RESUMO
Ichthyophthirius multifiliis is a parasite that poses a considerable threat to aquaculture and the ornamental fish industry, but with limited effective treatment options available. This study employed RT-qPCR to detect and analyze the expression changes of partial toll-like receptor (TLR) genes (TLR1 and TLR21), adapter protein and signal transduction molecule genes (MyD88, TRIF, NF-κB, IRAK4, and IRF3), and cytokines (IL-6, IL-8, IL-13, CXC-α and CXCR1), as well as complement C3, in the skin, gill, fin, liver, head kidney and spleen of Rhinogobio ventralis under different infection conditions. Additionally, tissue sections and scanning electron microscopy were utilized to observe the pathological changes in the gills and fins of R. ventralis after infection with I. multifiliis. The expression patterns of TLR-related DEGs (differentially expressed genes) in diseased wild fish were analyzed, revealing upregulation of TLR1, TLR21, MyD88, NF-κB, IRAK4, TRIF, IRF3, IL-6, IL-8, IL-13, CXC-α, CXCR1, and C3 genes in various tissues, indicating that these genes may be involved in the immune response of R. ventralis to I. multifiliis infection. To further analyze the gene expression of sampled from the field, an artificial infection model of R. ventralis was established under laboratory conditions, with additional sampling from the skin and fins. These genes continued to show varying degrees of upregulation, but the results were not entirely consistent with those from Wudongde samples, which may be due to the more complex environment in the wild or differences in the degree of I. multifiliis infection in wild fish. The infection of I. multifiliis caused severe damage to the gills and fins of R. ventralis, characterized by extensive secretions on the gill and fin surfaces, with the presence of attached I. multifiliis trophonts, including damage and loss of gill filaments, swollen gill lamellae, and deformed gill plates, as well as cell proliferation and necrosis of gill epithelial cells. This study sheds light on the role of the TLR signaling pathway in resisting I. multifiliis infection and its associated histopathological changes in R. ventralis, providing valuable insights for the prevention and treatment of I. multifiliis infection in R. ventralis.
Assuntos
Infecções por Cilióforos , Doenças dos Peixes , Proteínas de Peixes , Hymenostomatida , Imunidade Inata , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/parasitologia , Hymenostomatida/fisiologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/imunologia , Imunidade Inata/genética , Perfilação da Expressão Gênica/veterinária , Receptores Toll-Like/genética , Receptores Toll-Like/imunologiaRESUMO
Large yellow croaker (L. crocea) is a productive species in marine aquaculture with great economic value in China. However, the sustainable development of large yellow croaker is hampered by various diseases including cryptocaryonosis caused by Cryptocaryon irritans. The genetic regulation processes for cryptocaryonosis in large yellow croaker are still unclear. In this present study, we analyzed differential alternative splicing events between a C. irritans resistance strain (RS) and a commercial strain (CS). We identified 678 differential alternative splicing (DAS) events from 453 genes in RS and 719 DAS events from 500 genes in CS. A set of genes that are specifically alternatively spliced in RS was identified including mfap5, emp1, and trim33. Further pathway analysis revealed that the specifically alternative spliced genes in RS were involved in innate immune responses through the PRR pathway and the Toll and Imd pathway, suggesting their important roles in the genetic regulation processes for cryptocaryonosis in large yellow croaker. This study would be helpful for the studies of the pathogenesis of cryptocaryonosis and dissection of C. irritans resistance for L. crocea.
Assuntos
Processamento Alternativo , Infecções por Cilióforos , Resistência à Doença , Doenças dos Peixes , Perciformes , Animais , Perciformes/genética , Perciformes/parasitologia , Resistência à Doença/genética , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/genética , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/parasitologia , Doenças dos Peixes/parasitologia , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Imunidade Inata/genética , Proteínas de Peixes/genética , Cilióforos/genética , AquiculturaRESUMO
Aquaculture is one of the fastest growing sectors in global food production, recognized as a significant contributor to poverty alleviation, food security, and income generation. However, the frequent occurrence of diseases caused by pathogen infections result in reduced yields and economic losses, posing a substantial constraint to the sustainable development of aquaculture. Here, our study identified that four catechol compounds, quercetin, luteolin, caffeic acid, and chlorogenic acid, exhibited potent antiparasitic effects against Ichthyophthirius multifiliis in both, in vitro and in vivo. The parasite is recognized as one of the most pathogenic to fish worldwide. Using a combination of in silico methods, the dipeptidyl peptidase (DPP) was identified as a critical target for catechol compounds. The two hydroxyl radicals of the catechol group were essential for its binding to and interacting with the DPP protein. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that catechol compounds disrupt pathways associated with the metabolism and growth of I. multifiliis, thereby exerting antiparasitic effects. Furthermore, these compounds attenuated the expression of proinflammatory cytokines in vivo in fish and promoted macrophage polarization toward M2 phenotype by inhibiting the STAT1 signaling pathway. The dual activity of catechol compounds, acting as both direct antiparasitic and anti-inflammatory agents in fish, offers a promising therapeutic approach for combating I. multifiliis infections in aquaculture.
Assuntos
Catecóis , Infecções por Cilióforos , Doenças dos Peixes , Hymenostomatida , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/parasitologia , Doenças dos Peixes/prevenção & controle , Hymenostomatida/efeitos dos fármacos , Catecóis/farmacologia , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/parasitologia , Infecções por Cilióforos/prevenção & controle , Antiparasitários/farmacologiaRESUMO
The increasing significance of the aquaculture sector and commercially valuable species underscores the need to develop alternatives for controlling diseases such as Ichthyophthirius multifiliis-induced ichthyophthiriasis. This ciliated protozoan parasite threatens nearly all freshwater fish species, causing substantial losses in the fishery industry. Despite this, effective large-scale treatments are lacking, emphasizing the necessity of adopting preventive strategies. While the pathogenesis of ichthyophthiriasis and its immune stimulation allows for vaccination strategies, precise adjustments are crucial to ensure the production of an effective vaccine compound. Therefore, this study aimed to evaluate the impact of immunizing Astyanax lacustris with a genetic vaccine containing IAG52A from I. multifiliis and the molecular adjuvant IL-8 from A. lacustris. Transcript analysis in immunized A. lacustris indicated mRNA production in fish muscles, demonstrating an expression of this mRNA. Fish were divided into five groups, receiving different vaccine formulations, and all groups received a booster dose 14 days after the initial immunization. Samples from vaccinated fish showed increased IL-1ß mRNA expression in the spleen within 6 h post the second dose and after 14 days. In the head kidney, IL-1ß mRNA expression showed no significant difference at 6 and 24 h but an increase was noted in fish injected with IAG and IAG + IL-8 after 14 days. IL-8 mRNA expression in the spleen and kidney did not significantly differ from the control group. Histological analysis revealed no variation in leukocyte concentration at 6 and 24 h post-vaccination; however, after 14 days, the groups injected with IAG and IAG + IL-8 exhibited a higher leukocyte density at the application sites than the control. The obtained data suggest that the used vaccine is transcribed, indicating its potential to stimulate innate immune response parameters through mRNA cytokine expression and leukocyte migration.
Assuntos
Adjuvantes Imunológicos , Infecções por Cilióforos , Doenças dos Peixes , Hymenostomatida , Vacinas de DNA , Animais , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/parasitologia , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/prevenção & controle , Infecções por Cilióforos/imunologia , Hymenostomatida/imunologia , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Vacinação/veterinária , Vacinas Protozoárias/imunologia , Vacinas Protozoárias/administração & dosagem , Characidae/imunologia , Interleucinas/imunologiaRESUMO
The Japanese puffer, Takifugu rubripes, is a commercially important fish species in China that is under serious threat from white spot disease (cyptocaryoniasis), which leads to heavy economic losses. We previously found that interleukin-1ß (IL-1ß), an important cytokine with a potential role in resistance against pathogens, was one of the most significantly differentially up-regulated proteins in the gills and spleen of T. rubripes infected by the protozoan parasite Cryptocaryon irritans. In this study, we assessed the potential function of T. rubripes IL-1ß (TrIL-1ß) in fish infected with C. irritans. Phylogenetic analysis indicated that the TrIL-1ß protein sequence was most closely related to that of Atlantic salmon (Salmo salar) (67.2 %). The incubation experiments revealed that TrIL-1ß may reduce trophont activity by destroying membranes. Immunofluorescence experiments showed that recombinant TrIL-1ß promoted the expression of endogenous IL-1ß, which penetrated and disrupted the cell membranes of trophonts. Transmission electron microscopy showed that the IL-1ß group had less tissue damage compared with control groups of fish. IL-1ß-small interfering RNA and IL-1ß overexpression experiments were performed in head kidney primary cells, and challenge experiments were performed in vitro. Quantitative RT-PCR results showed that TrIL-1ß regulated and activated MyD88/NF-κB and MyD88/MAPK/p38 signaling pathways during C. irritans infection. TrIL-1ß also promoted the differential expression of IgM, showing that it was involved in humoral immunity of T. rubripes. The cumulative mortality experiment show that TrIL-1ß could protect fish against C. irritans infection. These results enrich current knowledge about the molecular structure of TrIL-1ß. They also suggested that recombinant TrIL-1ß could be used as an adjuvant in a subunit vaccine against C. irritans infection, which is of profound importance for the prevention and control of parasitic diseases in T. rubripes.
Assuntos
Infecções por Cilióforos , Doenças dos Peixes , Interleucina-1beta , Takifugu , Animais , Takifugu/parasitologia , Takifugu/metabolismo , Takifugu/genética , Infecções por Cilióforos/parasitologia , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/veterinária , Doenças dos Peixes/parasitologia , Doenças dos Peixes/imunologia , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Cilióforos/efeitos dos fármacos , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , FilogeniaRESUMO
Mucosal immunity in mucosa-associated lymphoid tissues (MALTs) plays crucial roles in resisting infection by pathogens, including parasites, bacteria and viruses. However, the mucosal immune response in the MALTs of large yellow croaker (Larimichthys crocea) upon parasitic infection remains largely unknown. In this study, we investigated the role of B cells and T cells in the MALTs of large yellow croaker following Cryptocaryon irritans infection. Upon C. irritans infection, the total IgM and IgT antibody levels were significantly increased in the skin mucus and gill mucus. Notably, parasite-specific IgM antibody level was increased in the serum, skin and gill mucus following parasitic infection, while the level of parasite-specific IgT antibody was exclusively increased in MALTs. Moreover, parasitic infection induced both local and systemic aggregation and proliferation of IgM+ B cells, suggesting that the increased levels of IgM in mucus may be derived from both systemic and mucosal immune tissues. In addition, we observed significant aggregation and proliferation of T cells in the gill, head kidney and spleen, suggesting that T cells may also be involved in the systemic and mucosal immune responses upon parasitic infection. Overall, our findings provided further insights into the role of immunoglobulins against pathogenic infection, and the simultaneous aggregation and proliferation of both B cells and T cells at mucosal surfaces suggested potential interactions between these two major lymphocyte populations during parasitic infection.
Assuntos
Linfócitos B , Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Perciformes , Linfócitos T , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/parasitologia , Perciformes/imunologia , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/imunologia , Linfócitos B/imunologia , Cilióforos/fisiologia , Linfócitos T/imunologia , Imunidade nas Mucosas , Tecido Linfoide/imunologia , Imunoglobulina M/imunologia , Imunoglobulina M/sangue , Proliferação de CélulasRESUMO
Takifugu rubripes (T. rubripes) is a valuable commercial fish, and Cryptocaryon irritans (C. irritans) has a significant impact on its aquaculture productivity. DNA methylation is one of the earliest discovered ways of gene epigenetic modification and also an important form of modification, as well as an essential type of alteration that regulates gene expression, including immune response. To further explore the anti-infection mechanism of T. rubripes in inhibiting this disease, we determined genome-wide DNA methylation profiles in the gill of T. rubripes using whole-genome bisulfite sequencing (WGBS) and combined with RNA sequence (RNA-seq). A total of 4659 differentially methylated genes (DMGs) in the gene body and 1546 DMGs in the promoter between the infection and control group were identified. And we identified 2501 differentially expressed genes (DEGs), including 1100 upregulated and 1401 downregulated genes. After enrichment analysis, we identified DMGs and DEGs of immune-related pathways including MAPK, Wnt, ErbB, and VEGF signaling pathways, as well as node genes prkcb, myca, tp53, and map2k2a. Based on the RNA-Seq results, we plotted a network graph to demonstrate the relationship between immune pathways and functional related genes, in addition to gene methylation and expression levels. At the same time, we predicted the CpG island and transcription factor of four immune-related key genes prkcb and mapped the gene structure. These unique discoveries could be helpful in the understanding of C. irritans pathogenesis, and the candidate genes screened may serve as optimum methylation-based biomarkers that can be utilized for the correct diagnosis and therapy T. rubripes in the development of the ability to resist C. irritans infection.
Assuntos
Cilióforos , Metilação de DNA , Doenças dos Peixes , Takifugu , Takifugu/genética , Takifugu/parasitologia , Takifugu/metabolismo , Animais , Doenças dos Peixes/parasitologia , Doenças dos Peixes/genética , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/genética , Infecções por Cilióforos/parasitologia , Infecções por Cilióforos/imunologia , Brânquias/metabolismo , Brânquias/parasitologia , Epigênese Genética , Regulação da Expressão Gênica , Sequenciamento Completo do Genoma , Perfilação da Expressão GênicaRESUMO
The concentration of immunoglobulin (Ig) E is the lowest among serum Igs, but it can induces type I hypersensitivity and plays an important role in anti-parasitic infection. The present study aimed to explore the residence characteristics of IgE+ cells in the sheep small intestine and the impact of Moniezia benedeni infection on them. The recombinant plasmids pET-28a-IgE were constructed and induced and expressed in Escherichia coli. BL21 (DE3). The rabbit anti-sheep IgE polyclonal antibody was prepared using the obtained recombinant protein as antigen. Finally, the levels of IgE+ cells in the small intestine of healthy (Control group) and naturally M. benedeni-infected (Infected group) sheep were detected analyzed. The results showed that the rabbit anti-sheep IgE polyclonal antibody with good immunogenicity (titer = 1: 128000) could specifically bind to the heavy chain of natural sheep IgE. In the Control group, the IgE+ cells were mainly distributed in lamina propria of the small intestine, and the densities were significantly decreased from duodenum to ileum (P<0.05), with respective values of (4.28 cells / 104 µm2, 1.80 cells / 104 µm2, and 1.44 cells / 104 µm2 in duodenum, jejunum, and ileum. In the Infected group, IgE+ cells density were 6.26 cells / 104 µm2, 3.01 cells / 104 µm2, and 2.09 cells / 104 µm2 in duodenum, jejunum and ileum respectively, which were significantly higher in all segments compared to the Control group (P<0.05), increasing by 46.26%, 67.22% and 45.14%, respectively. In addition, compared with the Control group, the IgE protein levels were significantly increased in all intestinal segments of the Infected group (P<0.01), however, there was no significant differences among the different intestinal segments within the same group (P>0.05). The results demonstrated that M. benedeni infection could significantly increase the content of IgE and the distribution density of its secreting cells in sheep small intestine. The intestinal mucosal immune system of sheep presented obvious specificity against M. benedeni infection. This lays a good foundation for further exploring molecular mechanisms of the intestinal mucosal immune system monitoring and responding to M. benedeni infection.
Assuntos
Imunoglobulina E , Intestino Delgado , Doenças dos Ovinos , Animais , Imunoglobulina E/sangue , Ovinos , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/parasitologia , Intestino Delgado/imunologia , Intestino Delgado/parasitologia , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/parasitologiaRESUMO
The protozoan parasite Cryptocaryon irritans causes marine white spot disease in a wide range of fish hosts, including gilthead seabream, a very sensitive species with great economic importance in the Mediterranean area. Thus, we aimed to evaluate the immunity of gilthead seabream after a severe natural outbreak of C. irritans. Morphological alterations and immune cell appearance in the gills were studied by light microscopy and immunohistochemical staining. The expression of several immune-related genes in the gills and head kidney were studied by qPCR, including inflammatory and immune cell markers, antimicrobial peptides (AMP), and cell-mediated cytotoxicity (CMC) molecules. Serum humoral innate immune activities were also assayed. Fish mortality reached 100% 8 days after the appearance of the C. irritans episode. Gill filaments were engrossed and packed without any space between filaments and included parasites and large numbers of undifferentiated and immune cells, namely acidophilic granulocytes. Our data suggest leukocyte mobilization from the head kidney, while the gills show the up-regulated transcription of inflammatory, AMPs, and CMC-related molecules. Meanwhile, only serum bactericidal activity was increased upon infection. A potent local innate immune response in the gills, probably orchestrated by AMPs and CMC, is triggered by a severe natural outbreak of C. irritans.
Assuntos
Infecções por Cilióforos/veterinária , Cilióforos/imunologia , Imunidade Inata , Dourada/crescimento & desenvolvimento , Animais , Cilióforos/patogenicidade , Infecções por Cilióforos/genética , Infecções por Cilióforos/imunologia , Surtos de Doenças , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/parasitologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Brânquias/imunologia , Brânquias/parasitologia , Imuno-Histoquímica , Microscopia , Dourada/genética , Dourada/imunologia , Dourada/parasitologiaRESUMO
Cryptocaryon irritans, a holotrichous ciliate parasitic protozoan, can trigger marine white spot disease and cause substantial economic losses in mariculture. However, methods of preventing and curing the disease have negatively affect fish, human, other organisms, and the natural environment. The antiparasitic activity of some antimicrobial peptides (AMPs) has garnered extensive attention of scholars. In this study, we identified and characterised a novel antiparasitic peptide, named So-pis, from Sciaenops ocellatus. The sequence analysis, structural features, and tissue distribution suggested that So-pis is genetically related to the piscidins family. However, So-pis showed a relatively low overall conservation compared with other known piscidins. So-pis is abound in glycine residues (22.7 %) and it has a neutral isoelectric point, weak amphipathicity, relatively long α-helix, and high hydrophobicity. These key elements are responsible for its biological activity. Quantitative real-time polymerase chain reaction (qRT-PCR) data indicated that So-pis is a typically gill-expressed peptide. The expression of So-pis in the gill, skin, spleen, and head kidney could be regulated during C. irritans infection, thereby implicating a role of So-pis in immune defence against C. irritans. The synthetic So-pis had limited or no antimicrobial activity against bacterial and yeasts but exhibited potent antiparasitic activity against C. irritans in vitro. The activity of synthetic So-pis against erythrocytes was less potent than its antiparasitic activity against C. irritans. These results indicated that So-pis might be one of the crucial defence cytokines against C. irritans in the red drum. Cumulatively, our data suggested that So-pis might be a potential candidate for developing a novel, effective, and safe therapeutic agent against marine white spot disease.
Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antiparasitários/farmacologia , Infecções por Cilióforos/tratamento farmacológico , Hymenostomatida/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Perciformes/metabolismo , Sequência de Aminoácidos , Animais , Anti-Infecciosos/farmacologia , Sequência de Bases , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/parasitologia , Doenças dos Peixes/imunologia , Brânquias/imunologia , Brânquias/metabolismo , Brânquias/parasitologia , Perciformes/imunologiaRESUMO
The intercellular adhesion molecule-1 (ICAM-1), known as CD54, is a transmembrane cell surface glycoprotein that interacts with two integrins (i.e., LFA-1 and Mac-l) important for trans-endothelial migration of leukocytes. The level of ICAM-1 expression is upregulated in response to some inflammatory stimulations, including pathogen infection and proinflammatory cytokines. Yet, to date, our knowledge regarding the functional role of ICAM-1 in teleost fish remains largely unknown. In this study, we cloned and characterized the sequence of ICAM-1 in rainbow trout (Oncorhynchus mykiss) for the first time, which exhibited that the molecular features of ICAM-1 in fishes were relatively conserved compared with human ICAM-1. The transcriptional level of ICAM-1 was detected in 12 different tissues, and we found high expression of this gene in the head kidney, spleen, gills, skin, nose, and pharynx. Moreover, upon stimulation with infectious hematopoietic necrosis virus (IHNV), Flavobacterium columnare G4 (F. columnare), and Ichthyophthirius multifiliis (Ich) in rainbow trout, the morphological changes were observed in the skin and gills, and enhanced expression of ICAM-1 mRNA was detected both in the systemic and mucosal tissues. These results indicate that ICAM-1 may be implicated in the mucosal immune responses to viral, bacterial, and parasitic infections in teleost fish, meaning that ICAM-1 emerges as a master regulator of mucosal immune responses against pathogen infections in teleost fish.
Assuntos
Infecções por Cilióforos , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Infecções por Flavobacteriaceae , Regulação da Expressão Gênica/imunologia , Molécula 1 de Adesão Intercelular/imunologia , Oncorhynchus mykiss , Infecções por Rhabdoviridae , Animais , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/veterinária , Infecções por Flavobacteriaceae/imunologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/imunologia , Hymenostomatida/imunologia , Vírus da Necrose Hematopoética Infecciosa/imunologia , Oncorhynchus mykiss/imunologia , Oncorhynchus mykiss/microbiologia , Oncorhynchus mykiss/parasitologia , Oncorhynchus mykiss/virologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterináriaRESUMO
Ichthyophthirius multifiliis is a major pathogen that causes a high mortality rate in trout farms. However, systemic responses to the pathogen and its interactions with multiple organs during the course of infection have not been well described. In this study, dual-organ transcriptomic responses in the liver and head kidney and hemato-serological indexes were profiled under I. multifiliis infection and recovery to investigate systemic immuno-physiological characteristics. Several strategies for massive transcriptomic interpretation, such as differentially expressed genes (DEGs), Poisson linear discriminant (PLDA), and weighted gene co-expression network analysis (WGCNA) models were used to investigate the featured genes/pathways while minimizing the disadvantages of individual methods. During the course of infection, 6,097 and 2,931 DEGs were identified in the head kidney and liver, respectively. Markers of protein processing in the endoplasmic reticulum, oxidative phosphorylation, and the proteasome were highly expressed. Likewise, simultaneous ferroptosis and cellular reconstruction was observed, which is strongly linked to multiple organ dysfunction. In contrast, pathways relevant to cellular replication were up-regulated in only the head kidney, while endocytosis- and phagosome-related pathways were notably expressed in the liver. Moreover, interestingly, most immune-relevant pathways (e.g., leukocyte trans-endothelial migration, Fc gamma R-mediated phagocytosis) were highly activated in the liver, but the same pathways in the head kidney were down-regulated. These conflicting results from different organs suggest that interpretation of co-expression among organs is crucial for profiling of systemic responses during infection. The dual-organ transcriptomics approaches presented in this study will greatly contribute to our understanding of multi-organ interactions under I. multifiliis infection from a broader perspective.
Assuntos
Infecções por Cilióforos/genética , Doenças dos Peixes/genética , Interações Hospedeiro-Patógeno/genética , Hymenostomatida/patogenicidade , Aprendizado de Máquina , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/parasitologia , Transcriptoma , Animais , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/parasitologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Brânquias/imunologia , Rim Cefálico/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Fígado/imunologia , Oncorhynchus mykiss/imunologia , RNA-Seq/métodos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Virulência/genética , Virulência/imunologia , Fatores de VirulênciaRESUMO
Takifugu rubripes and Dicentrarchus labrax are important commercial fish in China that are under serious threat from Cryptocaryon irritans. C. irritans is a ciliated obligate parasite that causes marine white spot disease and leads to heavy economic losses. We analysed the transcriptome in the gills of T. rubripes and D. labrax to compare differentially expressed genes (DEGs) and pathways during infection with C. irritans. In total, we identified 6,901 and 35,736 DEGs from T. rubripes and D. labrax, respectively. All DEGs were annotated into GO terms; 6,901 DEGs from T. rubripes were assigned into 991 sub-categories, and 35,736 DEGs from D. labrax were assigned into 8,517 sub-categories. We mapped DEGs to the KEGG database and obtained 153 and 350 KEGG signalling pathways from T. rubripes and D. labrax, respectively. Immune-related categories included Toll-like receptors, MAPK, lysosome, C-type lectin receptor and NOD-like receptor signalling pathways were significantly enriched pathways. In immune-related signalling pathways, we found that AP-1, P38, IL-1ß, HSP90 and PLA were significantly up-regulated DEGs in T. rubripes, but P38 and PLA were significantly down-regulated in D. labrax. In this study, transcriptome was used to analyse the difference between scaly and non-scaly fish infection by C. irritans, which not only provided a theoretical basis for the infection mechanism of C. irritans, but also laid a foundation for effectively inhibiting the occurrence of this disease. Our work provides further insight into the immune response of host resistance to C. irritans.
Assuntos
Infecções por Cilióforos/veterinária , Doenças dos Peixes/parasitologia , Perfilação da Expressão Gênica , Animais , Bass , Infecções por Cilióforos/genética , Infecções por Cilióforos/imunologia , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Brânquias/imunologia , Brânquias/parasitologia , Hymenostomatida/fisiologia , Transdução de Sinais , TakifuguRESUMO
Cryptocaryon irritans, a pathogen model for fish mucosal immunity, causes skin mucosal and systematic humoral immune response. Where and how MHC II antigen presentation occurs in fish infected with C. irritans remain unknown. In this study, the full-length cDNA of the grouper cysteine protease CTSS was cloned. The expression distributions of six genes (CTSB, CTSL, CTSS, GILT, MHC IIA and MHC IIB) involved in MHC II antigen presentation pathway were tested. These genes were highly expressed in systematic immune tissues and skin and gill mucosal-associated immune tissues. All six genes were upregulated in skin at most time points. Five genes expected CTSS was upregulated in spleen at most time points. CTSB, CTSL and MHC IIA were upregulated in the gill and head kidney at some time points. These results indicate that the presentation of MHC II antigen intensively occurred in local infected skin and gill. Spleen, not head kidney, had the most extensive systematic antigen presentation. In skin, six genes most likely peaked at day 2, earlier than in spleen (5-7 days), marking an earlier skin antibody peak than any recorded in serum previously. This significant and earlier mucosal antigen presentation indicates that specific immune response occurs in local mucosal tissues.
Assuntos
Bass , Infecções por Cilióforos/imunologia , Doenças dos Peixes/parasitologia , Complexo Principal de Histocompatibilidade/genética , Animais , Antígenos de Protozoários , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica/imunologia , Hymenostomatida/fisiologia , Imunidade Humoral , Imunidade nas Mucosas/genéticaRESUMO
The parasitic ciliate Ichthyophthirius multifiliis has a low host specificity eliciting white spot disease (WSD) in a wide range of freshwater fishes worldwide. The parasite multiplies rapidly whereby the infection may reach problematic levels in a host population within a few days. The parasite targets both wild and cultured fish but the huge economic impact of the protozoan is associated with mortality, morbidity and treatment in aquacultural enterprises. We have investigated the potential for genetic selection of WSD-resistant strains of rainbow trout. Applying the DNA typing system Affymetrix® and characterizing the genome of the individual fish by use of 57,501 single nucleotide polymorphisms (SNP) and their location on the rainbow trout chromosomes, we have genetically characterized rainbow trout with different levels of natural resistance towards WSD. Quantitative trait loci (QTL) used for the selection of breeders with specific markers for resistance are reported. We found a significant association between resistance towards I. multifiliis infection and SNP markers located on the two specific rainbow trout chromosomes Omy 16 and Omy 17. Comparing the expression of immune-related genes in fish-with and without clinical signs-we recorded no significant difference. However, trout surviving the infection showed high expression levels of genes encoding IgT, T-cell receptor TCRß, C3, cathelicidins 1 and 2 and SAA, suggesting these genes to be associated with protection.
Assuntos
Doenças dos Peixes/parasitologia , Hymenostomatida , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/parasitologia , Locos de Características Quantitativas , Animais , Aquicultura , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/veterinária , Regulação da Expressão Gênica/imunologia , Genoma , Imunidade Inata/genética , Oncorhynchus mykiss/imunologia , Polimorfismo de Nucleotídeo Único , Seleção Artificial/genéticaRESUMO
Channel catfish (Ictalurus punctatus) vaccinated with pcDNA3.1-IAg52b plasmid DNA vaccine encoding immobilization antigen genes of Ichthyophthirius multifiliis (Ich) produced anti-Ich antibodies and were partially protected (20% survival) in a previous study. Here we evaluated whether a higher dose or two doses of pcDNA3.1-IAg52b vaccine could provide better protection for catfish against Ich. Fish were distributed into 6 groups and vaccinated using following schemes: 1.10 µg pcDNA3.1-IAg52b fish-1, 2.20 µg pcDNA3.1-IAg52b fish-1, 3. two doses of 10 µg pcDNA3.1-IAg52b fish-1 with 7 days between doses, 4.20 µg pcDNA3.1 fish-1 (mock-vaccinated control), 5.15,000 live theronts fish-1 (positive control), and 6. non-vaccinated and non-challenge control. Parasite infection levels, serum anti-Ich antibody levels, fish mortality and immune-related gene expression were determined during the trial. Fish vaccinated with a single dose of 20 µg pcDNA3.1-IAg52b fish-1 or two doses of 10 µg fish-1 had higher anti-Ich antibody levels than fish receiving a single dose of 10 µg fish-1. Survival was significantly higher in fish receiving 20 µg vaccine fish-1 (35.6%) or 2 doses of 10 µg fish-1 (48.9%) than fish injected with a single dose of 10 µg fish-1 (15.6%) or mock-vaccinated control (0%). Fish vaccinated at the dose 20 µg fish-1 had higher expression of vaccine DNA in muscle than fish vaccinated with 10 µg fish-1. Fish vaccinated with the DNA vaccine showed higher up-regulation than mock-vaccinated control in the expression of IgM, CD4, MHC I and TcR-α genes during most of time points after vaccination. Further studies are needed to improve efficacy of DNA vaccines by using multiple antigens in the DNA vaccines.
Assuntos
Antígenos de Protozoários/imunologia , Infecções por Cilióforos/prevenção & controle , Doenças dos Peixes/prevenção & controle , Hymenostomatida/imunologia , Ictaluridae/imunologia , Proteínas de Protozoários/imunologia , Vacinas de DNA , Animais , Infecções por Cilióforos/genética , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/veterinária , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Ictaluridae/genética , Ictaluridae/parasitologia , MúsculosRESUMO
Several researches reported that piscidin members of teleosts owned strong antiparasitic activity. Cryptocaryon irritans, a type of ectoparasite, could infect most of the marine teleosts. Larimichthys crocea could severely suffer from marine white spot disease caused by C. irritans, and their mortality rate was significantly high. Concentrating on this problem, we have done many related works. Piscidin 5 like (termed Lc-P5L) was another piscidin member isolated from a comparative transcriptome of C. irritans-immuned L. crocea. In the paper, quantitative Real-time PCR (qRT-PCR) showed Lc-P5L was upregulated in examined tissues, including gill, head kidney, muscle, liver, spleen and intestine after challenged by C. irritans, the significant upregulation time was in accordance to key developmental stages of C. irritans, which implied different infection stages could result in host immune response. Furthermore, using microscope techniques, we observed theronts or trophonts became weakly motile, cilia became detached, cells were out of shape, membranes eventually lysed in different cell positions and cytoplasmic contents leaked. Laser confocal scanning microscope (LCSM) observed theronts macronucleus grew swell and depolymerized after treated by recombinant Lc-P5L (rLc-P5L). Data suggested rLc-P5L was significantly lethal to C. irritans, and the death state of the parasite incubated with rLc-P5L was remarkably similar to other piscidin members or other antiparasitic peptides (APPs). Thus, these data provided new insights into L. crocea immunity against C. irritans and potential of rLc-P5L as a therapeutic agent against pathogen invasion.
Assuntos
Antiparasitários/farmacologia , Infecções por Cilióforos/imunologia , Cilióforos/efeitos dos fármacos , Cilióforos/fisiologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/farmacologia , Perciformes/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antiparasitários/metabolismo , Citotoxicidade Imunológica , Resistência à Doença/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Estágios do Ciclo de Vida , Microscopia Confocal , TranscriptomaRESUMO
Cryptocaryon irritans is an extremely harmful ciliated obligate parasite that is responsible for large economic losses in aquaculture. C. irritans infection can cause an insect-resistant immune response in fish, and many immune cells can be observed in the local infection site. However, it is unclear whether macrophages are involved in the host defense against C. irritans infection. The Mpeg1 protein can form pores and destroy the cell membrane of invading pathogens, and is also used as a macrophage-specific marker in mammals. Therefore, a polyclonal antibody against grouper recombinant Mpeg1a was produced to mark macrophages in this study, which could recognize both isoforms of Mpeg1 (Mpeg1a/b). Immunofluorescence revealed that EcMpeg1 positive cells were mostly distributed in the head kidney and spleen in healthy grouper. Immunofluorescence and immunohistochemistry showed that the number of EcMpeg1 positive cells increased in the gills after infection with C. irritans, implying that EcMpeg1 positive cells may be involved in the process of grouper resistance against C. irritans infection.
Assuntos
Infecções por Cilióforos/imunologia , Cilióforos , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Proteínas de Membrana/imunologia , Perciformes/imunologia , Animais , Infecções por Cilióforos/veterinária , Resistência à Doença/imunologia , Proteínas de Peixes/genética , Brânquias/imunologia , Macrófagos/imunologia , Proteínas de Membrana/genética , Perciformes/microbiologiaRESUMO
IκB kinase (IKK) is the core regulator of the nuclear factor-κB (NF-κB) pathway, which is involved in cellular development and proliferation, as well as the inflammatory response. IKKα is an important subunit of the IKK complex. In this study, two IKKαs (EcIKKα-1 and -2) were characterized in E. coioides. Similar to IKKα of other species, EcIKKα-1 and -2 contained a kinase domain, a leucine zipper, a helix-loop-helix domain and a beta NF-κB essential modulator-binding domain. Sequence alignment indicated that EcIKKα-1 and -2 shared high degrees of sequence identity with IKKs from other species (about 63%-96%). EcIKKα-1 and -2 are widely expressed in all tissues, but have different expression profiles in normal groupers. Additionally, EcIKKα-1 and -2 responded rapidly to Cryptocaryon irritans infection at the local infection site (i.e., gill tissue), but there was no significant change in EcIKKα-2 expression. In GS cells, EcIKKα-1 was uniformly distributed in the cytoplasm, while EcIKKα-2 was observed uniformly both in the cytoplasm and nucleus. Both EcIKKα-1 and -2 were found to activate NF-κB, but the luciferase activity of EcIKKα-2 was twice that of EcIKKα-1. In addition, EcIKKα-1 and -2 can regulate the expression of immune-related cytokines (IL-1ß, IL-6, IL-8, IL-12 [p35 subunit], and TNF-α). These findings should prove helpful to further elucidate the innate immunity function of IKKα in fish.
Assuntos
Bass/genética , Bass/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Quinase I-kappa B/genética , Quinase I-kappa B/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Cilióforos/fisiologia , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/parasitologia , Infecções por Cilióforos/veterinária , Citocinas/metabolismo , Doenças dos Peixes/parasitologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Quinase I-kappa B/química , Filogenia , Alinhamento de Sequência/veterináriaRESUMO
To explore the resistance mechanism of locally infected skin of yellow drum (Nibea albiflora) against Cryptocaryon irritans infection, N. albiflora were infected with C. irritans at a median lethal concentration of 2050 theronts/g fish. Then, the skin of the infected group (24 hT and 72 hT) and the control group (24 hC and 72 hC) were sampled at 24 h and 72 h for quantitative proteomics analysis. A total of 643 proteins were identified, of which 61 proteins were significantly affected by interaction between time and infection, 83 and 119 proteins were significantly affected by the infection and time, respectively. In addition, 17, 61, 81 and 45 differentially expressed proteins (DEPs) were obtained from pairwise comparison (24 hT vs 24 hC, 72 hT vs 72 hC, 72 hT vs 24 hT and 72 hC vs 24 hC), respectively. DEPs in 24 hT vs 24 hC and 72 hT vs 72 hC were mainly enriched in Gene Ontology terms (transferase activity, protein folding and isomerase activity) and Kyoto Encyclopedia of Genes and Genomes pathways (biosynthesis of antibiotics, carbon metabolism and Citrate cycle). Among them, enriched DEPs were malate dehydrogenase 2 (MDH2), malate dehydrogenase 1 ab (MDH 1 ab), citrate synthase, etc. Immune-related DEPs such as complement component C3 and Cell division cycle 42 were involved in response to stimulus and signal transduction, etc. Also, DEPs such as collagen, heat shock protein 75 and MDH2 play a role in helping fish skin wounds to heal and provide energy. Furthermore, protein-protein interaction analysis indicated that 18 proteins such as MDH2, MDH 1 ab, complement C3 and collagen were interrelated. In conclusion, this study found that many proteins in N. albiflora contribute to resist against C. irritans and promote fish recovery.