Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 12(10)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977414

RESUMO

Tick-borne flaviviruses (TBFVs) are reemerging public health threats. To develop therapeutics against these pathogens, increased understanding of their interactions with the mammalian host is required. The PI3K-AKT pathway has been implicated in TBFV persistence, but its role during acute virus infection remains poorly understood. Previously, we showed that Langat virus (LGTV)-infected HEK 293T cells undergo a lytic crisis with a few surviving cells that become persistently infected. We also observed that AKT2 mRNA is upregulated in cells persistently infected with TBFV. Here, we investigated the virus-induced effects on AKT expression over the course of acute LGTV infection and found that total phosphorylated AKT (pAKT), AKT1, and AKT2 decrease over time, but AKT3 increases dramatically. Furthermore, cells lacking AKT1 or AKT2 were more resistant to LGTV-induced cell death than wild-type cells because they expressed higher levels of pAKT and antiapoptotic proteins, such as XIAP and survivin. The differential modulation of AKT by LGTV may be a mechanism by which viral persistence is initiated, and our results demonstrate a complicated manipulation of host pathways by TBFVs.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Infecções por Flavivirus/enzimologia , Interações Hospedeiro-Patógeno , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células HEK293 , Humanos
2.
Viruses ; 10(7)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30011971

RESUMO

Interferon (IFN)-induced 2'-5'-oligoadenylate synthetase (OAS) proteins exhibit an extensive and efficient antiviral effect against flavivirus infection in mammals and birds. Only the 2'-5'-oligoadenylate synthetase-like (OASL) gene has been identified thus far in birds, except for ostrich, which has both OAS1 and OASL genes. In this study, we first investigated the antiviral activity of goose OASL (goOASL) protein against a duck-origin Tembusu virus (DTMUV) in duck embryo fibroblast cells (DEFs). To investigate the relationship of conserved amino acids that are related to OAS enzyme activity and ubiquitin-like (UBL) domains with the antiviral activity of goOASL, a series of mutant goOASL plasmids was constructed, including goOASL-S64C/D76E/D78E/D144T, goOASL∆UBLs and goOASL∆UBLs-S64C/D76E/D78E/D144T. Interestingly, all these mutant proteins significantly inhibited the replication of DTMUV in DEFs in a dose-dependent manner. Immunofluorescence analysis showed that the goOASL, goOASL-S64C/D76E/D78E/D144T, goOASL∆UBLs and goOASL∆UBLs-S64C/D76E/D78E/D144T proteins were located not only in the cytoplasm where DTMUV replicates but also in the nucleus of DEFs. However, the goOASL and goOASL mutant proteins were mainly colocalized with DTMUV in the cytoplasm of infected cells. Our data indicated that goOASL could significantly inhibit DTMUV replication in vitro, while the active-site residues S64, D76, D78 and D144, which were associated with OAS enzyme activity, the UBL domains were not required for the antiviral activity of goOASL protein.


Assuntos
2',5'-Oligoadenilato Sintetase/química , Doenças das Aves/enzimologia , Infecções por Flavivirus/veterinária , Flavivirus , 2',5'-Oligoadenilato Sintetase/genética , Animais , Doenças das Aves/virologia , Domínio Catalítico , Células Cultivadas , Patos/embriologia , Fibroblastos/química , Fibroblastos/virologia , Infecções por Flavivirus/enzimologia , Gansos , Mutação , Plasmídeos/genética , Transfecção , Ubiquitina/química , Ubiquitina/genética
3.
Virology ; 516: 147-157, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29358114

RESUMO

Flaviviruses depend on multiple host pathways during their life cycles and have evolved strategies to avoid the innate immune response. Previously, we showed that the West Nile virus capsid protein plays a role in this process by blocking apoptosis. In this study, we examined how expression of capsid proteins from several flaviviruses affects apoptosis and other host processes that impact virus replication. All of the tested capsid proteins protected cells from Fas-dependent apoptosis through a mechanism that requires activated Akt. Capsid expression upregulated other Akt-dependent cellular processes including expression of glucose transporter 1 and mitochondrial metabolism. Protein phosphatase 1, which is known to inactivate Akt, was identified as a DENV capsid interacting protein. This suggests that DENV capsid expression activates Akt by sequestering phosphatases that downregulate phospho-Akt. Capsid-dependent upregulation of Akt would enhance downstream signalling pathways that affect cell survival and metabolism, thus providing a favourable environment for virus replication.


Assuntos
Proteínas do Capsídeo/metabolismo , Infecções por Flavivirus/enzimologia , Infecções por Flavivirus/virologia , Flavivirus/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Replicação Viral , Apoptose , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Flavivirus/classificação , Flavivirus/genética , Flavivirus/metabolismo , Infecções por Flavivirus/genética , Infecções por Flavivirus/fisiopatologia , Humanos , Fosforilação , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais
4.
Virus Res ; 212: 70-7, 2016 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26368052

RESUMO

Members of the Flaviviridae (e.g., Dengue virus, West Nile virus, and Hepatitis C virus) contain a positive-sense RNA genome that encodes a large polyprotein. It is now also clear most if not all of these viruses also produce an abundant subgenomic long non-coding RNA. These non-coding RNAs, which are called subgenomic flavivirus RNAs (sfRNAs) or Xrn1-resistant RNAs (xrRNAs), are stable decay intermediates generated from the viral genomic RNA through the stalling of the cellular exoribonuclease Xrn1 at highly structured regions. Several functions of these flavivirus long non-coding RNAs have been revealed in recent years. The generation of these sfRNAs/xrRNAs from viral transcripts results in the repression of Xrn1 and the dysregulation of cellular mRNA stability. The abundant sfRNAs also serve directly as a decoy for important cellular protein regulators of the interferon and RNA interference antiviral pathways. Thus the generation of long non-coding RNAs from flaviviruses, hepaciviruses and pestiviruses likely disrupts aspects of innate immunity and may directly contribute to viral replication, cytopathology and pathogenesis.


Assuntos
Exorribonucleases/metabolismo , Infecções por Flavivirus/enzimologia , Flavivirus/metabolismo , RNA Longo não Codificante/metabolismo , RNA Viral/metabolismo , Animais , Exorribonucleases/genética , Flavivirus/genética , Infecções por Flavivirus/genética , Infecções por Flavivirus/virologia , Humanos , RNA Longo não Codificante/genética , RNA Viral/genética
5.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 8): 796-803, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19622863

RESUMO

The Modoc virus (MODV) is a flavivirus with no known vector (NKV). Evolutionary studies have shown that the viruses in the MODV group have evolved in association with mammals (bats, rodents) without transmission by an arthropod vector. MODV methyltransferase is the first enzyme from this evolutionary branch to be structurally characterized. The high-resolution structure of the methyltransferase domain of the MODV NS5 protein (MTase(MODV)) was determined. The protein structure was solved in the apo form and in complex with its cofactor S-adenosyl-L-methionine (SAM). Although it belongs to a separate evolutionary branch, MTase(MODV) shares structural characteristics with flaviviral MTases from the other branches. Its capping machinery is a relatively new target in flaviviral drug development and the observed structural conservation between the three flaviviral branches indicates that it may be possible to identify a drug that targets a range of flaviviruses. The structural conservation also supports the choice of MODV as a possible model for flavivirus studies.


Assuntos
Infecções por Flavivirus/enzimologia , Flavivirus/enzimologia , Metiltransferases/química , Proteínas não Estruturais Virais/química , Animais , Vetores Artrópodes , Quirópteros , Cristalização , Cristalografia por Raios X , Evolução Molecular , Infecções por Flavivirus/tratamento farmacológico , Infecções por Flavivirus/genética , Infecções por Flavivirus/transmissão , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína/genética , Análogos de Capuz de RNA/uso terapêutico , Capuzes de RNA/metabolismo , Ratos , S-Adenosilmetionina/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
6.
Virus Res ; 141(1): 101-4, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19185594

RESUMO

Serine/Threonine phosphorylation of the nonstructural protein 5 (NS5) is a conserved feature of flaviviruses, but the identity and function(s) of the responsible kinase(s) remain unknown. Serine 56 in the methyltransferase domain of NS5 can be phosphorylated intracellularly, is conserved in all flaviviruses, and is a critical residue in the catalytic mechanism. A negative charge at this residue inactivates the 2'-0 methyltransferase activity necessary to form a 5' cap structure of the viral RNA. Here we show pharmacologic inhibition of Casein Kinase 1 (CK1) suppresses yellow fever virus (YFV) production. We also demonstrate the alpha isoform of Casein Kinase 1 (CK1alpha), a kinase previously identified as phosphorylating Hepatitis C Virus NS5A protein, also phosphorylates serine 56 of YFV methyltransferase. Overall these results suggest CK1 activity can influence flaviviral replication.


Assuntos
Caseína Quinase I/metabolismo , Infecções por Flavivirus/enzimologia , Metiltransferases/metabolismo , Proteínas Virais/metabolismo , Vírus da Febre Amarela/enzimologia , Caseína Quinase I/química , Caseína Quinase I/genética , Linhagem Celular , Flavivirus/química , Flavivirus/enzimologia , Flavivirus/fisiologia , Humanos , Metiltransferases/química , Metiltransferases/genética , Fosforilação , Especificidade por Substrato , Proteínas Virais/química , Proteínas Virais/genética , Replicação Viral , Vírus da Febre Amarela/química , Vírus da Febre Amarela/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA