Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 679
Filtrar
1.
Mol Biol (Mosk) ; 58(1): 154-156, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38943586

RESUMO

Murine gammaherpesvirus 68 (MHV68) establishes latency mainly in B cells and causes lymphomas reminiscent of human gammaherpesvirus diseases in laboratory mice. To study the molecular mechanism of virus infection and how the viral determinants control cell and eventually cause tumorigenesis, readily available latently infected cell lines are essential. For in vitro MHV68 latency studies, only two cell culture systems have been available. Gammaherpesviruses are known to infect developing B cells and macrophages, therefore we aimed to expand the MHV68 latently infected cell line repertoire. Here, several latently infected immature B cell and macrophage-like cell line clones were generated. Hygromycin-resistant recombinant MHV68 was isolated from a laboratory-made latent cell line, HE2.1, and propagated to develop stable cell lines that carry the viral genome under hygromycin selection. Subclones of these cells lines were analyzed for viral miRNA expression by TaqMan qPCR and assessed for expression of a lytic viral transcript M3. The cell lines maintain the viral genome as an episome shown by the digestion-circularization PCR assay. Latently infected cell lines generated here do not express viral miRNAs higher than the parental cell line. However, these cell lines may provide an alternative tool to study latency mechanisms and miRNA target identification studies.


Assuntos
Genoma Viral , Higromicina B , Macrófagos , MicroRNAs , RNA Viral , Rhadinovirus , Latência Viral , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Latência Viral/genética , Higromicina B/farmacologia , Higromicina B/análogos & derivados , Macrófagos/virologia , Macrófagos/metabolismo , Rhadinovirus/genética , RNA Viral/genética , RNA Viral/metabolismo , Linhagem Celular , Regulação Viral da Expressão Gênica , Células Precursoras de Linfócitos B/virologia , Células Precursoras de Linfócitos B/metabolismo , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Cinamatos
2.
J Virol ; 98(6): e0042324, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38771044

RESUMO

Bovine alphaherpesvirus 1 (BoHV-1) infection causes respiratory tract disorders and immune suppression and may induce bacterial pneumonia. BoHV-1 establishes lifelong latency in sensory neurons after acute infection. Reactivation from latency consistently occurs following stress or intravenous injection of the synthetic corticosteroid dexamethasone (DEX), which mimics stress. The immediate early transcription unit 1 (IEtu1) promoter drives expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators necessary for productive infection and reactivation from latency. The IEtu1 promoter contains two glucocorticoid receptor (GR) responsive elements (GREs) that are transactivated by activated GR. GC-rich motifs, including consensus binding sites for specificity protein 1 (Sp1), are in the IEtu1 promoter sequences. E2F family members bind a consensus sequence (TTTCCCGC) and certain specificity protein 1 (Sp1) sites. Consequently, we hypothesized that certain E2F family members activate IEtu1 promoter activity. DEX treatment of latently infected calves increased the number of E2F2+ TG neurons. GR and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivate a 436-bp cis-regulatory module in the IEtu1 promoter that contains both GREs. A luciferase reporter construct containing a 222-bp fragment downstream of the GREs was transactivated by E2F2 unless two adjacent Sp1 binding sites were mutated. Chromatin immunoprecipitation studies revealed that E2F2 occupied IEtu1 promoter sequences when the BoHV-1 genome was transfected into mouse neuroblastoma (Neuro-2A) or monkey kidney (CV-1) cells. In summary, these findings revealed that GR and E2F2 cooperatively transactivate IEtu1 promoter activity, which is predicted to influence the early stages of BoHV-1 reactivation from latency. IMPORTANCE: Bovine alpha-herpesvirus 1 (BoHV-1) acute infection in cattle leads to establishment of latency in sensory neurons in the trigeminal ganglia (TG). A synthetic corticosteroid dexamethasone consistently initiates BoHV-1 reactivation in latently infected calves. The BoHV-1 immediate early transcription unit 1 (IEtu1) promoter regulates expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators. Hence, the IEtu1 promoter must be activated for the reactivation to occur. The number of TG neurons expressing E2F2, a transcription factor and cell cycle regulator, increased during early stages of reactivation from latency. The glucocorticoid receptor (GR) and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivated a 436-bp cis-regulatory module (CRM) in the IEtu1 promoter that contains two GR responsive elements. Chromatin immunoprecipitation studies revealed that E2F2 occupies IEtu1 promoter sequences in cultured cells. GR and E2F2 mediate cooperative transactivation of IEtu1 promoter activity, which is predicted to stimulate viral replication following stressful stimuli.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Bovino 1 , Regiões Promotoras Genéticas , Receptores de Glucocorticoides , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/fisiologia , Animais , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Bovinos , Ativação Transcricional , Proteínas Virais/metabolismo , Proteínas Virais/genética , Dexametasona/farmacologia , Ativação Viral , Latência Viral , Linhagem Celular , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/genética , Camundongos , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Elementos de Resposta , Sítios de Ligação , Transativadores , Ubiquitina-Proteína Ligases
3.
J Virol ; 98(4): e0060323, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38517165

RESUMO

Herpesviruses replicate by cleaving concatemeric dsDNA into single genomic units that are packaged through an oligomeric portal present in preformed procapsids. In contrast to what is known about phage portal proteins, details concerning herpesvirus portal structure and function are not as well understood. A panel of 65 Varicella-Zoster virus (VZV) recombinant portal proteins with five amino acid in-frame insertions were generated by random transposon mutagenesis of the VZV portal gene, ORF54. Subsequently, 65 VZVLUC recombinant viruses (TNs) were generated via recombineering. Insertions were mapped to predicted portal domains (clip, wing, stem, wall, crown, and ß-hairpin tunnel-loop) and recombinant viruses were characterized for plaque morphology, replication kinetics, pORF54 expression, and classified based on replication in non-complementing (ARPE19) or complementing (ARPE54C50) cell lines. The N- and C-termini were tolerant to insertion mutagenesis, as were certain clip sub-domains. The majority of mutants mapping to the wing, wall, ß-hairpin tunnel loop, and stem domains were lethal. Elimination of the predicted ORF54 start codon revealed that the first 40 amino acids of the N-terminus were not required for viral replication. Stop codon insertions in the C-terminus showed that the last 100 amino acids were not required for viral replication. Lastly, a putative protease cleavage site was identified in the C-terminus of pORF54. Cleavage was likely orchestrated by a viral protease; however, processing was not required for DNA encapsidation and viral replication. The panel of recombinants should prove valuable in future studies to dissect mammalian portal structure and function.IMPORTANCEThough nucleoside analogs and a live-attenuated vaccine are currently available to treat some human herpesvirus family members, alternate methods of combating herpesvirus infection could include blocking viral replication at the DNA encapsidation stage. The approval of Letermovir provided proof of concept regarding the use of encapsidation inhibitors to treat herpesvirus infections in the clinic. We propose that small-molecule compounds could be employed to interrupt portal oligomerization, assembly into the capsid vertex, or affect portal function/dynamics. Targeting portal at any of these steps would result in disruption of viral DNA packaging and a decrease or absence of mature infectious herpesvirus particles. The oligomeric portals of herpesviruses are structurally conserved, and therefore, it may be possible to find a single compound capable of targeting portals from one or more of the herpesvirus subfamilies. Drug candidates from such a series would be effective against viruses resistant to the currently available antivirals.


Assuntos
Infecções por Herpesviridae , Herpesvirus Humano 3 , Animais , Humanos , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/metabolismo , Mutagênese , Replicação Viral , Infecções por Herpesviridae/genética , DNA/metabolismo , Aminoácidos/genética , Mamíferos/genética
4.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958855

RESUMO

Herpesvirus is associated with various neurological disorders and a specific diagnosis is associated with a better prognosis. MicroRNAs (miRNAs) are potential diagnostic and prognostic biomarkers of neurological diseases triggered by herpetic infection. In this review, we discuss miRNAs that have been associated with neurological disorders related to the action of herpesviruses. Human miRNAs and herpesvirus-encoded miRNAs were listed and discussed. This review article will be valuable in stimulating the search for new diagnostic and prognosis alternatives and understanding the role of these miRNAs in neurological diseases triggered by herpesviruses.


Assuntos
Infecções por Herpesviridae , Herpesviridae , MicroRNAs , Humanos , MicroRNAs/genética , RNA Viral , Infecções por Herpesviridae/complicações , Infecções por Herpesviridae/genética , Herpesviridae/genética , Interações Hospedeiro-Patógeno
5.
PLoS One ; 18(11): e0295082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38015883

RESUMO

BACKGROUND: Previous studies have found that the persistence of herpesvirus significantly increases the risk of idiopathic pulmonary fibrosis (IPF), but it is unclear whether this effect is causal. We conducted a two-sample Mendelian randomization (MR) study to evaluate the causal relationship between three herpesvirus infections and IPF. METHODS: We used genome-wide association studies (GWAS) data from three independent datasets, including FinnGen cohort, Milieu Intérieur cohort, and 23andMe cohort, to screen for instrumental variables (IVs) of herpesvirus infection or herpesvirus-related immunoglobulin G (IgG) levels. Outcome dataset came from the largest meta-analysis of IPF susceptibility currently available. RESULTS: In the FinnGen cohort, genetically predicted Epstein-Barr virus (EBV) (OR = 1.105, 95%CI: 0.897-1.149, p = 0.815), cytomegalovirus (CMV) (OR = 1.073, 95%CI: 0.926-1.244, p = 0.302) and herpes simplex (HSV) infection (OR = 0.906, 95%CI: 0.753-1.097, p = 0.298) were not associated with the risk of IPF. In the Milieu Intérieur cohort, we found no correlations between herpesvirus-related IgG EBV nuclear antigen-1 (EBNA1) (OR = 0.968, 95%CI: 0.782-1.198, p = 0.764), EBV viral capsid antigen (VCA) (OR = 1.061, 95CI%: 0.811-1.387, p = 0.665), CMV (OR = 1.108, 95CI%: 0.944-1.314, p = 0.240), HSV-1 (OR = 1.154, 95%CI: 0.684-1.945, p = 0.592) and HSV-2 (OR = 0.915, 95%CI: 0.793-1.056, p = 0.225) and IPF risk. Moreover, in the 23andMe cohort, no evidence of associations between mononucleosis (OR = 1.042, 95%CI: 0.709-1.532, p = 0.832) and cold scores (OR = 0.906, 95%CI: 0.603-1.362, p = 0.635) and IPF were found. Sensitivity analysis confirmed the robustness of our results. CONCLUSIONS: This study provides preliminary evidence that EBV, CMV, and HSV herpesviruses, and herpesviruses-related IgG levels, are not causally linked to IPF. Further MR analysis will be necessary when stronger instrument variables and GWAS with larger sample sizes become available.


Assuntos
Infecções por Citomegalovirus , Infecções por Vírus Epstein-Barr , Herpes Simples , Infecções por Herpesviridae , Herpesviridae , Herpesvirus Humano 1 , Fibrose Pulmonar Idiopática , Humanos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Infecções por Herpesviridae/complicações , Infecções por Herpesviridae/genética , Herpesviridae/genética , Herpes Simples/complicações , Citomegalovirus , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/complicações , Imunoglobulina G
6.
Virol J ; 20(1): 278, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031153

RESUMO

BACKGROUND: Equid alphaherpesvirus 1 (EHV-1) is a global viral pathogen of domestic equids which causes reproductive, respiratory and neurological disease. Few isolates acquired from naturally infected USA-based hosts have been fully sequenced and analyzed to date. An ORF 30 (DNA polymerase) variant (A2254G) has previously been associated with neurological disease in host animals. The purpose of this study was to perform phylogenomic analysis of EHV-1 isolates acquired from USA-based hosts and compare these isolates to previously sequenced global isolates. METHODS: EHV-1 was isolated from 23 naturally infected USA-based equids (6 different states, 15 disease outbreaks) with reproductive (22/23) or neurological disease (1/23). Following virus isolation, EHV-1 DNA was extracted for sequencing using Illumina MiSeq. Following reference-based assembly, whole viral genomes were annotated and assessed. Previously sequenced EHV-1 isolates (n = 114) obtained from global host equids were included in phylogenomic analyses. RESULTS: The overall average genomic distance was 0.0828% (SE 0.004%) for the 23 newly sequenced USA isolates and 0.0705% (SE 0.003%) when all 137 isolates were included. Clade structure was predominantly based on geographic origin. Numerous nucleotide substitutions (mean [range], 179 [114-297] synonymous and 81 [38-120] non-synonymous substitutions per isolate) were identified throughout the genome of the newly sequenced USA isolates. The previously described ORF 30 A2254G substitution (associated with neurological disease) was found in only one isolate obtained from a host with non-neurological clinical signs (reproductive disease), six additional, unique, non-synonymous ORF 30 substitutions were detected in 22/23 USA isolates. Evidence of recombination was present in most (22/23) of the newly sequenced USA isolates. CONCLUSIONS: Overall, the genomes of the 23 newly sequenced EHV-1 isolates obtained from USA-based hosts were broadly similar to global isolates. The previously described ORF 30 A2254G neurological substitution was infrequently detected in the newly sequenced USA isolates, most of which were obtained from host animals with reproductive disease. Recombination was likely to be partially responsible for genomic diversity in the newly sequenced USA isolates.


Assuntos
Infecções por Herpesviridae , Herpesvirus Equídeo 1 , Doenças dos Cavalos , Doenças do Sistema Nervoso , Animais , Cavalos , Filogenia , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/genética , Genoma Viral , Sequência de Bases , Doenças dos Cavalos/epidemiologia
7.
Viral Immunol ; 36(4): 290-297, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37040285

RESUMO

Toll-like receptors (TLRs) play a crucial role in the innate immune response to pathogens, and TLR3 could recognize and control the herpesvirus. We studied the effect of TLR3 polymorphisms on the risk of Kaposi's sarcoma-associated herpesvirus (KSHV) infection. A cross-sectional study was performed among human immunodeficiency virus (HIV)-infected individuals in Xinjiang, a KSHV-endemic region of China. The frequencies of nine single-nucleotide polymorphisms (SNPs) in TLR3 in 370 KSHV-infected patients and 558 controls, and their impact on plasma IFN-γ levels, were compared. The effect of TLR3 SNPs on the KSHV viral load in KSHV-infected subjects was also assessed. The minor allelic variant at rs13126816 was more common among KSHV-seronegative than KSHV-infected individuals. Two TLR3 SNPs (rs13126816 and rs3775291) showed a protective effect against KSHV infection (rs13126816: odds ratio [OR]dominant = 0.66, 95% confidence interval [CI]: 0.50-0.87; ORoverdominant = 0.65, 95% CI: 0.49-0.87; rs3775291: ORdominant = 0.76, 95% CI: 0.58-0.99; ORoverdominant = 0.75, 95% CI: 0.57-0.98). These associations were stronger in the Uyghur compared with the Han population. The haplotype, CGAC, significantly correlated with the risk of KSHV infection (OR = 0.72, p = 0.029). KSHV-infected individuals with homozygous rs13126816 AA genotypes had a lower KSHV viral load (aOR = 0.14; p = 0.038). However, no association was observed between TLR3 SNPs and plasma levels of IFN-γ. Genetic variants in TLR3 reduce the risk of KSHV infection and affect KSHV reactivation among HIV-infected individuals, especially in the Uyghur population.


Assuntos
Infecções por HIV , HIV-1 , Infecções por Herpesviridae , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Estudos Transversais , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/complicações , Herpesvirus Humano 8/genética , Infecções por HIV/complicações , Infecções por HIV/genética , Sarcoma de Kaposi/complicações , Receptor 3 Toll-Like/genética
8.
Acta Virol ; 67(1): 79-90, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950888

RESUMO

Equine herpesvirus 1 (EHV1) infection is a global health problem in equines and the virus is responsible for abortions, respiratory disease and myeloencephalitis in horses. Disease management requires proper biosecurity and immunoprophylactic measures. Vaccines strengthening both arms of immunity are essential for proper control and there has been a continuous focus in this area for generation of better vaccines. Here we report construction of bacterial artificial chromosome (BAC) clone of EHV-1 strain Tohana for mutagenesis of the virus and generation of gE gene deletion mutant EHV1. The BAC clone was generated by inserting the mini-F plasmid replacing ORF71 of EHV1 and transforming into E. coli for generation of EHV1-BAC. The infectious virus was regenerated from EHV-1 BAC DNA in RK13 cells. To check utility of EHV1-BAC, we have generated mutant EHV1 by deleting the virulence-associated gE gene. The mutant virus (vToHΔgE) showed significantly reduced plaque size without affecting replication efficiency. Pathological evaluation of lesions in BALB/c mice infected with vToHΔgE revealed reduction in clinical signs and pathology in comparison to the wild-type virus. Generation of infectious BAC of EHV1 and its usage in construction of attenuated viruses shows potential of the technology for development of indigenous modified live vaccine for EHV1. Keywords: quine herpesvirus 1; bacterial artificial chromosome (BAC); mutation; glycoprotein E; vaccine.


Assuntos
Infecções por Herpesviridae , Herpesvirus Equídeo 1 , Doenças dos Cavalos , Gravidez , Feminino , Animais , Cavalos , Camundongos , Herpesvirus Equídeo 1/genética , Escherichia coli/genética , Modelos Animais de Doenças , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/genética , Doenças dos Cavalos/prevenção & controle , Deleção de Genes
9.
Proc Natl Acad Sci U S A ; 120(12): e2218825120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36917666

RESUMO

Interferons (IFNs) and the products of interferon-stimulated genes (ISGs) play crucial roles in host defense against virus infections. Although many ISGs have been characterized with respect to their antiviral activity, their target specificities and mechanisms of action remain largely unknown. Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that is linked to several human malignancies. Here, we used the genetically and biologically related virus, murine gammaherpesvirus 68 (MHV-68) and screened for ISGs with anti-gammaherpesvirus activities. We found that overexpression of RNF213 dramatically inhibited MHV-68 infection, whereas knockdown of endogenous RNF213 significantly promoted MHV-68 proliferation. Importantly, RNF213 also inhibited KSHV de novo infection, and depletion of RNF213 in the latently KSHV-infected iSLK-219 cell line significantly enhanced lytic reactivation. Mechanistically, we demonstrated that RNF213 targeted the Replication and Transcription Activator (RTA) of both KSHV and MHV-68, and promoted the degradation of RTA protein through the proteasome-dependent pathway. RNF213 directly interacted with RTA and functioned as an E3 ligase to ubiquitinate RTA via K48 linkage. Taken together, we conclude that RNF213 serves as an E3 ligase and inhibits the de novo infection and lytic reactivation of gammaherpesviruses by degrading RTA through the ubiquitin-proteasome pathway.


Assuntos
Gammaherpesvirinae , Infecções por Herpesviridae , Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Humanos , Adenosina Trifosfatases/metabolismo , Gammaherpesvirinae/genética , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/genética , Herpesvirus Humano 8/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Latência Viral/genética , Replicação Viral
10.
Viruses ; 15(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36851643

RESUMO

microRNAs are a class of small, single-stranded, noncoding RNAs that regulate gene expression. They can be significantly dysregulated upon exposure to any infection, serving as important biomarkers and therapeutic targets. Numerous human DNA viruses, along with several herpesviruses, have been found to encode and express functional viral microRNAs known as vmiRNAs, which can play a vital role in host-pathogen interactions by controlling the viral life cycle and altering host biological pathways. Viruses have also adopted a variety of strategies to prevent being targeted by cellular miRNAs. Cellular miRNAs can act as anti- or proviral components, and their dysregulation occurs during a wide range of infections, including herpesvirus infection. This demonstrates the significance of miRNAs in host herpesvirus infection. The current state of knowledge regarding microRNAs and their role in the different stages of herpes virus infection are discussed in this review. It also delineates the therapeutic and biomarker potential of these microRNAs in future research directions.


Assuntos
Infecções por Herpesviridae , MicroRNAs , Pequeno RNA não Traduzido , Humanos , MicroRNAs/genética , Interações Hospedeiro-Patógeno/genética , Provírus , Infecções por Herpesviridae/genética
11.
Acta Pharmacol Sin ; 44(4): 811-821, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36151392

RESUMO

Herpes simplex virus (HSV) infection induces a rapid and transient increase in intracellular calcium concentration ([Ca2+]i), which plays a critical role in facilitating viral entry. T-type calcium channel blockers and EGTA, a chelate of extracellular Ca2+, suppress HSV-2 infection. But the cellular mechanisms mediating HSV infection-activated Ca2+ signaling have not been completely defined. In this study we investigated whether the TRPV4 channel was involved in HSV-2 infection in human vaginal epithelial cells. We showed that the TRPV4 channel was expressed in human vaginal epithelial cells (VK2/E6E7). Using distinct pharmacological tools, we demonstrated that activation of the TRPV4 channel induced Ca2+ influx, and the TRPV4 channel worked as a Ca2+-permeable channel in VK2/E6E7 cells. We detected a direct interaction between the TRPV4 channel protein and HSV-2 glycoprotein D in the plasma membrane of VK2/E6E7 cells and the vaginal tissues of HSV-2-infected mice as well as in phallic biopsies from genital herpes patients. Pretreatment with specific TRPV4 channel inhibitors, GSK2193874 (1-4 µM) and HC067047 (100 nM), or gene silence of the TRPV4 channel not only suppressed HSV-2 infectivity but also reduced HSV-2-induced cytokine and chemokine generation in VK2/E6E7 cells by blocking Ca2+ influx through TRPV4 channel. These results reveal that the TRPV4 channel works as a Ca2+-permeable channel to facilitate HSV-2 infection in host epithelial cells and suggest that the design and development of novel TRPV4 channel inhibitors may help to treat HSV-2 infections.


Assuntos
Infecções por Herpesviridae , Herpesvirus Humano 2 , Canais de Cátion TRPV , Animais , Feminino , Humanos , Camundongos , Sinalização do Cálcio/genética , Sinalização do Cálcio/fisiologia , Células Epiteliais/metabolismo , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/metabolismo , Transdução de Sinais/fisiologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/fisiologia
12.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499174

RESUMO

Almost all people become infected with herpes viruses, including herpes simplex virus type 1 (HSV-1), during their lifetime. Typically, these viruses persist in a latent form that is resistant to all available antiviral medications. Under certain conditions, such as immunosuppression, the latent forms reactivate and cause disease. Moreover, strains of herpesviruses that are drug-resistant have rapidly emerged. Therefore, it is important to develop alternative methods capable of eradicating herpesvirus infections. One promising direction is the development of CRISPR/Cas systems for the therapy of herpesvirus infections. We aimed to design a CRISPR/Cas system for relatively effective long-term and safe control of HSV-1 infection. Here, we show that plasmids encoding the CRISPR/Cas9 system from Streptococcus pyogenes with a single sgRNA targeting the UL30 gene can completely suppress HSV-1 infection of the Vero cell line within 6 days and provide substantial protection within 9 days. For the first time, we show that CRISPR/CasX from Deltaproteobacteria with a single guide RNA against UL30 almost completely suppresses HSV-1 infection of the Vero cell line for 3 days and provides substantial protection for 6 days. We also found that the Cas9 protein without sgRNAs attenuates HSV-1 infection. Our results show that the developed CRISPR/Cas systems are promising therapeutic approaches to control HSV-1 infections.


Assuntos
Herpes Simples , Infecções por Herpesviridae , Herpesviridae , Herpesvirus Humano 1 , Humanos , Sistemas CRISPR-Cas/genética , Herpesvirus Humano 1/genética , Herpes Simples/genética , Infecções por Herpesviridae/genética , Proteína 9 Associada à CRISPR/genética
13.
J Virol ; 96(22): e0146922, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36326276

RESUMO

Herpesviral infection reflects thousands of years of coevolution and the constant struggle between virus and host for control of cellular gene expression. During Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication, the virus rapidly seizes control of host gene expression machinery by triggering a massive RNA decay event via a virally encoded endoribonuclease, SOX. This virus takeover strategy decimates close to 80% of cellular transcripts, reallocating host resources toward viral replication. The host cell, however, is not entirely passive in this assault on RNA stability. A small pool of host transcripts that actively evade SOX cleavage has been identified over the years. One such "escapee," C19ORF66 (herein referred to as Shiftless [SHFL]), encodes a potent antiviral protein capable of restricting the replication of multiple DNA and RNA viruses and retroviruses, including KSHV. Here, we show that SHFL restricts KSHV replication by targeting the expression of critical viral early genes, including the master transactivator protein, KSHV ORF50, and thus subsequently the entire lytic gene cascade. Consistent with previous reports, we found that the SHFL interactome throughout KSHV infection is dominated by RNA-binding proteins that influence both translation and protein stability, including the viral protein ORF57, a crucial regulator of viral RNA fate. We next show that SHFL affects cytoplasmic RNA granule formation, triggering the disassembly of processing bodies. Taken together, our findings provide insights into the complex relationship between RNA stability, RNA granule formation, and the antiviral response to KSHV infection. IMPORTANCE In the past 5 years, SHFL has emerged as a novel and integral piece of the innate immune response to viral infection. SHFL has been reported to restrict the replication of multiple viruses, including several flaviviruses and the retrovirus HIV-1. However, to date, the mechanism(s) by which SHFL restricts DNA virus infection remains largely unknown. We have previously shown that following its escape from KSHV-induced RNA decay, SHFL acts as a potent antiviral factor, restricting nearly every stage of KSHV lytic replication. In this study, we set out to determine the mechanism by which SHFL restricts KSHV infection. We demonstrate that SHFL impacts all classes of KSHV genes and found that SHFL restricts the expression of several key early genes, including KSHV ORF50 and ORF57. We then mapped the interactome of SHFL during KSHV infection and found several host and viral RNA-binding proteins that all play crucial roles in regulating RNA stability and translation. Lastly, we found that SHFL expression influences RNA granule formation both outside and within the context of KSHV infection, highlighting its broader impact on global gene expression. Collectively, our findings highlight a novel relationship between a critical piece of the antiviral response to KSHV infection and the regulation of RNA-protein dynamics.


Assuntos
Infecções por Herpesviridae , Herpesvirus Humano 8 , Humanos , Herpesvirus Humano 8/fisiologia , Regulação Viral da Expressão Gênica , Grânulos de Ribonucleoproteínas Citoplasmáticas , Replicação Viral , Infecções por Herpesviridae/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Expressão Gênica , Antivirais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo
14.
Viruses ; 14(10)2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36298850

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with vascular endothelial cell tumor, Kaposi's sarcoma (KS) and lymphoproliferative disorder, multicentric Castleman's disease (MCD), primary effusion lymphoma (PEL) and KSHV inflammatory cytokine syndrome (KICS). Dysregulation of proinflammatory cytokines is found in most KSHV associated diseases. However, little is known about the role of host microenvironment in the regulation of KSHV establishment in B cells. In the present study, we demonstrated that IFN-γ has a strong inhibitory effect on KSHV infection but only in a subset of tonsil-derived lymphocyte samples that are intrinsically more susceptible to infection, contain higher proportions of naïve B cells, and display increased levels of IRF1 and STAT1-pY701. The effect of IFN-γ in responsive samples was associated with increased frequencies of germinal center B cells (GCB) and decreased infection of plasma cells, suggesting that IFN-γ-mediated modulation of viral dynamics in GC can inhibit the establishment of KSHV infection.


Assuntos
Linfócitos B , Infecções por Herpesviridae , Herpesvirus Humano 8 , Interferon gama , Humanos , Síndrome da Imunodeficiência Adquirida/imunologia , Linfócitos B/imunologia , Hiperplasia do Linfonodo Gigante/imunologia , Citocinas/imunologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/imunologia , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/imunologia , Interferon gama/imunologia , Sarcoma de Kaposi/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Suscetibilidade a Doenças/imunologia
15.
Proc Natl Acad Sci U S A ; 119(32): e2123362119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921433

RESUMO

The germinal center (GC) plays a central role in the generation of antigen-specific B cells and antibodies. Tight regulation of the GC is essential due to the inherent risks of tumorigenesis and autoimmunity posed by inappropriate GC B cell processes. Gammaherpesviruses such as Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68) utilize numerous armaments to drive infected naïve B cells, independent of antigen, through GC reactions to expand the latently infected B cell population and establish a stable latency reservoir. We previously demonstrated that the MHV68 microRNA (miRNA) mghv-miR-M1-7-5p represses host EWSR1 (Ewing sarcoma breakpoint region 1) to promote B cell infection. EWSR1 is a transcription and splicing regulator that is recognized for its involvement as a fusion protein in Ewing sarcoma. A function for EWSR1 in B cell responses has not been previously reported. Here, we demonstrate that 1) B cell-specific deletion of EWSR1 had no effect on generation of mature B cell subsets or basal immunoglobulin levels in naïve mice, 2) repression or ablation of EWSR1 in B cells promoted expansion of MHV68 latently infected GC B cells, and 3) B cell-specific deletion of EWSR1 during a normal immune response to nonviral antigen resulted in significantly elevated numbers of antigen-specific GC B cells, plasma cells, and circulating antibodies. Notably, EWSR1 deficiency did not affect the proliferation or survival of GC B cells but instead resulted in the generation of increased numbers of precursor GC B cells. Cumulatively, these findings demonstrate that EWSR1 is a negative regulator of B cell responses.


Assuntos
Linfócitos B , Gammaherpesvirinae , Centro Germinativo , Infecções por Herpesviridae , MicroRNAs , Proteína EWS de Ligação a RNA , Infecções Tumorais por Vírus , Animais , Linfócitos B/imunologia , Linfócitos B/virologia , Gammaherpesvirinae/genética , Gammaherpesvirinae/fisiologia , Deleção de Genes , Centro Germinativo/imunologia , Centro Germinativo/virologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/virologia , Latência Viral
16.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35177478

RESUMO

The role of N6-methyladenosine (m6A) modifications has increasingly been associated with a diverse set of roles in modulating viruses and influencing the outcomes of viral infection. Here, we report that the landscape of m6A deposition is drastically shifted during Kaposi's sarcoma-associated herpesvirus (KSHV) lytic infection for both viral and host transcripts. In line with previous reports, we also saw an overall decrease in host methylation in favor of viral messenger RNA (mRNA), along with 5' hypomethylation and 3' hypermethylation. During KSHV lytic infection, a major shift in overall mRNA abundance is driven by the viral endoribonuclease SOX, which induces the decay of greater than 70% of transcripts. Here, we reveal that interlukin-6 (IL-6) mRNA, a well-characterized, SOX-resistant transcript, is m6A modified during lytic infection. Furthermore, we show that this modification falls within the IL-6 SOX resistance element, an RNA element in the IL-6 3' untranslated region (UTR) that was previously shown to be sufficient for protection from SOX cleavage. We show that the presence of this m6A modification is essential to confer SOX resistance to the IL-6 mRNA. We next show that this modification recruits the m6A reader YTHDC2 and found that YTHDC2 is necessary for the escape of the IL-6 transcript. These results shed light on how the host cell has evolved to use RNA modifications to circumvent viral manipulation of RNA fate during KSHV infection.


Assuntos
Endorribonucleases/metabolismo , RNA Helicases/metabolismo , Estabilidade de RNA/fisiologia , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Linhagem Celular Tumoral , Endorribonucleases/genética , Expressão Gênica/genética , Regulação Viral da Expressão Gênica/genética , Células HEK293 , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/patogenicidade , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Metilação , RNA Helicases/genética , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
17.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216447

RESUMO

Oncolytic bovine herpesvirus type 1 (BoHV-1) infection induces DNA damage in human lung adenocarcinoma cell line A549. However, the underlying mechanisms are not fully understood. We found that BoHV-1 infection decreased the steady-state protein levels of p53-binding protein 1 (53BP1), which plays a central role in dictating DNA damage repair and maintaining genomic stability. Furthermore, BoHV-1 impaired the formation of 53BP1 foci, suggesting that BoHV-1 inhibits 53BP1-mediated DNA damage repair. Interestingly, BoHV-1 infection redistributed intracellular ß-catenin, and iCRT14 (5-[[2,5-Dimethyl-1-(3-pyridinyl)-1H-pyrrol-3-yl]methylene]-3-phenyl-2,4-thiazolidinedione), a ß-catenin-specific inhibitor, enhanced certain viral protein expression, such as the envelope glycoproteins gC and gD, and enhanced virus infection-induced DNA damage. Therefore, for the first time, we provide evidence showing that BoHV-1 infection disrupts 53BP1-mediated DNA damage repair and suggest ß-catenin as a potential host factor restricting both virus replication and DNA damage in A549 cells.


Assuntos
Adenocarcinoma de Pulmão/genética , Dano ao DNA/efeitos dos fármacos , Infecções por Herpesviridae/genética , Neoplasias Pulmonares/genética , Piridinas/farmacologia , Pirróis/farmacologia , Tiazolidinedionas/farmacologia , Proteínas Virais/genética , beta Catenina/antagonistas & inibidores , Células A549 , Linhagem Celular Tumoral , Dano ao DNA/genética , Herpesvirus Bovino 1/patogenicidade , Humanos , Replicação Viral/efeitos dos fármacos
18.
Viruses ; 14(1)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35062301

RESUMO

Human respiratory syncytial virus (hRSV) infection brings a wide spectrum of clinical outcomes, from a mild cold to severe bronchiolitis or even acute interstitial pneumonia. Among the known factors influencing this clinical diversity, genetic background has often been mentioned. In parallel, recent evidence has also pointed out that an early infectious experience affects heterologous infections severity. Here, we analyzed the importance of these two host-related factors in shaping the immune response in pneumoviral disease. We show that a prior gammaherpesvirus infection improves, in a genetic background-dependent manner, the immune system response against a subsequent lethal dose of pneumovirus primary infection notably by inducing a systematic expansion of the CD8+ bystander cell pool and by modifying the resident alveolar macrophages (AMs) phenotype to induce immediate cyto/chemokinic responses upon pneumovirus exposure, thereby drastically attenuating the host inflammatory response without affecting viral replication. Moreover, we show that these AMs present similar rapid and increased production of neutrophil chemokines both in front of pneumoviral or bacterial challenge, confirming recent studies attributing a critical antibacterial role of primed AMs. These results corroborate other recent studies suggesting that the innate immunity cells are themselves capable of memory, a capacity hitherto reserved for acquired immunity.


Assuntos
Patrimônio Genético , Infecções por Herpesviridae/imunologia , Macrófagos Alveolares/imunologia , Infecções por Pneumovirus/imunologia , Pneumovirus/imunologia , Rhadinovirus/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Feminino , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Imunidade Inata , Inflamação/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Infecções Pneumocócicas/imunologia , Pneumovirus/fisiologia , Infecções por Pneumovirus/genética , Infecções por Pneumovirus/patologia , Infecções por Pneumovirus/virologia , Rhadinovirus/fisiologia
19.
Microbiol Spectr ; 10(1): e0146421, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019687

RESUMO

The open reading frame 50 (ORF50) protein of Kaposi's sarcoma-associated herpesvirus (KSHV) is the master regulator essential for initiating the viral lytic cycle. Previously, we have demonstrated that the ORF50 protein can cooperate with Sp3 to synergistically activate a set of viral and cellular gene promoters through highly conserved ORF50-responsive elements that harbor a Sp3-binding motif. Herein, we show that Sp3 undergoes proteolytic cleavage during the viral lytic cycle, and the cleavage of Sp3 is dependent on caspase activation. Since similar cleavage patterns of Sp3 could be detected in both KSHV-positive and KSHV-negative lymphoma cells undergoing apoptosis, the proteolytic cleavage of Sp3 could be a common event during apoptosis. Mutational analysis identifies 12 caspase cleavage sites in Sp3, which are situated at the aspartate (D) positions D17, D19, D180, D273, D275, D293, D304 (or D307), D326, D344, D530, D543, and D565. Importantly, we noticed that three stable Sp3 C-terminal fragments generated through cleavage at D530, D543, or D565 encompass an intact DNA-binding domain. Like the full-length Sp3, the C-terminal fragments of Sp3 could still retain the ability to cooperate with ORF50 protein to activate specific viral and cellular gene promoters synergistically. Collectively, our findings suggest that despite the proteolytic cleavage of Sp3 under apoptotic conditions, the resultant Sp3 fragments may retain biological activities important for the viral lytic cycle or for cellular apoptosis. IMPORTANCE The ORF50 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) is the key viral protein that controls the switch from latency to lytic reactivation. It is a potent transactivator that can activate target gene promoters via interacting with other cellular DNA-binding transcription factors, such as Sp3. In this report, we show that Sp3 is proteolytically cleaved during the viral lytic cycle, and up to 12 caspase cleavage sites are identified in Sp3. Despite the proteolytic cleavage of Sp3, several resulting C-terminal fragments that have intact zinc-finger DNA-binding domains still retain substantial influence in the synergy with ORF50 to activate specific gene promoters. Overall, our studies elucidate the caspase-mediated cleavage of Sp3 and uncover how ORF50 utilizes the cleavage fragments of Sp3 to transactivate specific viral and cellular gene promoters.


Assuntos
Caspases/metabolismo , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 8/fisiologia , Fator de Transcrição Sp3/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Apoptose , Caspases/genética , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/fisiopatologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/genética , Interações Hospedeiro-Patógeno , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Linfoma/genética , Linfoma/metabolismo , Linfoma/fisiopatologia , Linfoma/virologia , Alinhamento de Sequência , Fator de Transcrição Sp3/química , Fator de Transcrição Sp3/genética , Transativadores/genética , Transativadores/metabolismo , Latência Viral
20.
J Virol ; 96(3): e0178221, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34787459

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 is an RNA-binding posttranscriptional regulator. We recently applied an affinity-purified anti-ORF57 antibody to conduct ORF57 cross-linking immunoprecipitation (CLIP) in combination with RNA-sequencing (CLIP-seq) and analyzed the genome-wide host RNA transcripts in association with ORF57 in BCBL-1 cells with lytic KSHV infection. Mapping of the CLIP RNA reads to the human genome (GRCh37) revealed that most of the ORF57-associated RNA reads were from rRNAs. The remaining RNA reads mapped to several classes of host noncoding and protein-coding mRNAs. We found that ORF57 binds and regulates expression of a subset of host long noncoding RNAs (lncRNAs), including LINC00324, LINC00355, and LINC00839, which are involved in cell growth. ORF57 binds small nucleolar RNAs (snoRNAs) responsible for 18S and 28S rRNA modifications but does not interact with fibrillarin or NOP58. We validated ORF57 interactions with 67 snoRNAs by ORF57 RNA immunoprecipitation (RIP)-snoRNA array assays. Most of the identified ORF57 rRNA binding sites (BS) overlap the sites binding snoRNAs. We confirmed ORF57-snoRA71B RNA interaction in BCBL-1 cells by ORF57 RIP and Northern blot analyses using a 32P-labeled oligonucleotide probe from the 18S rRNA region complementary to snoRA71B. Using RNA oligonucleotides from the rRNA regions that ORF57 binds for oligonucleotide pulldown-Western blot assays, we selectively verified ORF57 interactions with 5.8S and 18S rRNAs. Polysome profiling revealed that ORF57 associates with both monosomes and polysomes and that its association with polysomes increases PABPC1 binding to polysomes but prevents Ago2 association with polysomes. Our data indicate a functional correlation with ORF57 binding and suppression of Ago2 activities for ORF57 promotion of gene expression. IMPORTANCE As an RNA-binding protein, KSHV ORF57 regulates RNA splicing, stability, and translation and inhibits host innate immunity by blocking the formation of RNA granules in virus-infected cells. In this study, ORF57 was found to interact with many host noncoding RNAs, including lncRNAs, snoRNAs, and rRNAs, to carry out additional unknown functions. ORF57 binds a group of lncRNAs via the RNA motifs identified by ORF57 CLIP-seq to regulate their expression. ORF57 associates with snoRNAs independently of fibrillarin and NOP58 proteins and with rRNA in the regions that commonly bind snoRNAs. Knockdown of fibrillarin expression decreases the expression of snoRNAs and CDK4 but does not affect viral gene expression. More importantly, we found that ORF57 binds translationally active polysomes and enhances PABPC1 but prevents Ago2 association with polysomes. Data provide compelling evidence on how ORF57 in KSHV-infected cells might regulate protein synthesis by blocking Ago2's hostile activities on translation.


Assuntos
Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno/genética , Polirribossomos/metabolismo , RNA não Traduzido/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Regulação da Expressão Gênica , Regulação Viral da Expressão Gênica , Estudo de Associação Genômica Ampla , Infecções por Herpesviridae/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA