Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.755
Filtrar
1.
J Med Chem ; 67(8): 6268-6291, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38619191

RESUMO

Overactivation of cyclic GMP-AMP synthase (cGAS) is implicated in the occurrence of many inflammatory and autoimmune diseases, and inhibition of cGAS with a specific inhibitor has been proposed as a potential therapeutic strategy. However, only a few low-potency cGAS inhibitors have been reported, and few are suitable for clinical investigation. As a continuation of our structural optimization on the reported cGAS inhibitor 6 (G140), we developed a series of spiro[carbazole-3,3'-pyrrolidine] derivatives bearing a unique 2-azaspiro[4.5]decane structural motif, among which compound 30d-S was identified with high cellular effects against cGAS. This compound showed improved plasma exposure, lower clearance, and an oral bioavailability of 35% in rats. Moreover, in the LPS-induced acute lung injury (ALI) mice model, oral administration of compound 30d-S at 30 mg/kg markedly reduced lung inflammation and alleviated histopathological changes. These results confirm that 30d-S is a new efficacious cGAS inhibitor and is worthy of further investigation.


Assuntos
Lesão Pulmonar Aguda , Carbazóis , Desenho de Fármacos , Nucleotidiltransferases , Pirrolidinas , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Camundongos , Masculino , Humanos , Ratos , Carbazóis/síntese química , Carbazóis/farmacologia , Carbazóis/química , Carbazóis/uso terapêutico , Carbazóis/farmacocinética , Pirrolidinas/farmacologia , Pirrolidinas/síntese química , Pirrolidinas/química , Pirrolidinas/uso terapêutico , Pirrolidinas/farmacocinética , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/metabolismo , Lipopolissacarídeos , Ratos Sprague-Dawley , Compostos de Espiro/síntese química , Compostos de Espiro/farmacologia , Compostos de Espiro/química , Compostos de Espiro/uso terapêutico , Compostos de Espiro/farmacocinética , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
2.
J Med Chem ; 67(8): 6064-6080, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38595098

RESUMO

It has been shown that PRMT5 inhibition by small molecules can selectively kill cancer cells with homozygous deletion of the MTAP gene if the inhibitors can leverage the consequence of MTAP deletion, namely, accumulation of the MTAP substrate MTA. Herein, we describe the discovery of TNG908, a potent inhibitor that binds the PRMT5·MTA complex, leading to 15-fold-selective killing of MTAP-deleted (MTAP-null) cells compared to MTAPintact (MTAP WT) cells. TNG908 shows selective antitumor activity when dosed orally in mouse xenograft models, and its physicochemical properties are amenable for crossing the blood-brain barrier (BBB), supporting clinical study for the treatment of both CNS and non-CNS tumors with MTAP loss.


Assuntos
Antineoplásicos , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Humanos , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Antineoplásicos/síntese química , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/tratamento farmacológico , Encéfalo/metabolismo , Relação Estrutura-Atividade
3.
J Pharm Biomed Anal ; 244: 116116, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38537542

RESUMO

EC5026 is a novel soluble epoxide hydrolase inhibitor being developed clinically to treat neuropathic pain and inflammation. In the current study, we employed the LC-ESI-Q-TOF-MS/MS technique to identify four in-vivo phase-I metabolites of EC5026 in rat model, out of which three were found to be novel. The identified metabolites include aliphatic hydroxylation, di-hydroxylation, terminal desaturation, and carboxylation. No phase-II metabolites were found. The pharmacokinetic profile of identified metabolites was established after a single oral dose of EC5026 to Wistar rats. The Tmax of the drug and metabolites were found to be in the range of 1-2 hours and 4-12 hours, respectively. The major metabolites M1 and M2 were found to have more than 2-fold (263.87% AUC) and equivalent exposure (96.33% AUC) compared to the parent drug, respectively. Further, the docking study revealed that the mono-hydroxylated and terminally desaturated metabolites possess better binding affinity than the parent drug. Therefore, these metabolites may hold sEH inhibition potential and can be followed through future research.


Assuntos
Epóxido Hidrolases , Ratos Wistar , Espectrometria de Massas em Tandem , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Animais , Ratos , Espectrometria de Massas em Tandem/métodos , Masculino , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Cromatografia Líquida/métodos , Hidroxilação , Administração Oral , Espectrometria de Massas por Ionização por Electrospray/métodos
4.
J Med Chem ; 66(13): 9201-9222, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37334504

RESUMO

Acute pancreatitis (AP) is a potentially life-threatening illness characterized by an exacerbated inflammatory response with limited options for pharmacological treatment. Here, we describe the rational development of a library of soluble epoxide hydrolase (sEH) inhibitors for the treatment of AP. Synthesized compounds were screened in vitro for their sEH inhibitory potency and selectivity, and the results were rationalized by means of molecular modeling studies. The most potent compounds were studied in vitro for their pharmacokinetic profile, where compound 28 emerged as a promising lead. In fact, compound 28 demonstrated a remarkable in vivo efficacy in reducing the inflammatory damage in cerulein-induced AP in mice. Targeted metabololipidomic analysis further substantiated sEH inhibition as a molecular mechanism of the compound underlying anti-AP activity in vivo. Finally, pharmacokinetic assessment demonstrated a suitable profile of 28 in vivo. Collectively, compound 28 displays strong effectiveness as sEH inhibitor with potential for pharmacological AP treatment.


Assuntos
Pancreatite , Camundongos , Animais , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Epóxido Hidrolases , Doença Aguda , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/farmacocinética
5.
Clin Drug Investig ; 43(6): 413-420, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37269489

RESUMO

BACKGROUND AND OBJECTIVE: Deficiencies of enzymes acting downstream of glucosylceramide synthase (GCS) can cause severe substrate accumulation. Venglustat is a small-molecule, brain-penetrant GCS inhibitor under investigation for multiple diseases involving pathogenic glycosphingolipid accumulation. Here, we evaluate the pharmacokinetics, safety, and tolerability of venglustat in healthy Chinese volunteers. METHODS: Study PKM16116 was a phase I, single-center, non-randomized, open-label study to investigate the pharmacokinetics, safety, and tolerability of a single 15 mg dose of orally administered venglustat in healthy Chinese volunteers aged 18 to 45 years. RESULTS: A total of 14 volunteers (7 male; 7 female) with a body mass index from 20.9 kg/m2 to 27.1 kg/m2 were enrolled. The median time to reach the venglustat maximum plasma concentration was 2.50 h post-dose. The mean terminal half-life of venglustat was 30.6 ± 7.40 h. The mean systemic exposures across all participants were 60.3 ± 17.3 ng/mL for the maximum plasma concentration, and 2280 ± 697 ng·h/mL for the area under the plasma concentration-time curve extrapolated to infinity. There were no relevant differences in venglustat pharmacokinetics between male and female volunteers. A post hoc cross-study comparison analysis showed comparable venglustat pharmacokinetics in Chinese and non-Chinese volunteers. Venglustat was safe and well tolerated in the current study (a total of five Grade 1 treatment-emergent adverse events were reported in three volunteers). CONCLUSION: Venglustat showed a favorable pharmacokinetic, safety, and tolerability profile in healthy Chinese volunteers following a single oral 15 mg dose. CLINICAL TRIAL REGISTRY NO: CTR20201012 ( http://www.chinadrugtrials.org.cn ) registered on 24 February 2021 and ChiCTR2200066559 ( http://www.chictr.org.cn ) retrospectively registered on 9 December 2022.


Assuntos
Povo Asiático , Feminino , Humanos , Masculino , Administração Oral , Área Sob a Curva , Relação Dose-Resposta a Droga , Esquema de Medicação , Voluntários Saudáveis , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , China , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/uso terapêutico
6.
Xenobiotica ; 52(8): 904-915, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36149349

RESUMO

In vitro incubation of the bacterial ß-glucuronidase inhibitor UNC10201652 (4-(8-(piperazin-1-yl)-1,2,3,4-tetrahydro-[1,2,3]triazino[4',5':4,5]thieno[2,3-c]isoquinolin-5-yl)morpholine) with mouse, rat, and human liver microsomes and hepatocytes generated metabolites at multiple sites via deethylations, oxidations and glucuronidation.Two UNC10201652 metabolites were detected in human, and four in mouse and rat liver microsomal incubations. Intrinsic clearances of UNC10201652 in human, mouse, and rat liver microsomes were 48.1, 115, and 194 µL/min/mg respectively.Intrinsic clearances for human, mouse, and rat hepatocytes were 20.9, 116, and 140 µL/min/106 cells respectively and 24 metabolites were characterised: 9 for human and 11 for both rodent species.Plasma clearance was 324.8 mL/min/kg with an elimination half-life of 0.66 h following IV administration of UNC10201652 to Swiss Albino mice (3 mg/kg). Pre-treatment with 1-aminobenzotriazole (ABT) decreased clearance to 127.43 mL/min/kg, increasing the t1/2 to 3.66 h.Comparison of profiles after oral administration of UNC10201652 to control and pre-treated mice demonstrated a large increase in Cmax (from 15.2 ng/mL to 184.0 ng/mL), a delay in Tmax from 0.25 to 1 h and increased AUC from 20.1 to 253 h ng/ml. ABT pre-treatment increased oral bioavailability from 15% to >100% suggesting that CYP450's contributed significantly to UNC10201652 clearance in mice.


Assuntos
Inibidores Enzimáticos , Animais , Humanos , Camundongos , Ratos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo , Morfolinas/metabolismo , Morfolinas/farmacologia , Piperazinas/metabolismo , Piperazinas/farmacocinética
7.
Invest New Drugs ; 40(5): 1042-1050, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35932388

RESUMO

Pevonedistat (TAK-924/MLN4924) is an investigational small molecule inhibitor of the NEDD8-activating enzyme that has demonstrated clinical activity across solid tumors and hematological malignancies. Here we report the results of a phase 1 study evaluating the effect of rifampin, a strong CYP3A inducer, on the pharmacokinetics (PK) of pevonedistat in patients with advanced solid tumors (NCT03486314). Patients received a single 50 mg/m2 pevonedistat dose via a 1-h infusion on Days 1 (in the absence of rifampin) and 10 (in the presence of rifampin), and daily oral dosing of rifampin 600 mg on Days 3-11. Twenty patients were enrolled and were evaluable for PK and safety. Following a single dose of pevonedistat at 50 mg/m2, the mean terminal half-life of pevonedistat was 5.7 and 7.4 h in the presence and in the absence of rifampin, respectively. The geometric mean AUC0-inf of pevonedistat in the presence of rifampin was 79% of that without rifampin (90% CI: 69.2%-90.2%). The geometric mean Cmax of pevonedistat in the presence of rifampin was similar to that in the absence of rifampin (96.2%; 90% CI: 79.2%-117%). Coadministration of pevonedistat with rifampin, a strong metabolic enzyme inducer, did not result in clinically meaningful decreases in systemic exposures of pevonedistat. The study results support the recommendation that no pevonedistat dose adjustment is needed for patients receiving concomitant CYP3A inducers. CLINICALTRIALS.GOV IDENTIFIER: NCT03486314.


Assuntos
Neoplasias , Rifampina , Área Sob a Curva , Ciclopentanos , Interações Medicamentosas , Inibidores Enzimáticos/farmacocinética , Humanos , Proteína NEDD8 , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pirimidinas/efeitos adversos , Rifampina/farmacologia , Rifampina/uso terapêutico
8.
Clin Exp Pharmacol Physiol ; 49(11): 1197-1208, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35877984

RESUMO

Some studies have shown that the area under the concentration-time curve (AUC) of mycophenolic acid (MPA) should be higher for children with nephrotic syndrome (NS) than after renal transplantation. The pharmacodynamic aspect of MPA, the activity of inosine monophosphate dehydrogenase (IMPDH), has not been studied in children with NS. The study included 21 children (4-16 years old) with NS treated with mycophenolate mofetil. MPA and its glucuronide plasma concentrations were determined using validated high-performance liquid chromatography-ultraviolet (HPLC-UV). The separate HPLC-UV method was applied for IMPDH activity determination. The variability was expressed by the coefficient of variation (CV). IMPDH activity and MPA concentration (Ctrough ) before the morning dose amounted to 29.95 µmol s-1  mol-1 adenosine monophosphate (AMP) (range, 6.71-98.60 µmol s-1  mol-1 AMP) and 1.72 µg/mL (range, 0.39-4.34 µg/mL), respectively, whereas the area under the effect-time curve from 0 to 4 h and MPA AUC0-4 were 130.36 µmol s-1  mol-1 AMP × h (range, 23.58-306.57 µmol s-1  mol-1 AMP × h) and 24.63 µg h/mL (range, 12.21-67.48 µg h/mL), respectively. IMPDH activity decreased concomitantly with MPA concentration increase, however, the variability of the pharmacodynamic parameters was greater than of the pharmacokinetics. The median degree of maximum IMPDH inhibition was 61%. MPA Ctrough and predicted AUC were lower than in our previous study. Only a few MPA pharmacokinetic parameters correlated with the pharmacodynamics. IMPDH activity did not correlate with the children's age and did not differ between boys and girls. MPA clearance was the highest in younger children (median, 10.54 L/m2 /h) and cholesterol correlated negatively with the children's age (r = -0.659, P = 0.003). IMPDH minimum activity and the degree of maximum IMPDH inhibition were similar to those obtained in renal transplant recipients. IMPDH activity does not undergo developmental or gender-specific regulation in children with NS. MPA underexposure might be more frequent in younger children, especially with high cholesterol and triglycerides levels because of high MPA clearance.


Assuntos
Ácido Micofenólico , Síndrome Nefrótica , Monofosfato de Adenosina , Adolescente , Criança , Pré-Escolar , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/uso terapêutico , Feminino , Glucuronídeos , Humanos , IMP Desidrogenase , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Inosina Monofosfato , Masculino , Ácido Micofenólico/uso terapêutico , Síndrome Nefrótica/tratamento farmacológico , Triglicerídeos
9.
J Med Chem ; 65(4): 3343-3358, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35166541

RESUMO

Cholesterol 24-hydroxylase (CH24H or CYP46A1) is a brain-specific cytochrome P450 enzyme that metabolizes cholesterol into 24S-hydroxycholesterol (24HC) for regulating brain cholesterol homeostasis. For the development of a novel and potent CH24H inhibitor, we designed and synthesized 3,4-disubstituted pyridine derivatives using a structure-based drug design approach starting from compounds 1 (soticlestat) and 2 (thioperamide). Optimization of this series by focusing on ligand-lipophilicity efficiency value resulted in the discovery of 4-(4-methyl-1-pyrazolyl)pyridine derivative 17 (IC50 = 8.5 nM) as a potent and highly selective CH24H inhibitor. The X-ray crystal structure of CH24H in complex with compound 17 revealed a unique binding mode. Both blood-brain barrier penetration and reduction of 24HC levels (26% reduction) in the mouse brain were confirmed by oral administration of 17 at 30 mg/kg, indicating that 17 is a promising tool for the novel and selective inhibition of CH24H.


Assuntos
Anticolesterolemiantes/síntese química , Anticolesterolemiantes/farmacologia , Colesterol 24-Hidroxilase/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Piridinas/síntese química , Piridinas/farmacologia , Animais , Anticolesterolemiantes/farmacocinética , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/farmacocinética , Feminino , Hidroxicolesteróis , Lipídeos/química , Camundongos , Camundongos Endogâmicos C57BL , Relação Estrutura-Atividade
10.
Molecules ; 27(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35164277

RESUMO

The pharmacokinetic profile of ZST316 and ZST152, arginine analogues with inhibitory activity towards human dimethylarginine dimethylaminohydrolase-1 (DDAH1), was investigated in mice using a newly developed HPLC-MS/MS method. The method proved to be reproducible, precise, and accurate for the measurement of the compounds in plasma and urine. Four-week-old female FVB mice received a single dose of ZST316 and ZST152 by intravenous bolus (30 mg/Kg) and oral gavage (60 mg/Kg). ZST316 Cmax was 67.4 µg/mL (intravenous) and 1.02 µg/mL (oral), with a half-life of 6 h and bioavailability of 4.7%. ZST152 Cmax was 24.9 µg/mL (intravenous) and 1.65 µg/mL (oral), with a half-life of 1.2 h and bioavailability of 33.3%. Urinary excretion of ZST152 and ZST316 was 12.5%-22.2% and 2.3%-7.5%, respectively. At least eight urinary metabolites were identified. After chronic intraperitoneal treatment with the more potent DDAH1 inhibitor, ZST316 (30 mg/Kg/day for three weeks), the bioavailability was 59% and no accumulation was observed. Treatment was well tolerated with no changes in body weight vs. untreated animals and no clinical signs of toxicity or distress. The results of this study show that ZST316 has a favorable pharmacokinetic profile, following intraperitoneal administration, to investigate the effects of DDAH1 inhibition in mice.


Assuntos
Amidoidrolases/antagonistas & inibidores , Inibidores Enzimáticos/farmacocinética , Animais , Arginina/administração & dosagem , Arginina/análogos & derivados , Arginina/farmacocinética , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Feminino , Humanos , Camundongos , Espectrometria de Massas em Tandem
11.
J Med Chem ; 65(3): 2191-2207, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35089028

RESUMO

Monoacylglycerol lipase (MAGL) is one of the key enzymes in the endocannabinoid system. Inhibition of MAGL has been proposed as an attractive approach for the treatment of various diseases. In this study, we designed and successfully synthesized two series of piperazinyl pyrrolidin-2-one derivatives as novel reversible MAGL inhibitors. (R)-[18F]13 was identified through the preliminary evaluation of two carbon-11-labeled racemic structures [11C]11 and [11C]16. In dynamic positron-emission tomography (PET) scans, (R)-[18F]13 showed a heterogeneous distribution and matched the MAGL expression pattern in the mouse brain. High brain uptake and brain-to-blood ratio were achieved by (R)-[18F]13 in comparison with previously reported reversible MAGL PET radiotracers. Target occupancy studies with a therapeutic MAGL inhibitor revealed a dose-dependent reduction of (R)-[18F]13 accumulation in the mouse brain. These findings indicate that (R)-[18F]13 ([18F]YH149) is a highly promising PET probe for visualizing MAGL non-invasively in vivo and holds great potential to support drug development.


Assuntos
Encéfalo/diagnóstico por imagem , Inibidores Enzimáticos/química , Monoacilglicerol Lipases/metabolismo , Neuroimagem/métodos , Compostos Radiofarmacêuticos/química , Animais , Encéfalo/metabolismo , Radioisótopos de Carbono/química , Cristalografia por Raios X , Estabilidade de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Camundongos , Conformação Molecular , Monoacilglicerol Lipases/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Wistar , Relação Estrutura-Atividade , Distribuição Tecidual
12.
Eur J Med Chem ; 229: 114082, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34995925

RESUMO

Snail and histone deacetylases (HDACs) have an important impact on cancer treatment, especially for their synergy. Therefore, the development of inhibitors targeting both Snail and HDAC might be a promising strategy for the treatment of cancers. In this work, we synthesized a series of Snail/HDAC dual inhibitors. Compound 9n displayed the most potent inhibitory activity against HDAC1 with an IC50 of 0.405 µM, potent inhibition against Snail with a Kd of 0.180 µM, and antiproliferative activity in HCT-116 cell lines with an IC50 of 0.0751 µM. Compound 9n showed a good inhibitory effect on NCI-H522 (GI50 = 0.0488 µM), MDA-MB-435 (GI50 = 0.0361 µM), and MCF7 (GI50 = 0.0518 µM). Docking studies showed that compound 9n can be well docked into the active binding sites of Snail and HDAC. Further studies showed that compound 9n increased histone H4 acetylation in HCT-116 cells and decreased the expression of Snail protein to induce cell apoptosis. These findings highlight the potential for the development of Snail/HDAC dual inhibitors as anti-solid tumour cancer drugs.


Assuntos
Aminopiridinas/química , Antineoplásicos/síntese química , Benzamidas/química , Inibidores Enzimáticos/síntese química , Histona Desacetilases/metabolismo , Fatores de Transcrição da Família Snail/síntese química , Aminopiridinas/farmacocinética , Animais , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Benzamidas/farmacocinética , Biomarcadores Tumorais , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/farmacocinética , Células HCT116 , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Ratos , Fatores de Transcrição da Família Snail/farmacocinética , Relação Estrutura-Atividade
13.
Clin Pharmacol Ther ; 111(2): 391-403, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33998672

RESUMO

This study evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics of BIA 10-2474, a fatty acid amide hydrolase (FAAH) inhibitor, after first administration to healthy male and female participants. Participants (n = 116) were recruited into this phase I, double-blind, randomized, placebo-controlled, single ascending dose and multiple ascending dose (10-day) study. The primary outcome was the safety and tolerability of BIA 10-2474. Secondary outcomes were pharmacokinetics of BIA 10-2474 and pharmacodynamics, considering plasma concentrations of anandamide and three other fatty acid amides (FAAs) and leukocyte FAAH activity. Single oral doses of 0.25-100 mg and repeated oral doses of 2.5-50 mg were evaluated. BIA 10-2474 was well tolerated up to 100 mg as a single dose and up to 20 mg once daily for 10 days. In the cohort receiving repeated administrations of 50 mg, there were central nervous system adverse events in five of six participants, one with fatal outcome, which led to early termination of the study. BIA 10-2474 showed a linear relationship between dose and area under plasma concentration-time curve (AUC) across the entire dose range and reached steady state within 5-6 days of administration, with an accumulation ratio, based on AUC0-24h , of <2 on Day 10. BIA 10-2474 was rapidly absorbed with a mean terminal elimination half-life of 8-10 hours (Day 10). BIA 10-2474 caused reversible, dose-related increases in plasma FAAs. In conclusion, we propose that these data, as well as the additional data generated since the clinical trial was stopped, do not provide a complete mechanistic explanation for the tragic fatality.


Assuntos
Amidoidrolases/antagonistas & inibidores , Sistema Nervoso Central/efeitos dos fármacos , Óxidos N-Cíclicos/efeitos adversos , Inibidores Enzimáticos/efeitos adversos , Piridinas/efeitos adversos , Administração Oral , Sistema Nervoso Central/fisiopatologia , Óxidos N-Cíclicos/administração & dosagem , Óxidos N-Cíclicos/farmacocinética , Método Duplo-Cego , Esquema de Medicação , Cálculos da Dosagem de Medicamento , Término Precoce de Ensaios Clínicos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacocinética , Feminino , França , Voluntários Saudáveis , Humanos , Masculino , Segurança do Paciente , Piridinas/administração & dosagem , Piridinas/farmacocinética , Medição de Risco , Fatores de Risco
15.
CPT Pharmacometrics Syst Pharmacol ; 11(5): 604-615, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34951129

RESUMO

TAS-114 is a dual deoxyuridine triphosphatase (dUTPase) and dihydropyrimidine dehydrogenase (DPD) inhibitor expected to widen the therapeutic index of capecitabine. Its maximum tolerated dose (MTD) was determined from a safety perspective in a combination study with capecitabine; however, its inhibitory effects on DPD activity were not assessed in the study. The dose justification to select its MTD as the recommended dose in terms of DPD inhibition has been required, but the autoinduction profile of TAS-114 made it difficult. To this end, an approach using a population pharmacokinetic (PPK)/pharmacodynamic (PD) model incorporating autoinduction was planned; however, the utility of this approach in the dose justification has not been reported. Thus, the aim of this study was to demonstrate the utility of a PPK/PD model incorporating autoinduction in the dose justification via a case study of TAS-114. Plasma concentrations of TAS-114 from 185 subjects and those of the endogenous DPD substrate uracil from 24 subjects were used. A two-compartment model with first-order absorption with lag time and an enzyme turnover model were selected for the pharmacokinetic (PK) model. Moreover, an indirect response model was selected for the PD model to capture the changes in plasma uracil concentrations. Model-based simulations provided the dose justification that DPD inhibition by TAS-114 reached a plateau level at the MTD, whereas exposures of TAS-114 increased dose dependently. Thus, the utility of a PPK/PD model incorporating autoinduction in the dose justification was demonstrated via this case study of TAS-114.


Assuntos
Pirimidinas , Sulfonamidas , Capecitabina , Inibidores Enzimáticos/farmacocinética , Humanos , Pirimidinas/uso terapêutico , Uracila/farmacocinética
16.
Chem Biol Drug Des ; 99(3): 496-503, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34951520

RESUMO

Inhibition of extracellular secreted enzyme autotaxin (ATX) represents an attractive strategy for the development of new therapeutics to treat various diseases and a few inhibitors entered in clinical trials. We herein describe structure-based design, synthesis, and biological investigations revealing a potent and orally bioavailable ATX inhibitor 1. During the molecular docking and scoring studies within the ATX enzyme (PDB-ID: 4ZGA), the S-enantiomer (Gscore = -13.168 kcal/mol) of the bound ligand PAT-494 scored better than its R-enantiomer (Gscore = -9.562 kcal/mol) which corroborated with the reported observation and analysis of the results suggested the scope of manipulation of the hydantoin substructure in PAT-494. Accordingly, the docking-based screening of a focused library of 10 compounds resulted in compound 1 as a better candidate for pharmacological studies. Compound 1 was synthesized from L-tryptophan and evaluated against ATX enzymatic activities with an IC50 of 7.6 and 24.6 nM in biochemical and functional assays, respectively. Further, ADME-PK studies divulged compound 1 as non-cytotoxic (19.02% cell growth inhibition at 20 µM in human embryonic kidney cells), metabolically stable against human liver microsomes (CLint  = 15.6 µl/min/mg; T1/2  = 113.2 min) with solubility of 4.82 µM and orally bioavailable, demonstrating its potential to be used for in vivo experiments.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Indóis/química , Diester Fosfórico Hidrolases/química , Administração Oral , Animais , Sítios de Ligação , Estabilidade de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Meia-Vida , Humanos , Imidazóis/química , Indóis/metabolismo , Indóis/farmacocinética , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Diester Fosfórico Hidrolases/metabolismo , Piridinas/química , Ratos , Ratos Sprague-Dawley , Estereoisomerismo
17.
J Med Chem ; 65(1): 592-615, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34957834

RESUMO

Inflammatory bowel disease (IBD) is a multifactorial autoimmune disease, representing a major clinical challenge. Herein, a strategy of dual-targeting approach employing retinoic acid receptor-related orphan receptor γ-t (RORγt) and dihydroorotate dehydrogenase (DHODH) was proposed for the treatment of IBD. Dual RORγt/DHODH inhibitors are expected not only to reduce RORγt-driven Th17 cell differentiation but also to mitigate the expansion and activation of T cells, which may enhance anti-inflammatory effects. Starting from 2-aminobenzothiazole hit 1, a series of 2-aminotetrahydrobenzothiazoles were discovered as potent dual RORγt/DHODH inhibitors. Compound 14d stands out with IC50 values of 0.110 µM for RORγt and of 0.297 µM for DHODH. With acceptable mouse pharmacokinetic profiles, 14d exhibited remarkable in vivo anti-inflammatory activity and dose-dependently alleviated the severity of dextran sulfate sodium (DSS)-induced acute colitis in mice. Taken together, the present study provides a novel framework for the development of therapeutic agents for the treatment of IBD.


Assuntos
Di-Hidro-Orotato Desidrogenase/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/efeitos dos fármacos , Receptores do Ácido Retinoico/efeitos dos fármacos , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Diferenciação Celular/efeitos dos fármacos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Sulfato de Dextrana , Relação Dose-Resposta a Droga , Descoberta de Drogas , Resistência a Medicamentos , Inibidores Enzimáticos/farmacocinética , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Modelos Moleculares , Relação Estrutura-Atividade , Células Th17/efeitos dos fármacos
18.
Eur J Med Chem ; 229: 114055, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34971874

RESUMO

The development of inhibitors targeting the PI3K-Akt-mTOR signaling pathway has been greatly hindered by the on-target AEs, such as hyperglycemia and hepatotoxicities. In this study, a series of diaryl urea derivatives has been designed and synthesized based on clinical candidate gedatolisib (6aa), and most of the newly synthesized derivatives showed kinase inhibitory and antiproliferative activities within nanomolar and submicromolar level, respectively. The terminal l-prolineamide substituted derivative 6 ab showed 8.6-fold more potent PI3Kα inhibitory activity (0.7 nM) and 4.6-fold more potent antiproliferative effect against HCT116 cell lines (0.11 µM) compared with control 6aa. The potential antitumor mechanism and efficacy of 6 ab in HCT116 xenograft models have also been evaluated, and found 6 ab showed comparable in vivo antitumor activity with 6aa. The safety investigations revealed that compound 6 ab exhibited more safer profiles in the selectivity of liver cells (selectivity index: >6.6 vs 1.85) and blood glucose regulation than 6aa. In addition, the in vitro stability assays also indicated our developed compound 6 ab possessed good metabolic stabilities.


Assuntos
Antineoplásicos/química , Neoplasias Colorretais/tratamento farmacológico , Inibidores Enzimáticos/síntese química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ureia/síntese química , Animais , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/farmacocinética , Feminino , Humanos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Simulação de Acoplamento Molecular , Morfolinas/farmacologia , Neoplasias Experimentais , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade , Triazinas/farmacologia , Ureia/farmacocinética
19.
Biomed Pharmacother ; 145: 112471, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34852990

RESUMO

NF-κB contributes to the biosynthesis of various chemokines, cytokines, and enzymes. It plays many crucial roles in the upstream neuroinflammatory pathways. Briefly, the inhibitory IkB subunit is cleaved and phosphorylated by the IKK-α/ß enzyme. It leads to the activation and translocation of the NF-κB (p50/p65) complex into the nucleus. Subsequently, the activated NF-κB interacts with the genomic DNA and contributes to expressing various proinflammatory cytokines. In the present study, we developed a novel NF-κB inhibitor encoded (D5) and investigated the efficacy of our druggable compound through several in silico, in vitro, and in situ analysis. The results demonstrated that D5 not only inhibited the mRNA expression of the IKK-α/ß enzyme (around 86-96% suppression rate for both cell lines at 12 and 24 h time frames) but also by interacting to the active site of the mentioned kinase (dock score -6.14 and binding energy -23.60 kcal/mol) reduced the level of phosphorylated IkB-α in the cytosol around 96-99% and p65 subunit in the nucleus around 73-90% (among all groups in 12 and 24 h time points). Additionally, the results indicated that D5 suppressed the NF-κB target mRNA levels of TNF-α and IL-6 in a total average of around 92%. Overall, The results demonstrated that D5 in a considerably lower concentration than Dis (0.71 µM vs. 52.73 µM) showed significantly higher inhibitory efficacy on NF-κB translocation approx. 200-300%. The results suggested D5 as a potent NF-κB silencer, but further investigations are required to validate our outcomes.


Assuntos
Quinase I-kappa B , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Sistemas de Translocação de Proteínas , Alcaloides/farmacologia , Benzodioxóis/farmacologia , Linhagem Celular , Inibidores das Enzimas do Citocromo P-450/farmacologia , Desenvolvimento de Medicamentos/métodos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Sistemas de Translocação de Proteínas/efeitos dos fármacos , Sistemas de Translocação de Proteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo
20.
J Med Chem ; 64(24): 17777-17794, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34871500

RESUMO

In our efforts to identify novel small molecule inhibitors for the treatment of adrenoleukodystrophy (ALD), we conducted a high-throughput radiometric screen for inhibitors of elongation of very long chain fatty acid 1 (ELOVL1) enzyme. We developed a series of highly potent, central nervous system (CNS)-penetrant pyrimidine ether-based compounds with favorable pharmacokinetics culminating in compound 22. Compound 22 is a selective inhibitor of ELOVL1, reducing C26:0 VLCFA synthesis in ALD patient fibroblasts and lymphocytes in vitro. Compound 22 reduced C26:0 lysophosphatidyl choline (LPC), a subtype of VLCFA, in the blood of ATP binding cassette transporter D1 (ABCD1) KO mice, a murine model of ALD to near wild-type levels. Compound 22 is a low-molecular-weight, potent ELOVL1 inhibitor that may serve as a useful tool for exploring therapeutic approaches to the treatment of ALD.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Elongases de Ácidos Graxos/antagonistas & inibidores , Pirimidinas/farmacologia , Administração Oral , Adrenoleucodistrofia/tratamento farmacológico , Animais , Disponibilidade Biológica , Cães , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacocinética , Éteres/química , Células HEK293 , Humanos , Macaca fascicularis , Camundongos , Pirimidinas/administração & dosagem , Pirimidinas/farmacocinética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA