downstream mitochondrial antiviral-signaling protein (MAVS) activation in response to EMCV RNA stimulation. Our findings identify a role for ADAM9 in the innate antiviral response, specifically MDA5-mediated IFN production, which protects against virus-induced cardiac damage, and provide a potential therapeutic target for treatment of viral myocarditis.


Assuntos
Proteínas ADAM , Infecções por Cardiovirus , Vírus da Encefalomiocardite , Imunidade Inata , Interferon Tipo I , Helicase IFIH1 Induzida por Interferon , Proteínas de Membrana , Miocardite , Animais , Camundongos , Proteínas ADAM/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Infecções por Cardiovirus/imunologia , Infecções por Cardiovirus/virologia , Vírus da Encefalomiocardite/imunologia , Células HEK293 , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocardite/imunologia , Miocardite/virologia , Transdução de Sinais/imunologia
3.
PLoS Pathog ; 20(4): e1012133, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662794

RESUMO

The discovery that extracellular vesicles (EVs) serve as carriers of virus particles calls for a reevaluation of the release strategies of non-enveloped viruses. Little is currently known about the molecular mechanisms that determine the release and composition of EVs produced by virus-infected cells, as well as conservation of these mechanisms among viruses. We previously described an important role for the Leader protein of the picornavirus encephalomyocarditis virus (EMCV) in the induction of virus-carrying EV subsets with distinct molecular and physical properties. EMCV L acts as a 'viral security protein' by suppressing host antiviral stress and type-I interferon (IFN) responses. Here, we tested the ability of functionally related picornavirus proteins of Theilers murine encephalitis virus (TMEV L), Saffold virus (SAFV L), and coxsackievirus B3 (CVB3 2Apro), to rescue EV and EV-enclosed virus release when introduced in Leader-deficient EMCV. We show that all viral security proteins tested were able to promote virus packaging in EVs, but that only the expression of EMCV L and CVB3 2Apro increased overall EV production. We provide evidence that one of the main antiviral pathways counteracted by this class of picornaviral proteins, i.e. the inhibition of PKR-mediated stress responses, affected EV and EV-enclosed virus release during infection. Moreover, we show that the enhanced capacity of the viral proteins EMCV L and CVB3 2Apro to promote EV-enclosed virus release is linked to their ability to simultaneously promote the activation of the stress kinase P38 MAPK. Taken together, we demonstrate that cellular stress pathways involving the kinases PKR and P38 are modulated by the activity of non-structural viral proteins to increase the release EV-enclosed viruses during picornavirus infections. These data shed new light on the molecular regulation of EV production in response to virus infection.


Assuntos
Vesículas Extracelulares , Picornaviridae , Proteínas Virais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/virologia , Humanos , Picornaviridae/metabolismo , Picornaviridae/fisiologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Animais , eIF-2 Quinase/metabolismo , Liberação de Vírus/fisiologia , Camundongos , Theilovirus/metabolismo , Infecções por Cardiovirus/virologia , Infecções por Cardiovirus/metabolismo , Vírus da Encefalomiocardite/metabolismo , Vírus da Encefalomiocardite/fisiologia
4.
Ecohealth ; 21(1): 112-122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38653850

RESUMO

The hazel dormouse (Muscardinus avellanarius) population in the UK continues to decline due to habitat loss, despite reintroductions of captive-bred individuals being conducted nationally for over 30 years. Disease surveillance of captive-bred and wild dormice is performed to identify novel and existing disease threats which could impact populations. In this study, we firstly investigated cause of death in seven hazel dormice found dead in England, through next-generation sequencing identifying a virus closely related to a wood mouse encephalomyocarditis virus-2 (EMCV-2). Subsequently, lung tissue samples from 35 out of 44 hazel dormice tested positive for EMCV-2 RNA using a reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and Sanger sequencing methods developed in this study. Formalin-fixed tissues available for nine hazel dormice which tested positive for EMCV-2 RNA were examined microscopically. Three cases showed moderate interstitial pneumonia with minimal to mild lymphoplasmacytic myocarditis, but no evidence of encephalitis. However, the presence of possible alternative causes of death in these cases means that the lesions cannot be definitively attributed to EMCV-2. Here, we report the first detection of EMCV-2 in hazel dormice and conclude that EMCV-2 is likely to be endemic in the hazel dormouse population in England and may be associated with clinical disease.


Assuntos
Infecções por Cardiovirus , Vírus da Encefalomiocardite , Animais , Vírus da Encefalomiocardite/isolamento & purificação , Vírus da Encefalomiocardite/genética , Infecções por Cardiovirus/epidemiologia , Infecções por Cardiovirus/virologia , Infecções por Cardiovirus/veterinária , Prevalência , Inglaterra/epidemiologia , RNA Viral/genética , Feminino , Masculino
5.
Vet Microbiol ; 264: 109304, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34922148

RESUMO

DEAD (Asp-Glu-Ala-Asp)-box RNA helicases (DDX) play important roles in viral infection, either as cytosolic viral nucleic acids sensors or as essential host factors for viral replication. In this study, we identified DDX56 as a positive regulator for encephalomyocarditis virus (EMCV) replication. EMCV infection promotes DDX56 expression via its viral proteins, VP3 and 3C. We showed that DDX56 overexpression promotes EMCV replication whereas its loss dampened EMCV replication. Consequently, knockdown of DDX56 increases type I interferon (IFN) expression during EMCV infection. We also showed that DDX56 interrupts IFN regulatory factor 3 (IRF3) phosphorylation and its nucleus translocation by directly targeting KPNA3 and KPNA4 in an EMCV-triggered MDA5 signaling activation cascade leading to the blockade of IFN-ß production. Overall, we showed that DDX56 is a novel negative regulator of EMCV-mediated IFN-ß responses and that DDX56 plays a critical role in EMCV replication. These findings reveal a novel strategy for EMCV to utilize a host factor to evade the host innate immune response and provide us new insight into the function of DDX56.


Assuntos
RNA Helicases DEAD-box , Vírus da Encefalomiocardite , Interações Hospedeiro-Patógeno , Fator Regulador 3 de Interferon , Interferon beta , Transporte Proteico , Replicação Viral , Infecções por Cardiovirus/fisiopatologia , Infecções por Cardiovirus/virologia , Linhagem Celular , RNA Helicases DEAD-box/metabolismo , Vírus da Encefalomiocardite/fisiologia , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Replicação Viral/genética
6.
Sci Rep ; 11(1): 23819, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893671

RESUMO

Neurotropic viruses target the brain and contribute to neurologic diseases. C-type lectin receptors (CLRs) are pattern recognition receptors that recognize carbohydrate structures on endogenous molecules and pathogens. The myeloid CLR dendritic cell immunoreceptor (DCIR) is expressed by antigen presenting cells and mediates inhibitory intracellular signalling. To investigate the effect of DCIR on neurotropic virus infection, mice were infected experimentally with Theiler's murine encephalomyelitis virus (TMEV). Brain tissue of TMEV-infected C57BL/6 mice and DCIR-/- mice were analysed by histology, immunohistochemistry and RT-qPCR, and spleen tissue by flow cytometry. To determine the impact of DCIR deficiency on T cell responses upon TMEV infection in vitro, antigen presentation assays were utilised. Genetic DCIR ablation in C57BL/6 mice was associated with an ameliorated hippocampal integrity together with reduced cerebral cytokine responses and reduced TMEV loads in the brain. Additionally, absence of DCIR favoured increased peripheral cytotoxic CD8+ T cell responses following TMEV infection. Co-culture experiments revealed that DCIR deficiency enhances the activation of antigen-specific CD8+ T cells by virus-exposed dendritic cells (DCs), indicated by increased release of interleukin-2 and interferon-γ. Results suggest that DCIR deficiency has a supportive influence on antiviral immune mechanisms, facilitating virus control in the brain and ameliorates neuropathology during acute neurotropic virus infection.


Assuntos
Infecções por Cardiovirus/virologia , Hipocampo/metabolismo , Hipocampo/virologia , Lectinas Tipo C/metabolismo , Theilovirus/fisiologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Biomarcadores , Biópsia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Hipocampo/patologia , Imuno-Histoquímica , Imunomodulação , Lectinas Tipo C/genética , Camundongos , Camundongos Knockout , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/virologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Carga Viral
7.
Nat Commun ; 12(1): 7166, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887415

RESUMO

Programmed -1 ribosomal frameshifting (PRF) in cardioviruses is activated by the 2A protein, a multi-functional virulence factor that also inhibits cap-dependent translational initiation. Here we present the X-ray crystal structure of 2A and show that it selectively binds to a pseudoknot-like conformation of the PRF stimulatory RNA element in the viral genome. Using optical tweezers, we demonstrate that 2A stabilises this RNA element, likely explaining the increase in PRF efficiency in the presence of 2A. Next, we demonstrate a strong interaction between 2A and the small ribosomal subunit and present a cryo-EM structure of 2A bound to initiated 70S ribosomes. Multiple copies of 2A bind to the 16S rRNA where they may compete for binding with initiation and elongation factors. Together, these results define the structural basis for RNA recognition by 2A, show how 2A-mediated stabilisation of an RNA pseudoknot promotes PRF, and reveal how 2A accumulation may shut down translation during virus infection.


Assuntos
Infecções por Cardiovirus/virologia , Vírus da Encefalomiocardite/metabolismo , Regulação Viral da Expressão Gênica , Proteínas Virais/química , Proteínas Virais/metabolismo , Infecções por Cardiovirus/genética , Infecções por Cardiovirus/metabolismo , Cristalografia por Raios X , Vírus da Encefalomiocardite/química , Vírus da Encefalomiocardite/genética , Mudança da Fase de Leitura do Gene Ribossômico , Humanos , Ribossomos/genética , Ribossomos/metabolismo , Proteínas Virais/genética
8.
BMC Vet Res ; 17(1): 318, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34587973

RESUMO

BACKGROUND: Encephalomyocarditis virus (EMCV) infection can cause reproductive failure in sows and acute myocarditis and sudden death in piglets. It has caused huge economic losses to the global pig industry and that is why it is necessary to develop effective new treatment compounds. Zedoary turmeric oil has been used for treating myocarditis. Curcumol extracted from the roots of curcuma is one of the main active ingredient of zedoary turmeric oil. The anti-EMCV activity of curcumol along with the molecular mechanisms involved with a focus on IFN-ß signaling pathway was investigated in this study. METHOD: 3-(4,5-dimethyithiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the maximum non-toxic concentration (MNTC), 50% cytotoxic concentration (CC50), maximum inhibition rate (MIR) and 50% effective concentration (EC50) against EMCV. Through EMCV load, the anti-viral effect of curcumol was quantitatively determined using real-time quantitative PCR (qPCR). The effect of curcumol on the expression of IFN-ß was investigated using real-time quantitative PCR and ELISA. Western blot was used to determine the amounts of MDA5, MAVS, TANK, IRF3 and P-IRF3 proteins in human embryonic kidney 293 T (HEK-293 T) cells infected with EMCV. RESULTS: The results of MTT showed that compared with the ribavirin positive control group, the maximum inhibition ratio (MIR) of curcumol was greater but the selection index (SI) value was much smaller than that of ribavirin. The results of qPCR showed that curcumol and ribavirin significantly reduced the replication of EMCV in HEK-293 T cells. The curcumol (0.025 mg/mL) treatment has significantly increased IFN-ß mRNA expression in the EMCV-infected HEK-293 T cells while ribavirin treatment did not. The results of ELISA showed that curcumol (0.025 mg/mL and 0.0125 mg/mL) has significantly increased the expression of IFN-ß protein in EMCV-infected HEK-293 T cells. The results of Western blot showed that curcumol can inhibit the degradation of TANK protein mediated by EMCV and promote the expression of MDA5 and P-IRF3, while the protein expression level of MAVS and IRF3 remain unchanged. CONCLUSION: Curcumol has biological activity against EMCV which we suggest that IFN-ß signaling pathway is one of its mechanisms.


Assuntos
Antivirais/farmacologia , Vírus da Encefalomiocardite/efeitos dos fármacos , Sesquiterpenos/farmacologia , Infecções por Cardiovirus/tratamento farmacológico , Infecções por Cardiovirus/virologia , Células HEK293 , Humanos , Interferon beta/efeitos dos fármacos , Interferon beta/metabolismo , Ribavirina/farmacologia , Sesquiterpenos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
9.
Int J Mol Sci ; 22(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067536

RESUMO

Several virus-induced models were used to study the underlying mechanisms of multiple sclerosis (MS). The infection of susceptible mice with Theiler's murine encephalomyelitis virus (TMEV) establishes persistent viral infections and induces chronic inflammatory demyelinating disease. In this review, the innate and adaptive immune responses to TMEV are discussed to better understand the pathogenic mechanisms of viral infections. Professional (dendritic cells (DCs), macrophages, and B cells) and non-professional (microglia, astrocytes, and oligodendrocytes) antigen-presenting cells (APCs) are the major cell populations permissive to viral infection and involved in cytokine production. The levels of viral loads and cytokine production in the APCs correspond to the degrees of susceptibility of the mice to the TMEV-induced demyelinating diseases. TMEV infection leads to the activation of cytokine production via TLRs and MDA-5 coupled with NF-κB activation, which is required for TMEV replication. These activation signals further amplify the cytokine production and viral loads, promote the differentiation of pathogenic Th17 responses, and prevent cellular apoptosis, enabling viral persistence. Among the many chemokines and cytokines induced after viral infection, IFN α/ß plays an essential role in the downstream expression of costimulatory molecules in APCs. The excessive levels of cytokine production after viral infection facilitate the pathogenesis of TMEV-induced demyelinating disease. In particular, IL-6 and IL-1ß play critical roles in the development of pathogenic Th17 responses to viral antigens and autoantigens. These cytokines, together with TLR2, may preferentially generate deficient FoxP3+CD25- regulatory cells converting to Th17. These cytokines also inhibit the apoptosis of TMEV-infected cells and cytolytic function of CD8+ T lymphocytes (CTLs) and prolong the survival of B cells reactive to viral and self-antigens, which preferentially stimulate Th17 responses.


Assuntos
Doenças Desmielinizantes/imunologia , Esclerose Múltipla/imunologia , Theilovirus/fisiologia , Imunidade Adaptativa/imunologia , Animais , Células Apresentadoras de Antígenos/metabolismo , Astrócitos/metabolismo , Infecções por Cardiovirus/imunologia , Infecções por Cardiovirus/metabolismo , Infecções por Cardiovirus/virologia , Citocinas , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Humanos , Imunidade Inata/imunologia , Camundongos , Microglia/metabolismo , Esclerose Múltipla/metabolismo , Oligodendroglia/metabolismo , Transdução de Sinais/imunologia , Theilovirus/patogenicidade
10.
Nat Commun ; 12(1): 2970, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016972

RESUMO

Activation of MAVS, an adaptor molecule in Rig-I-like receptor (RLR) signaling, is indispensable for antiviral immunity, yet the molecular mechanisms modulating MAVS activation are not completely understood. Ubiquitination has a central function in regulating the activity of MAVS. Here, we demonstrate that a mitochondria-localized deubiquitinase USP18 specifically interacts with MAVS, promotes K63-linked polyubiquitination and subsequent aggregation of MAVS. USP18 upregulates the expression and production of type I interferon following infection with Sendai virus (SeV) or Encephalomyocarditis virus (EMCV). Mice with a deficiency of USP18 are more susceptible to RNA virus infection. USP18 functions as a scaffold protein to facilitate the re-localization of TRIM31 and enhances the interaction between TRIM31 and MAVS in mitochondria. Our results indicate that USP18 functions as a post-translational modulator of MAVS-mediated antiviral signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Infecções por Cardiovirus/imunologia , Infecções por Respirovirus/imunologia , Ubiquitina Tiolesterase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/isolamento & purificação , Animais , Infecções por Cardiovirus/virologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Vírus da Encefalomiocardite/imunologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Lisina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Processamento de Proteína Pós-Traducional/imunologia , Células RAW 264.7 , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Infecções por Respirovirus/virologia , Vírus Sendai/imunologia , Transdução de Sinais/imunologia , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/isolamento & purificação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/imunologia
11.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33533710

RESUMO

Encephalomyocarditis virus (EMCV) infects a wide range of hosts and can cause encephalitis, myocarditis, reproductive disorders and diabetes mellitus in selected mammalian species. As for humans, EMCV infection seems to occur by the contact with animals and can cause febrile illnesses in some infected patients. Here we isolated EMCV strain ZM12/14 from a natal multimammate mouse (Mastomys natalensis: M. natalensis) in Zambia. Pairwise sequence similarity of the ZM12/14 P1 region consisting of antigenic capsid proteins showed the highest similarity of nucleotide (80.7 %) and amino acid (96.2%) sequence with EMCV serotype 1 (EMCV-1). Phylogenetic analysis revealed that ZM12/14 clustered into EMCV-1 at the P1 and P3 regions but segregated from known EMCV strains at the P2 region, suggesting a unique evolutionary history. Reverse transcription PCR (RT-PCR) screening and neutralizing antibody assays for EMCV were performed using collected tissues and serum from various rodents (n=179) captured in different areas in Zambia. We detected the EMCV genome in 19 M. natalensis (19/179=10.6 %) and neutralizing antibody for EMCV in 33 M. natalensis (33/179=18.4 %). However, we did not detect either the genome or neutralizing antibody in other rodent species. High neutralizing antibody litres (≧320) were observed in both RT-PCR-negative and -positive animals. Inoculation of ZM12/14 caused asymptomatic persistent infection in BALB/c mice with high antibody titres and high viral loads in some organs, consistent with the above epidemiological results. This study is the first report of the isolation of EMCV in Zambia, suggesting that M. natalensis may play a role as a natural reservoir of infection.


Assuntos
Infecções por Cardiovirus/veterinária , Reservatórios de Doenças/virologia , Vírus da Encefalomiocardite/isolamento & purificação , Murinae/virologia , Doenças dos Roedores/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Infecções por Cardiovirus/epidemiologia , Infecções por Cardiovirus/virologia , Vírus da Encefalomiocardite/genética , Vírus da Encefalomiocardite/imunologia , Vírus da Encefalomiocardite/patogenicidade , Evolução Molecular , Genoma Viral , Camundongos Endogâmicos BALB C , Filogenia , Prevalência , Doenças dos Roedores/epidemiologia , Musaranhos/virologia , Zâmbia/epidemiologia
12.
J Med Virol ; 93(6): 3980-3984, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32827319

RESUMO

Viral gastroenteritis is a major source of morbidity and mortality, predominantly caused by so-called NOROAD viruses (norovirus, rotavirus, and adenovirus). In approximately onethird of all cases, however, the exact etiology is unknown. The in 2007 discovered human cardiovirus Saffold virus (SAFV) may prove to be a plausible candidate to explain this diagnostic gap. This virus, a member of the Picornaviridae family which is closely related to the murine viruses Theiler's murine encephalomyelitis virus and Theravirus, is a widespread pathogen and causes infection early in life. Screening of 238 fecal or vomitus samples obtained from NOROAD-negative, elderly patients with acute gastroenteritis at the University Hospital of Linköping showed that SAFV is present in low abundance (4.6%). Phylogenetic analysis of the VP1 gene revealed a Swedish isolate belonging to the highly common and in Europe widespread SAFV-3 genotype. This genotype is also related to previously reported Asian strains. This study describes the first molecular typing of a Swedish SAFV isolate and is the first report to document the circulation of SAFV among elderly people. The pathogenicity of SAFV is, as of yet, still under debate; further studies are necessary to determine its role in the development of disease.


Assuntos
Infecções por Cardiovirus/epidemiologia , Cardiovirus/classificação , Cardiovirus/genética , Gastroenterite/epidemiologia , Gastroenterite/virologia , Doença Aguda/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Cardiovirus/patogenicidade , Infecções por Cardiovirus/virologia , Fezes/virologia , Genoma Viral , Genótipo , Humanos , Filogenia , Suécia/epidemiologia
13.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33328314

RESUMO

Type I interferon (IFN)-mediated antiviral responses are critical for modulating host-virus responses, and indeed, viruses have evolved strategies to antagonize this pathway. Encephalomyocarditis virus (EMCV) is an important zoonotic pathogen, which causes myocarditis, encephalitis, neurological disease, reproductive disorders, and diabetes in pigs. This study aims to understand how EMCV interacts with the IFN pathway. EMCV circumvents the type I IFN response by expressing proteins that antagonize cellular innate immunity. Here, we show that EMCV VP2 is a negative regulator of the IFN-ß pathway. This occurs via the degradation of the MDA5-mediated cytoplasmic double-stranded RNA (dsRNA) antiviral sensing RIG-I-like receptor (RLR) pathway. We show that structural protein VP2 of EMCV interacts with MDA5, MAVS, and TBK1 through its C terminus. In addition, we found that EMCV VP2 could significantly degrade RLRs by the proteasomal and lysosomal pathways. For the first time, EMCV VP2 was shown to play an important role in EMCV evasion of the type I IFN signaling pathway. This study expands our understanding that EMCV utilizes its capsid protein VP2 to evade the host antiviral response.IMPORTANCE Encephalomyocarditis virus is an important pathogen that can cause encephalitis, myocarditis, neurological diseases, and reproductive disorders. It also causes huge economic losses for the swine industry worldwide. Innate immunity plays an important role in defending the host from pathogen infection. Understanding pathogen microorganisms evading the host immune system is of great importance. Currently, whether EMCV evades cytosolic RNA sensing and signaling is still poorly understood. In the present study, we found that viral protein VP2 antagonized the RLR signaling pathway by degrading MDA5, MAVS, and TBK1 protein expression to facilitate viral replication in HEK293 cells. The findings in this study identify a new mechanism for EMCV evading the host's innate immune response, which provide new insights into the virus-host interaction and help develop new antiviral approaches against EMCV.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus da Encefalomiocardite/fisiologia , Interferon beta/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Infecções por Cardiovirus/imunologia , Infecções por Cardiovirus/virologia , Proteína DEAD-box 58/antagonistas & inibidores , Proteína DEAD-box 58/metabolismo , Vírus da Encefalomiocardite/genética , Vírus da Encefalomiocardite/metabolismo , Células HEK293 , Humanos , Evasão da Resposta Imune , Imunidade Inata , Interferon Tipo I/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Mutação , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/metabolismo , Replicação Viral
14.
J Vet Diagn Invest ; 33(2): 313-321, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33292091

RESUMO

In November 2013, a fatal encephalomyocarditis virus (EMCV) case in a captive African elephant (Loxodonta africana) occurred at the Réserve Africaine de Sigean, a zoo in the south of France. Here we report the molecular characterization of the EMCV strains isolated from samples collected from the dead elephant and from 3 rats (Rattus rattus) captured in the zoo at the same time. The EMCV infection was confirmed by reverse-transcription real-time PCR (RT-rtPCR) and genome sequencing. Complete genome sequencing and sequence alignment indicated that the elephant's EMCV strain was 98.1-99.9% identical to the rat EMCV isolates at the nucleotide sequence level. Phylogenetic analysis of the ORF, P1, VP1, and 3D sequences revealed that the elephant and rat strains clustered into lineage A of the EMCV 1 group. To our knowledge, molecular characterization of EMCV in France and Europe has not been reported previously in a captive elephant. The full genome analyses of EMCV isolated from an elephant and rats in the same outbreak emphasizes the role of rodents in EMCV introduction and circulation in zoos.


Assuntos
Infecções por Cardiovirus/veterinária , Elefantes , Vírus da Encefalomiocardite/isolamento & purificação , Ratos , Doenças dos Roedores/diagnóstico , Animais , Animais de Zoológico , Infecções por Cardiovirus/diagnóstico , Infecções por Cardiovirus/virologia , Vírus da Encefalomiocardite/classificação , Vírus da Encefalomiocardite/genética , Feminino , França , Doenças dos Roedores/virologia
15.
Nat Commun ; 11(1): 5536, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139700

RESUMO

MAVS and MITA are essential adaptor proteins mediating innate antiviral immune responses against RNA and DNA viruses, respectively. Here we show that RNF115 plays dual roles in response to RNA or DNA virus infections by catalyzing distinct types of ubiquitination of MAVS and MITA at different phases of viral infection. RNF115 constitutively interacts with and induces K48-linked ubiquitination and proteasomal degradation of homeostatic MAVS in uninfected cells, whereas associates with and catalyzes K63-linked ubiquitination of MITA after HSV-1 infection. Consistently, the protein levels of MAVS are substantially increased in Rnf115-/- organs or cells without viral infection, and HSV-1-induced aggregation of MITA is impaired in Rnf115-/- cells compared to the wild-type counterparts. Consequently, the Rnf115-/- mice exhibit hypo- and hyper-sensitivity to EMCV and HSV-1 infection, respectively. These findings highlight dual regulation of cellular antiviral responses by RNF115-mediated ubiquitination of MAVS and MITA and contribute to our understanding of innate immune signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Infecções por Cardiovirus/imunologia , Herpes Simples/imunologia , Imunidade Inata , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Infecções por Cardiovirus/patologia , Infecções por Cardiovirus/virologia , Modelos Animais de Doenças , Vírus da Encefalomiocardite/imunologia , Feminino , Células HEK293 , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Lisina/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Masculino , Camundongos , Camundongos Knockout , Cultura Primária de Células , Agregados Proteicos/imunologia , RNA Interferente Pequeno/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação/imunologia
16.
Int J Mol Sci ; 21(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086489

RESUMO

The infection of susceptible mice with Theiler's murine encephalomyelitis virus (TMEV) induces a T cell-mediated demyelinating disease. This system has been studied as a relevant infection model for multiple sclerosis (MS). Therefore, defining the type of T cell responses and their functions is critically important for understanding the relevant pathogenic mechanisms. In this study, we adoptively transferred naive VP2-specific TCR-Tg CD4+ T cells into syngeneic susceptible SJL mice and monitored the development of the disease and the activation and proliferation of CD4+ T cells during the early stages of viral infection. The preexisting VP2-specific naive CD4+ T cells promoted the pathogenesis of the disease in a dose-dependent manner. The transferred VP2-specific CD4+ T cells proliferated rapidly in the CNS starting at 2-3 dpi. High levels of FoxP3+CD4+ T cells were found in the CNS early in viral infection (3 dpi) and persisted throughout the infection. Activated VP2-specific FoxP3+CD4+ T cells inhibited the production of IFN-γ, but not IL-17, via the same VP2-specific CD4+ T cells without interfering in proliferation. Thus, the early presence of regulatory T cells in the CNS with viral infection may favor the induction of pathogenic Th17 cells over protective Th1 cells in susceptible mice, thereby establishing the pathogenesis of virus-induced demyelinating disease.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Cardiovirus/imunologia , Infecções por Cardiovirus/virologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Theilovirus/fisiologia , Transferência Adotiva , Animais , Proliferação de Células , Sistema Nervoso Central/patologia , Citocinas/biossíntese , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/virologia , Fatores de Transcrição Forkhead/metabolismo , Interferon gama/metabolismo , Interleucina-17/biossíntese , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/metabolismo , Especificidade da Espécie
17.
J Biol Chem ; 295(52): 18189-18198, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33100269

RESUMO

Environmental factors, such as viral infection, are proposed to play a role in the initiation of autoimmune diabetes. In response to encephalomyocarditis virus (EMCV) infection, resident islet macrophages release the pro-inflammatory cytokine IL-1ß, to levels that are sufficient to stimulate inducible nitric oxide synthase (iNOS) expression and production of micromolar levels of the free radical nitric oxide in neighboring ß-cells. We have recently shown that nitric oxide inhibits EMCV replication and EMCV-mediated ß-cell lysis and that this protection is associated with an inhibition of mitochondrial oxidative metabolism. Here we show that the protective actions of nitric oxide against EMCV infection are selective for ß-cells and associated with the metabolic coupling of glycolysis and mitochondrial oxidation that is necessary for insulin secretion. Inhibitors of mitochondrial respiration attenuate EMCV replication in ß-cells, and this inhibition is associated with a decrease in ATP levels. In mouse embryonic fibroblasts (MEFs), inhibition of mitochondrial metabolism does not modify EMCV replication or decrease ATP levels. Like most cell types, MEFs have the capacity to uncouple the glycolytic utilization of glucose from mitochondrial respiration, allowing for the maintenance of ATP levels under conditions of impaired mitochondrial respiration. It is only when MEFs are forced to use mitochondrial oxidative metabolism for ATP generation that mitochondrial inhibitors attenuate viral replication. In a ß-cell selective manner, these findings indicate that nitric oxide targets the same metabolic pathways necessary for glucose stimulated insulin secretion for protection from viral lysis.


Assuntos
Infecções por Cardiovirus/tratamento farmacológico , Vírus da Encefalomiocardite/fisiologia , Sequestradores de Radicais Livres/farmacologia , Galactose/metabolismo , Glicólise , Ilhotas Pancreáticas/efeitos dos fármacos , Óxido Nítrico/farmacologia , Animais , Infecções por Cardiovirus/metabolismo , Infecções por Cardiovirus/virologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/virologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Estresse Oxidativo
18.
PLoS Pathog ; 16(4): e1008457, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32251420

RESUMO

The retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), including RIG-I and melanoma differentiation-associated gene 5 (MDA5), sense cytoplasmic viral RNA and initiate innate antiviral responses. How RIG-I and MDA5 are differentially regulated remains enigmatic. In this study, we identified the guanylate-binding protein (GBP) and zinc-finger FYVE domain-containing protein ZFYVE1 as a negative regulator of MDA5- but not RIG-I-mediated innate antiviral responses. ZFYVE1-deficiency promoted MDA5- but not RIG-I-mediated transcription of downstream antiviral genes. Comparing to wild-type mice, Zfyve1-/- mice were significantly protected from lethality induced by encephalomyocarditis virus (EMCV) that is sensed by MDA5, whereas Zfyve1-/- and Zfyve1+/+ mice were comparable to death induced by vesicular stomatitis virus (VSV) that is sensed by RIG-I. Mechanistically, ZFYVE1 interacted with MDA5 but not RIG-I. ZFYVE1 bound to viral RNA and decreased the ligand binding and oligomerization of MDA5. These findings suggest that ZFYVE1 acts as a specific negative regulator of MDA5-mediated innate immune responses by inhibiting its ligand binding and oligomerization.


Assuntos
Infecções por Cardiovirus/imunologia , Proteína DEAD-box 58/imunologia , Vírus da Encefalomiocardite/fisiologia , Helicase IFIH1 Induzida por Interferon/imunologia , Proteínas de Membrana/imunologia , Animais , Infecções por Cardiovirus/genética , Infecções por Cardiovirus/virologia , Proteína DEAD-box 58/genética , Vírus da Encefalomiocardite/genética , Humanos , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Lett Appl Microbiol ; 70(2): 102-108, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31742735

RESUMO

Saffold virus (SAFV) is an emerging human cardiovirus associated with respiratory and gastrointestinal infection, and, more recently, to symptoms related to the endocrine, cardiovascular, and neurological systems. Information about SAFV circulation in Italy is scarce. In order to provide insights into the epidemiology of SAFV in Italy, 141 raw sewage samples collected throughout Italy were tested using broad-range nested RT-PCR primers targeting the 5'-NC region. Seven samples (5·0%) were confirmed as SAFV in samples collected in North, Centre and Southern Italy. Typing was attempted through amplification of the VP1 coding region, using both published and newly designed primers, and one sample was characterized as SAFV-2. SIGNIFICANCE AND IMPACT OF THE STUDY: Prevalence, genetic diversity and geographic distribution of SAFV in Italy is currently unknown. This study represents the first detection of SAFV in sewage samples in Italy, suggesting that it is circulating in the population despite lack of clinical reporting. Whether the virus is associated with asymptomatic cases or with undetected gastroenteritis or respiratory illness is unknown. Further studies are needed to investigate on the occurrence and persistence of SAFV in water environments and its waterborne transmission potential.


Assuntos
Infecções por Cardiovirus/epidemiologia , Cardiovirus/isolamento & purificação , Gastroenteropatias/epidemiologia , Infecções Respiratórias/epidemiologia , Esgotos/virologia , Proteínas do Capsídeo/genética , Cardiovirus/classificação , Cardiovirus/genética , Infecções por Cardiovirus/virologia , Monitoramento Ambiental , Gastroenteropatias/virologia , Humanos , Itália/epidemiologia , Prevalência , Infecções Respiratórias/virologia
20.
mBio ; 10(4)2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409686

RESUMO

Encephalomyocarditis virus (EMCV) is an animal pathogen and an important model organism, whose receptor requirements are poorly understood. Here, we employed a genome-wide haploid genetic screen to identify novel EMCV host factors. In addition to the previously described picornavirus receptors sialic acid and glycosaminoglycans, this screen unveiled important new host factors for EMCV. These factors include components of the fibroblast growth factor (FGF) signaling pathway, such as the potential receptors FGFR1 and ADAM9, a cell-surface metalloproteinase. By employing various knockout cells, we confirmed the importance of the identified host factors for EMCV infection. The largest reduction in infection efficiency was observed in cells lacking ADAM9. Pharmacological inhibition of the metalloproteinase activity of ADAM9 did not affect virus infection. Moreover, reconstitution of inactive ADAM9 in knockout cells restored susceptibility to EMCV, pointing to a proteinase-independent role of ADAM9 in mediating EMCV infection. Using neutralization assays with ADAM9-specific antiserum and soluble receptor proteins, we provided evidence for a role of ADAM9 in EMCV entry. Finally, binding assays showed that ADAM9 facilitates attachment of EMCV to the cell surface. Together, our findings reveal a role for ADAM9 as a novel receptor or cofactor for EMCV.IMPORTANCE EMCV is an animal pathogen that causes acute viral infections, usually myocarditis or encephalitis. It is thought to circulate mainly among rodents, from which it is occasionally transmitted to other animal species, including humans. EMCV causes fatal outbreaks of myocarditis and encephalitis in pig farms and zoos, making it an important veterinary pathogen. Although EMCV has been widely used as a model to study mechanisms of viral disease in mice, little is known about its entry mechanism. Here, we employ a haploid genetic screen for EMCV host factors and identify an essential role for ADAM9 in EMCV entry.


Assuntos
Proteínas ADAM/metabolismo , Infecções por Cardiovirus/virologia , Vírus da Encefalomiocardite/fisiologia , Proteínas de Membrana/metabolismo , Internalização do Vírus , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/genética , Animais , Infecções por Cardiovirus/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Vírus da Encefalomiocardite/metabolismo , Técnicas de Inativação de Genes , Genoma Humano/genética , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Ligação Viral , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA