Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 249: 114340, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508804

RESUMO

The use of clinical psychoactive drugs often poses unpredictable threats to fetal development. Catechol-O-methyltransferase (COMT) is a key enzyme that regulates dopamine metabolism and a promising target for modulation of cognitive functions. Opicapone, a newly effective third-generation peripheral COMT inhibitor, is used for the treatment of Parkinson's disease (PD) and possibly to improve other dopamine-related disorders such as alcohol use disorder (AUD) and obsessive-compulsive disorder (OCD). The widespread use of opicapone will inevitably lead to biological exposure and damage to the human body, such as affecting fetal development. However, the effect of opicapone on embryonic development remains unknown. Here, zebrafish larvae were used as an animal model and demonstrated that a high concentration (30 µM) of opicapone exposure was teratogenic and lethal, while a low concentration also caused developmental delay such as a shortened body size, a smaller head, and reduced locomotor behaviors in zebrafish larvae. Meanwhile, opicapone treatment specifically increased the level of dopamine (DA) in zebrafish larvae. The depletion response of the total glutathione level (including oxidized and reduced forms of glutathione) and changed antioxidant enzymes activities in zebrafish larvae suggest oxidative damage caused by opicapone. In addition, enhanced glutathione metabolism and cytokine-cytokine receptor interaction were found in zebrafish larvae treated with opicapone, indicating that opicapone treatment caused an oxidation process and immune responses. Our results provide a new insight into the significant developmental toxicity of opicapone in zebrafish larvae.


Assuntos
Antiparkinsonianos , Inibidores de Catecol O-Metiltransferase , Teratogênicos , Animais , Antiparkinsonianos/toxicidade , Catecol O-Metiltransferase/metabolismo , Dopamina/metabolismo , Oxidiazóis , Peixe-Zebra/metabolismo , Inibidores de Catecol O-Metiltransferase/toxicidade , Teratogênicos/toxicidade
2.
Toxicol Lett ; 367: 3-8, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35810997

RESUMO

Catechol-O-methyltransferase (COMT) inhibitors are widely used as an add-on treatment to levodopa in adults with Parkinson's disease. It has been evidenced that the second-generation COMT inhibitors entacapone and tolcapone are potent inhibitors on human UDP-glucosyltransferases (UGTs), while the effect of the third-generation COMT inhibitor opicapone on human UGTs activities is unclear. The purpose of this study is to systemically investigate the effects of opicapone on human UGTs activities, and also to assess the potential risk of drug-drug interactions (DDIs) associated with opicapone. Our results indicated that opicapone is a broad-spectrum inhibitor of UGTs. Particularly, opicapone exhibited potent inhibition against UGT1A1, 1A7, 1A8, 1A9, and 1A10, with a range of inhibition constant Ki values of 1.31-10.58 µM. Furthermore, the DDI risk was quantitatively predicted by using the in vitro-in vivo extrapolation (IVIVE). The prediction suggested that co-administration of opicapone at 25 mg/day or 50 mg/day with drugs primarily cleared by hepatic UGT1A9 or intestinal UGT1A1, 1A7, 1A8, 1A9, or 1A10 might result in potential DDI via inhibition of intestinal or hepatic UGTs.


Assuntos
Inibidores de Catecol O-Metiltransferase , Catecol O-Metiltransferase , Adulto , Inibidores de Catecol O-Metiltransferase/toxicidade , Glucuronosiltransferase , Humanos , Oxidiazóis/toxicidade , Isoformas de Proteínas , Difosfato de Uridina
3.
Toxicol Sci ; 164(2): 477-488, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29688484

RESUMO

Tolcapone and entacapone are catechol-O-methyltransferase inhibitors used in patients with Parkinson's disease. For tolcapone, patients with liver failure have been reported with microvesicular steatosis observed in the liver biopsy of 1 patient. We therefore investigated the impact of tolcapone and entacapone on fatty acid metabolism in HepaRG cells exposed for 24 h and on acutely exposed mouse liver mitochondria. In HepaRG cells, tolcapone induced lipid accumulation starting at 100 µM, whereas entacapone was ineffective up to 200 µM. In HepaRG cells, tolcapone-inhibited palmitate metabolism and activation starting at 100 µM, whereas entacapone did not affect palmitate metabolism. In isolated mouse liver mitochondria, tolcapone inhibited palmitate metabolism starting at 5 µM and entacapone at 50 µM. Inhibition of palmitate activation could be confirmed by the acylcarnitine pattern in the supernatant of HepaRG cell cultures. Tolcapone-reduced mRNA and protein expression of long-chain acyl-CoA synthetase 1 (ACSL1) and protein expression of ACSL5, whereas entacapone did not affect ACSL expression. Tolcapone increased mRNA expression of the fatty acid transporter CD36/FAT, impaired the secretion of ApoB100 by HepaRG cells and reduced the mRNA expression of ApoB100, but did not relevantly affect markers of fatty acid binding, lipid droplet formation and microsomal lipid transfer. In conclusion, tolcapone impaired hepatocellular fatty acid metabolism at lower concentrations than entacapone. Tolcapone increased mRNA expression of fatty acid transporters, inhibited activation of long-chain fatty acids and impaired very low-density lipoprotein secretion, causing hepatocellular triglyceride accumulation. The findings may be relevant in patients with a high tolcapone exposure and preexisting mitochondrial dysfunction.


Assuntos
Inibidores de Catecol O-Metiltransferase/farmacologia , Catecóis/farmacologia , Ácidos Graxos/metabolismo , Nitrilas/farmacologia , Tolcapona/farmacologia , Animais , Inibidores de Catecol O-Metiltransferase/toxicidade , Catecóis/toxicidade , Células Cultivadas , Proteínas de Ligação a Ácido Graxo/metabolismo , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas VLDL/metabolismo , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Nitrilas/toxicidade , Palmitatos/metabolismo , Tolcapona/toxicidade
4.
Toxicol In Vitro ; 42: 337-347, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28526448

RESUMO

The catechol-O-methyltransferase inhibitor tolcapone causes hepatotoxicity and mitochondrial damage in animal models. We studied the interaction of tolcapone with mitochondrial respiration in comparison to entacapone in different experimental models. In HepaRG cells (human cell-line), tolcapone decreased the ATP content (estimated IC50 100±15µM) and was cytotoxic (estimated IC50 333±45µM), whereas entacapone caused no cytotoxicity and no ATP depletion up to 200µM. Cytochrome P450 induction did not increase the toxicity of the compounds. In HepaRG cells, tolcapone (not entacapone) inhibited maximal complex I- and complex II-linked oxygen consumption. In intact mouse liver mitochondria, tolcapone stimulated state 2 complex II-linked respiration and both compounds inhibited state 3 respiration of complex IV. Mitochondrial uncoupling was confirmed for both compounds by stimulation of complex I-linked respiration in the presence of oligomycin. Inhibition of complex I, II and IV for tolcapone and of complex I and IV for entacapone was directly demonstrated in disrupted mouse liver mitochondria. In HepaRG cells, tolcapone-induced inhibition of mitochondrial respiration was associated with increased lactate and ROS production and hepatocyte necrosis. In conclusion, both compounds uncouple oxidative phosphorylation and inhibit mitochondrial enzyme complexes. Tolcapone is a more potent mitochondrial toxicant than entacapone. Mitochondrial toxicity is a possible mechanism for tolcapone-associated hepatotoxicity.


Assuntos
Benzofenonas/toxicidade , Inibidores de Catecol O-Metiltransferase/toxicidade , Catecóis/toxicidade , Mitocôndrias Hepáticas/efeitos dos fármacos , Nitrilas/toxicidade , Nitrofenóis/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Transporte de Elétrons/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Tolcapona
5.
Toxicol Appl Pharmacol ; 323: 9-15, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28322896

RESUMO

Opicapone is a novel potent, reversible and purely peripheral catechol-O-methyltransferase inhibitor that has been developed to be used as an adjunct to levodopa/aromatic L-amino acid decarboxylase inhibitor therapy for Parkinson's disease. Thus, this study aimed to compare the plasma pharmacokinetics of opicapone and its active metabolite (BIA 9-1079) after the administration of single and multiple oral doses to rats. Wistar rats (n=8 per group) were orally treated with single (30, 60 or 90mg/kg) or multiple (30mg/kg once-daily for seven consecutive days) oral doses of opicapone. Blood samples were collected up to 24h post-dosing through a cannula introduced in the tail vein of rats. After quantifying opicapone and BIA 9-1079 in plasma, a non-compartmental pharmacokinetic analysis was performed. Opicapone was quickly absorbed (time to reach the maximum plasma concentration≤2h) in both dosage regimens and the extent of systemic exposure to opicapone increased approximately in a dose-proportional manner after single-dosing within the studied dose range (30-90mg/kg). Opicapone and BIA 9-1079 showed a relatively short plasma elimination half-life (1.58-4.50h) and a small systemic accumulation after multiple-dosing. Hence, no pharmacokinetic concerns are expected when opicapone is administered with a once-daily dosing regimen.


Assuntos
Inibidores de Catecol O-Metiltransferase/administração & dosagem , Inibidores de Catecol O-Metiltransferase/farmacocinética , Oxidiazóis/administração & dosagem , Oxidiazóis/farmacocinética , Administração Oral , Animais , Área Sob a Curva , Inibidores de Catecol O-Metiltransferase/sangue , Inibidores de Catecol O-Metiltransferase/toxicidade , Esquema de Medicação , Absorção Gastrointestinal , Meia-Vida , Masculino , Taxa de Depuração Metabólica , Modelos Biológicos , Oxidiazóis/sangue , Oxidiazóis/toxicidade , Ratos Wistar , Medição de Risco
6.
Neuroscience ; 290: 561-9, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25659347

RESUMO

Reduced catechol-O-methyltransferase (COMT) activity resulting from genetic variation or pharmacological depletion results in enhanced pain perception in humans and nociceptive behaviors in animals. Using phasic mechanical and thermal reflex tests (e.g. von Frey, Hargreaves), recent studies show that acute COMT-dependent pain in rats is mediated by ß-adrenergic receptors (ßARs). In order to more closely mimic the characteristics of human chronic pain conditions associated with prolonged reductions in COMT, the present study sought to determine volitional pain-related and anxiety-like behavioral responses following sustained as well as acute COMT inhibition using an operant 10-45°C thermal place preference task and a light/dark preference test. In addition, we sought to evaluate the effects of sustained COMT inhibition on generalized body pain by measuring tactile sensory thresholds of the abdominal region. Results demonstrated that acute and sustained administration of the COMT inhibitor OR486 increased pain behavior in response to thermal heat. Further, sustained administration of OR486 increased anxiety behavior in response to bright light, as well as abdominal mechanosensation. Finally, all pain-related behaviors were blocked by the non-selective ßAR antagonist propranolol. Collectively, these findings provide the first evidence that stimulation of ßARs following acute or chronic COMT inhibition drives cognitive-affective behaviors associated with heightened pain that affects multiple body sites.


Assuntos
Ansiedade/induzido quimicamente , Inibidores de Catecol O-Metiltransferase/toxicidade , Fármacos do Sistema Nervoso Central/toxicidade , Dor/induzido quimicamente , Receptores Adrenérgicos beta/metabolismo , Adrenérgicos/farmacologia , Analgésicos/farmacologia , Animais , Ansiedade/tratamento farmacológico , Ansiedade/fisiopatologia , Catecol O-Metiltransferase/metabolismo , Catecóis/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Temperatura Alta , Masculino , Dor/tratamento farmacológico , Dor/fisiopatologia , Estimulação Luminosa/efeitos adversos , Propranolol/farmacologia , Psicotrópicos/toxicidade , Ratos Sprague-Dawley , Fatores de Tempo , Tato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA