Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 141: 111934, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34323694

RESUMO

The escalation in the global prevalence of obesity has focused attention on finding novel approaches for its management. Ziziphus jujuba Mill. (ZJL) leaf extract is reported as a traditional remedy for diverse pathological conditions, including obesity. The present study investigated whether ZJL affects adipogenic differentiation in human adipocytes. Additionally, following metabolite profiling of the extract, apigenin (APG), betulinic acid (BA) and maslinic acid (MA) were selected for biological activity evaluation. The possible interactions between APG, BA, MA and target proteins with a central role in adipogenesis were assessed through molecular docking. The potential mechanisms of ZJL, APG, BA and MA were identified using transcriptional analysis through real-time quantitative PCR and protein abundance evaluation by Western blotting. The obtained results revealed a concentration-dependent reduction of accumulated lipids after ZJL, BA and MA application. The key adipogenic transcription factors peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT-enhancer-binding protein alpha (C/EBPα) were strongly decreased at a protein level by all treatments. Moreover, the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway was found to be involved in the anti-adipogenic effect of ZJL, APG and BA. Collectively, our findings indicate that ZJL and its pure compounds hampered adipocyte differentiation through PI3K/AKT inhibition. Among the selected compounds, BA exhibits the most promising anti-adipogenic activity. Furthermore, being a complex mixture of phytochemicals, the ZJL extract could be utilized as source of yet unknown bioactive leads with potential implementation in obesity management.


Assuntos
Adipogenia/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Inibidores de Fosfoinositídeo-3 Quinase/administração & dosagem , Extratos Vegetais/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ziziphus , Adipogenia/fisiologia , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular/métodos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
2.
J Ethnopharmacol ; 264: 113052, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32535239

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia miltiorrhiza Bge. as a traditional Asian medicinal plant, roots and rhizomes (Danshen) are used to treat chronic hepatitis and coronary heart disease. In recent years, the medicinal value of S. miltiorrhiza stems and leaves total phenolic acids extract (JF) similar to roots and rhizomes has received increasing attention. S. miltiorrhiza roots and rhizome tanshinone extract (DT) has a good anti-inflammatory effect. AIM OF THE STUDY: To explore the therapeutic effect and possible molecular mechanisms of JF and DT alone or in combination on dextran sulfate sodium (DSS)-induced colitis mice. MATERIALS AND METHODS: Colitis was induced by received 2% DSS in drinking water for 7 consecutive days. Then mice were administered orally for 7 days. Disease activity index (DAI) scores and body weight were recorded daily. After the end of the experiment, colon was removed, colon length was measured and histopathological analysis was performed. Inflammatory factors expression was determined by ELISA, its mRNA expression was detected by real-time quantitative PCR, and the expression of related proteins on TLR4/PI3K/AKT/mTOR signal was analyzed by Western blot. RESULTS: Treatment with JF and DT alone or in combination reduced DAI scores, increase body weight, improved colon shortening, and decreased colon histology scores. In addition, the expression level of inflammatory factors was inhibited. The combination of JF and DT had a better inhibitory effect on inflammatory factors compared to JF alone. We also found that DT alone and JF combined with DT inhibited TLR4/PI3K/AKT/mTOR signaling-related proteins expression levels (including TLR4, p-PI3K p110α/PI3K p110α, p-AKT (ser473)/AKT, mTOR, p-mTOR, NF-κB p65), showing an effective anti-inflammatory effect. CONCLUSIONS: We demonstrated for the first time that, JF and DT alone or in combination effectively ameliorated DSS-induced ulcerative colitis in mice, possibly by inhibiting the TLR4/PI3K/AKT/mTOR signaling pathway.


Assuntos
Abietanos/administração & dosagem , Colite Ulcerativa/tratamento farmacológico , Hidroxibenzoatos/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Salvia miltiorrhiza , Serina-Treonina Quinases TOR/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Sulfato de Dextrana/toxicidade , Quimioterapia Combinada , Hidroxibenzoatos/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/administração & dosagem , Inibidores de Fosfoinositídeo-3 Quinase/isolamento & purificação , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Caules de Planta , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Receptor 4 Toll-Like/metabolismo
3.
J Ethnopharmacol ; 266: 113446, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33031902

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hepatocellular carcinoma (HCC) is an aggressive malignancy with increasing mortality in China. Screening and identifying effective anticancer compounds from active traditional Chinese herbs for HCC are in demand. Akebia trifoliata (Thunb) Koidz, with pharmacological anti-HCC activities in clinical, has been shown in previous research. In the present research, we elucidated a potential anticancer effect of Akebia saponin E (ASE), which is isolated from the immature seeds of Akebia trifoliata (Thunb.) Koidz, and revealed that ASE could induce severe expanded vacuoles in HCC cells. But the potential mechanism of vacuole-formation and the anti-HCC effects by ASE remain uncover. AIM OF THIS STUDY: To elucidate the potential mechanism of vacuole-formation and the proliferation inhibition effects by ASE in HCC cell lines. MATERIALS AND METHODS: MTT assay, colony formation assay and flow cytometry were performed to detect cell viability. Immunofluorescence analysis was used to examine the biomarkers of endomembrane. Cells were infected with tandem mRFP-GFP-LC3 lentivirus to assess autophagy flux. RNA-seq was conducted to analyze the genome-wide transcriptional between treatment cell groups. In vitro PIKfyve kinase assay is detected by the ADP-GloTM Kinase Assay Kit. RESULTS: ASE could inhibit the proliferation of HCC with severe expanded vacuoles in vitro, and could significantly reduce the size and weight of xenograft tumor in vivo. Further, the vacuoles induced by ASE were aberrant enlarged lysosomes instead of autophagosome or autolysosomes. With cytoplasmic vacuolation, ASE induced a mTOR-independent TFEB activation for lysosomal biogenesis and a decrement of cholesterol levels in HCC cells. Furthermore, ASE could reduce the activity of PIKfyve (phosphoinositide kinase containing a FYVE-type finger), causing aberrant lysosomal biogenesis and cholesterol dyshomeostasis which triggered the expanded vacuole formation. CONCLUSION: ASE can prospectively inhibit the kinase activity of PIKfyve to induce lysosome-associated cytoplasmic vacuolation, and may be utilized as an alternative candidate to treat human HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Ranunculales/química , Saponinas/farmacologia , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase/isolamento & purificação , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Saponinas/isolamento & purificação , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Fitoterapia ; 143: 104590, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32272164

RESUMO

The acquired resistance to gefitinib limits its clinical application. Epigallocatechin-3-gallate (EGCG) has been found to enhance the efficacy of gefitinib against resistant. However, the cellular and molecular mechanisms have not been completely illuminated in NSCLC. In this study, a new epigallocatechin gallate derivative (2R,3R-6-methoxycarbonylgallocatechin-3-O-gallate, the following referred to as EGCGD) (1) and three known epigallocatechin gallate compounds including epicatechin-3-O-gallate (2), gallocatechin-3-O-gallate (3) and epigallocatechin-3-O-gallate (4, EGCG) were isolated and identified from Anhua dark tea. The pharmacological studies showed EGCGD was more effective against gefitinib-resistant HCC827-Gef cells compared to that of other three epigallocatechin gallate compounds including EGCG, suggesting that introduction of 6-methoxycarbonyl to EGCG might enhance its antitumor activities. Further study on molecular mechanism showed EGCGD increased the potency of gefitinib against HCC827-Gef cells via suppression of epithelial-Mesenchymal transition (EMT) and dual inhibition of PI3K/mTOR.


Assuntos
Catequina/análogos & derivados , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Gefitinibe/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Chá/química , Apoptose , Catequina/isolamento & purificação , Catequina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , China , Sinergismo Farmacológico , Humanos , Estrutura Molecular , Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA