Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
1.
Arch Pharm (Weinheim) ; 357(5): e2300615, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38315093

RESUMO

Novel arylidene-5(4H)-imidazolone derivatives 4a-r were designed and evaluated as multidrug-directed ligands, that is, inflammatory, proinflammatory mediators, and reactive oxygen species (ROS) inhibitors. All of the tested compounds showed cyclooxygenase (COX)-1 inhibitory effect more than celecoxib and less than indomethacin and also demonstrated an improved inhibitory activity against 15-lipoxygenase (15-LOX). Compounds 4f, 4l, and 4p exhibited COX-2 selectivity comparable to that of celecoxib, while 4k was the most selective COX-2 inhibitor. Interestingly, the screened results showed that compound 4k exhibited a superior inhibition effect against 15-LOX and was found to be the most selective COX-2 inhibitor over celecoxib, whereas compound 4f showed promising COX-2 and 15-LOX inhibitory activities besides its inhibitory effect against ROS production and its lowering effect of both tumor necrosis factor-α and interleukin-6 levels by ∼80%. Moreover, compound 4f attenuated the lipopolysaccharide-mediated increase in NF-κB activation in RAW 264.7 macrophages. The preferred binding affinity of these molecules was confirmed by docking studies. We conclude that arylidene-5(4H)-imidazolone scaffolds provide promising hits for developing new synthons with anti-inflammatory and antioxidant activities.


Assuntos
Araquidonato 15-Lipoxigenase , Inibidores de Ciclo-Oxigenase 2 , Desenho de Fármacos , Inibidores de Lipoxigenase , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio , Camundongos , Animais , Células RAW 264.7 , Relação Estrutura-Atividade , Araquidonato 15-Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Humanos
2.
Bioorg Chem ; 116: 105394, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619468

RESUMO

Novel diarylpyrazole (5a-d, 6a-e, 12, 13, 14, 15a-c and 11a-g) derivatives were designed, synthesized and evaluated for their dual COX-2/sEH inhibitory activities via recombinant enzyme assays to explore their anti-inflammatory activities and cardiovascular safety profiles. Comprehensively, the structures of the synthesized compounds were established via spectral and elemental analyses, followed by the assessment of both their in vitro COX inhibitory and in vivo anti-inflammatory activities. The most active compounds as COX inhibitors were further evaluated for their in vitro 5-LOX and sEH inhibitory activities, alongside with their in vivo analgesic and ulcerogenic effects. Compounds 6d and 11f showed excellent inhibitory activities against both COX-2 and sEH (COX-2 IC50 = 0.043 and 0.048 µM; sEH IC50 = 83.58 and 83.52 µM, respectively). Moreover, the compounds demonstrated promising results as anti-inflammatory and analgesic agents with considerable ED50 values and gastric safety profiles. Remarkably, the most active COX inhibitors 6d and 11f possessed improved cardiovascular safety profiles, if compared to celecoxib, as shown by the laboratory evaluation of both essential cardiac biochemical parameters (troponin-1, prostacyclin, tumor necrosis factor-α, lactate dehydrogenase, reduced glutathione and creatine kinase-M) and histopathological studies. On the other hand, docking simulations confirmed that the newly synthesized compounds displayed sufficient structural features required for binding to the target COX-2 and sEH enzymes. Also, in silico ADME studies prediction and drug-like properties of the compounds revealed favorable oral bioavailability results. Collectively, the present work could be featured as a promising future approach towards novel selective COX-2 inhibitors with declined cardiovascular risks.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Desenho de Fármacos , Inibidores de Lipoxigenase/farmacologia , Pirazóis/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Araquidonato 5-Lipoxigenase/metabolismo , Sistema Cardiovascular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Humanos , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade
3.
Bioorg Med Chem ; 46: 116349, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34500187

RESUMO

Human epithelial 15-lipoxygenase-2 (h15-LOX-2, ALOX15B) is expressed in many tissues and has been implicated in atherosclerosis, cystic fibrosis and ferroptosis. However, there are few reported potent/selective inhibitors that are active ex vivo. In the current work, we report newly discovered molecules that are more potent and structurally distinct from our previous inhibitors, MLS000545091 and MLS000536924 (Jameson et al, PLoS One, 2014, 9, e104094), in that they contain a central imidazole ring, which is substituted at the 1-position with a phenyl moiety and with a benzylthio moiety at the 2-position. The initial three molecules were mixed-type, non-reductive inhibitors, with IC50 values of 0.34 ±â€¯0.05 µM for MLS000327069, 0.53 ±â€¯0.04 µM for MLS000327186 and 0.87 ±â€¯0.06 µM for MLS000327206 and greater than 50-fold selectivity versus h5-LOX, h12-LOX, h15-LOX-1, COX-1 and COX-2. A small set of focused analogs was synthesized to demonstrate the validity of the hits. In addition, a binding model was developed for the three imidazole inhibitors based on computational docking and a co-structure of h15-LOX-2 with MLS000536924. Hydrogen/deuterium exchange (HDX) results indicate a similar binding mode between MLS000536924 and MLS000327069, however, the latter restricts protein motion of helix-α2 more, consistent with its greater potency. Given these results, we designed, docked, and synthesized novel inhibitors of the imidazole scaffold and confirmed our binding mode hypothesis. Importantly, four of the five inhibitors mentioned above are active in an h15-LOX-2/HEK293 cell assay and thus they could be important tool compounds in gaining a better understanding of h15-LOX-2's role in human biology. As such, a suite of similar pharmacophores that target h15-LOX-2 both in vitro and ex vivo are presented in the hope of developing them as therapeutic agents.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Relação Dose-Resposta a Droga , Humanos , Cinética , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Estrutura Molecular , Relação Estrutura-Atividade
4.
Bioorg Med Chem ; 46: 116347, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507163

RESUMO

Human platelet 12-(S)-Lipoxygenase (12-LOX) is a fatty acid metabolizing oxygenase that plays an important role in platelet activation and cardiometabolic disease. ML355 is a specific 12-LOX inhibitor that has been shown to decrease thrombosis without prolonging hemostasis and protect human pancreatic islets from inflammatory injury. It has an amenable drug-like scaffold with nM potency and encouraging ADME and PK profiles, but its binding mode to the active site of 12-LOX remains unclear. In the current work, we combined computational modeling and experimental mutagenesis to propose a model in which ML355 conforms to the "U" shape of the 12-LOX active site, with the phenyl linker region wrapping around L407. The benzothiazole of ML355 extends into the bottom of the active site cavity, pointing towards residues A417 and V418. However, reducing the active site depth alone did not affect ML355 potency. In order to lower the potency of ML355, the cavity needed to be reduced in both length and width. In addition, H596 appears to position ML355 in the active site through an interaction with the 2-methoxy phenol moiety of ML355. Combined, this binding model suggested that the benzothiazole of ML355 could be enlarged. Therefore, a naphthyl-benzothiazole derivative of ML355, Lox12Slug001, was synthesized and shown to have 7.2-fold greater potency than ML355. This greater potency is proposed to be due to additional van der Waals interactions and pi-pi stacking with F414 and F352. Lox12Slug001 was also shown to be highly selective against 12-LOX relative to the other LOX isozymes and more importantly, it showed activity in rescuing human islets exposed to inflammatory cytokines with comparable potency to ML355. Further studies are currently being pursued to derivatize ML355 in order to optimize the additional space in the active site, while maintaining acceptable drug-like properties.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Desenvolvimento de Medicamentos , Inibidores de Lipoxigenase/farmacologia , Simulação de Acoplamento Molecular , Sulfonamidas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
5.
Eur J Med Chem ; 225: 113804, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34479036

RESUMO

Inflammation is a most complex pathological process that gives birth to different diseases. Different inflammatory mediators are released during an inflammation responsible for acute pain and chronic inflammatory diseases like cancer, asthma, rheumatoid arthritis, osteoarthritis, neurodegenerative diseases, metabolic and cardiovascular disorders. The arachidonic acid pathway, which results in the production of inflammatory mediators, provides several targets for anti-inflammatory intervention. The most popularly used medications for inflammation are non-steroidal anti-inflammatory agents (NSAIDs) but it has some limitations, in particular traditional NSAIDs which inhibit the COX pathway non-selectively, producing gastrointestinal side effects, and other adverse effects like stroke and renal failure. On the other hand, selective COX-2 inhibitors commonly known as 'coxibs' produce cardiovascular side effects. Frequent inhibition of either cyclooxygenase or lipoxygenase enzyme switches the metabolism of arachidonic acid from one to another which could lead to serious consequences. Therefore, a need to develop novel, effective and safe anti-inflammatory agents which can inhibit the release of both prostaglandins and leukotrienes from the respective cyclooxygenase and lipoxygenase pathways has emerged. This resulted in the discovery of new anti-inflammatory agents derived from natural and synthetic sources as dual COX-2/5-LOX inhibitors. To further contribute towards the discovery in this field, we have attempted to summarize structural features and pharmacological activities of heterocyclic scaffolds and natural products explored as dual COX-2/5-LOX inhibitors. We have emphasized the designing of the dual inhibitors inspired by the previously reported COX-2 and 5-LOX inhibitors. This outline could render us to identify the best pharmacophores catering to dual COX-2/5-LOX inhibitory activity while improving their efficiency as anti-inflammatory agents.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Produtos Biológicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Inibidores de Lipoxigenase/farmacologia , Animais , Produtos Biológicos/síntese química , Produtos Biológicos/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Humanos , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Estrutura Molecular
6.
Molecules ; 26(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34443516

RESUMO

Oxidative stress and inflammation are two conditions that coexist in many multifactorial diseases such as atherosclerosis and neurodegeneration. Thus, the design of multifunctional compounds that can concurrently tackle two or more therapeutic targets is an appealing approach. In this study, the basic NSAID structure was fused with the antioxidant moieties 3,5-di-tert-butyl-4-hydroxybenzoic acid (BHB), its reduced alcohol 3,5-di-tert-butyl- 4-hydroxybenzyl alcohol (BHBA), or 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox), a hydrophilic analogue of α-tocopherol. Machine learning algorithms were utilized to validate the potential dual effect (anti-inflammatory and antioxidant) of the designed analogues. Derivatives 1-17 were synthesized by known esterification methods, with good to excellent yields, and were pharmacologically evaluated both in vitro and in vivo for their antioxidant and anti-inflammatory activity, whereas selected compounds were also tested in an in vivo hyperlipidemia protocol. Furthermore, the activity/binding affinity of the new compounds for lipoxygenase-3 (LOX-3) was studied not only in vitro but also via molecular docking simulations. Experimental results demonstrated that the antioxidant and anti-inflammatory activities of the new fused molecules were increased compared to the parent molecules, while molecular docking simulations validated the improved activity and revealed the binding mode of the most potent inhibitors. The purpose of their design was justified by providing a potentially safer and more efficient therapeutic approach for multifactorial diseases.


Assuntos
Antioxidantes/química , Aterosclerose/tratamento farmacológico , Hiperlipidemias/tratamento farmacológico , Inflamação/tratamento farmacológico , Inibidores de Lipoxigenase/química , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/química , Antioxidantes/síntese química , Antioxidantes/farmacologia , Aterosclerose/patologia , Cromanos/química , Cromanos/farmacologia , Desenho de Fármacos , Humanos , Hiperlipidemias/patologia , Hipolipemiantes/síntese química , Hipolipemiantes/química , Hipolipemiantes/farmacologia , Inflamação/patologia , Lipoxigenase/química , Lipoxigenase/efeitos dos fármacos , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/farmacologia , Simulação de Acoplamento Molecular , Degeneração Neural/tratamento farmacológico , Degeneração Neural/patologia , Estresse Oxidativo/efeitos dos fármacos , Parabenos/química , Parabenos/farmacologia , Relação Estrutura-Atividade
7.
Bioorg Chem ; 115: 105197, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34426159

RESUMO

Chinese herbal medicines (CHM) are frequently used to treat different types of inflammatory diseases and 15-Lipoxygenase (15-LOX) is a critical target enzyme for treating various inflammatory diseases. In this study, natural 15-LOX inhibitors were identified in CHM using an approach of virtual screening combined with the biological assays. First, an in-house Chinese medicine database containing 360 compounds was screened using a virtual screening approach based on pharmacophore and molecular docking to uncover several novel potential 15-LOX inhibitors. Secondly, the inhibitory effect of virtual screening hits against the 15-LOX enzyme was validated in an in vitro enzyme inhibition assay. Then, a tumor necrosis factor-α (TNF-α) release assay was carried out to explore the anti-inflammatory response of the active compounds. Furthermore, molecular dynamics (MD) simulation and binding free energy calculation were applied to analyze the process of inhibitors binding and also compared the mode of binding of the inhibitors by using the Molecular Mechanics-Generalized Born Surface Area (MM/GBSA) method. Finally, licochalcone B and eriodictyol were confirmed as inhibitors of the 15-LOX enzyme with IC50 values of 9.67 and 18.99 µM, respectively. In vitro cell-based assay showed that licochalcone B and eriodictyol inhibited the release of TNF-α factor in RAW264.7 cells stimulated by lipopolysaccharides (LPS) in a dose-dependent manner. Molecular dynamics and binding free energy analysis showed that the two 15-LOX-ligand systems immediately attained equilibrium with almost 1 Å fluctuation, the calculated binding free energies were found around -18.89 and -12.96 kcal/mol for licochalcone B and eriodictyol, respectively. Thr412, Arg415, Val420, Thr429, Ile602 and Trp606 were the main amino acid residues for the inhibition of 15-LOX enzyme activity. The current study confirms that licochalcone B and eriodictyol are 15-LOX inhibitors and can suppress the release of the TNF-α factor in RAW264.7 cells stimulated by LPS, thus providing a basis for the follow-up research and development for 15-LOX inhibitors.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Produtos Biológicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Inibidores de Lipoxigenase/farmacologia , Simulação de Dinâmica Molecular , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Produtos Biológicos/síntese química , Produtos Biológicos/química , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/síntese química , Medicamentos de Ervas Chinesas/química , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Medicina Tradicional Chinesa , Camundongos , Estrutura Molecular , Células RAW 264.7 , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
8.
Bioorg Chem ; 115: 105243, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34403937

RESUMO

In search for new anti-inflammatory agents that inhibit the enzymes of arachidonic acid pathway as the drug targets, the present article describes the screening of 1,3,4-oxadiazole analogues against lipoxygenase (LOX) enzyme. The work is based on the synthesis of new N-alkyl/aralky/aryl derivatives (6a-o) of 2-(4-phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,3,4-oxadiazol-3-ylthio)acetamide which were obtained by the reaction of 1,3,4-oxadiazole (3) with various electrophiles (5a-o), in KOH. The synthesized analogues showed potent to moderate inhibitory activity against the soybean 15-LOX enzyme; especially 6g, 6b, 6a and 6l displayed the potent inhibitory potential with IC50 values 7.15 ± 0.26, 9.32 ± 0.42, 15.83 ± 0.45 & 18.37 ± 0.53 µM, respectively, while excellent to moderate inhibitory profiles with IC50 values in the range of 26.13-98.21 µM were observed from the compounds 6k, 6m, 6j, 6o, 6h, 6f, 6n and 6c. Most of the active compounds exhibited considerable cell viability against blood mononuclear cells (MNCs) at 0.25 mM by MTT assay except 6f, 6h, 6k and 6m which showed around 50% cell viability. Flow cytometry studies of the selected compounds 6a, 6j and 6n revealed that these caused 79.5-88.51% early apoptotic changes in MNCs compared with 4.26% for control quercetin at their respective IC50 values. The relative expression of 5-LOX gene was monitored in MNCs after treatment with these three molecules and all down-regulated the enzyme activity. In silico ADME and molecular docking studies further supported these studies of oxadiazole derivatives and considered it as potential 'lead' compounds in drug discovery and development.


Assuntos
Amidas/farmacologia , Araquidonato 15-Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Oxidiazóis/farmacologia , Amidas/síntese química , Amidas/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Modelos Moleculares , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Relação Estrutura-Atividade
9.
Bioorg Chem ; 115: 105261, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34416506

RESUMO

Searching small molecules as an auspicious approach to develop new anti-inflammatory drugs is a challenge for the researchers especially by modifying active pharmacophoric groups in the targeted molecules. In the current work, a series of new S-alkyl/aralky derivatives (8a-h; 9a-h) of 2-(4-ethyl/phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,2,4-triazol-3-ylthio)ether were synthesized and assessed for their inhibitory action against the 15-lipoxygenase from soybean (15-sLOX). The basic precursor ethyl piperidine-4-carboxylate (a) was consecutively changed into phenylcarbamoyl derivative (1), hydrazide (2), semicarbazides (3/4) and N-ethyl/phenyl-5-(1-phenylcarbamoylpiperidine)-1,2,4-triazoles (5/6), which further in association with electrophiles (7a-h) promoted to the final products (8a-h; 9a-h). The synthesized derivatives were characterized by FT-IR, 1H-, 13C NMR spectroscopy, EI-MS, and HR-EI-MS spectrometry. Amongst these, 8a, 8c, and 9c, expressed potent inhibitory profiles against the 15-sLOX enzyme with IC50 values of 12.52 ± 0.35 to 35.64 ± 0.29 µM, followed by the compounds 9b, 9g, 9d, 9a, 8b, 8e, 8d, 8g, 8h, 8f and 9h with IC50 values in the range of 43.78 ± 0.43 to 108.65 ± 0.38 µM. All compounds exhibited variable cellular viability levels by MTT assay. Flow cytometric data demonstrated that 8f, 8g, 8h have maximal lymphocyte cellular viability and all compounds affected cells in the late apoptosis phase. In silico ADMET studies supported the drug-likeness of most of the molecules. These studies were supported by molecular docking against 15-sLOX, human 5-LOX (5-hLOX) and human 15-LOX (5-hLOX); that inhibitors of 15-sLOX docked-in the active pocket of either 5-hLOX or 15-hLOX and docking score remained constant for all three enzymes within a narrow range (-6.8 to -9.7) as did it for standard quercetin (-8.4 to -9.0). The most dominant bonding interactions were π-π, π-anion, and π-alkyl type along with the hydrogen bonding. The data collected altogether demonstrates the better possibility of some of these compounds as good LOX inhibitors in search for 'lead' as anti-inflammatory agents in the process of drug discovery and development.


Assuntos
Antineoplásicos/farmacologia , Araquidonato 15-Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Sulfetos/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Estrutura Molecular , Relação Estrutura-Atividade , Sulfetos/química , Triazóis/química
10.
Chem Biol Drug Des ; 98(5): 894-902, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34453501

RESUMO

Catalyzed peroxidation of unsaturated lipid in animals and plants intimately is linked to the activity of 15-Lipoxygenase enzymes. Lipoxygenases (LOXs) are well known to play an important role in many acute and chronic syndromes such as inflammation, asthma, cancer, and allergy. In this study, a series of mono prenyloxycarbostyrils were synthesized and evaluated as potential inhibitors of soybean 15-Lipoxygenase (SLO) and their inhibitory potencies were compared to mono prenyloxycoumarins which had been reported in the previous works. The synthetic compounds inhibit lipoxygenase enzyme by competitive mechanism like the prenyloxy coumarins. The results showed that position and length of the prenyl moiety play the important role in lipoxygenase inhibitory activity. Among all of the synthetic compounds (coumarin and carbostyril derivatives), 5-farnesyloxycoumarin and 8-farnesyloxycarbostyril demonstrated the best inhibitory activity by IC50  values of 1.1 µM and 0.53 µM, respectively.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Hidroxiquinolinas/síntese química , Inibidores de Lipoxigenase/síntese química , Quinolonas/síntese química , Compostos de Bifenilo/química , Cumarínicos/química , Humanos , Hidroxiquinolinas/farmacologia , Inibidores de Lipoxigenase/farmacologia , Picratos/química , Quinolonas/farmacologia , Glycine max/enzimologia , Relação Estrutura-Atividade
11.
Bioorg Chem ; 114: 105136, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34328860

RESUMO

Pyranopyrazole and its derivatives are classified to be a pharmacologically significant active scaffold for almost all modes of biological activities. In this work, An efficient, green, and facile three-component reaction for preparing pyrano[2,3-c]pyrazole derivatives via the condensation reaction of 5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, ethyl acetoacetate, and malononitrile in the presence of ZnO Nanoparticle. The products are produced with high yields and in shorter reaction times. It also is mild, safe, green, and environmentally friendly. The geometric parameters such as dipole moment, bond length, dihedral angles, total energy, heat of formation, atomic charges and energies at a highly accurate for prepared compounds were computed by Denisty Functional Theory along with the B3LYP functional. The newly synthesized compounds were screened for their anti-inflammatory and antioxidant activity. Some of the tested compounds displayed promising activities. The newly prepared compounds were found to be potent towards the antioxidant activity. Results indicated that compounds 11 and 12 exhibited significant (p ≥ 0.05) in vitro total antioxidant activity as 44.93 ± 0.15 and 39.60 ± 0.10 U/ML, respectively higher than standard ascorbic acid (29.40 ± 0.62).


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Teoria da Densidade Funcional , Inibidores de Lipoxigenase/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antioxidantes/síntese química , Antioxidantes/química , Araquidonato 5-Lipoxigenase/metabolismo , Catálise , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Relação Dose-Resposta a Droga , Humanos , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Prostaglandina-Endoperóxido Sintases/metabolismo , Piranos/síntese química , Piranos/química , Piranos/farmacologia , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
12.
Molecules ; 26(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198914

RESUMO

The five-membered heterocyclic group of pyrazoles/pyrazolines plays important role in drug discovery. Pyrazoles and pyrazolines present a wide range of biological activities. The synthesis of the pyrazolines and pyrazole derivatives was accomplished via the condensation of the appropriate substituted aldehydes and acetophenones, suitable chalcones and hydrazine hydrate in absolute ethanol in the presence of drops of glacial acetic acid. The compounds are obtained in good yields 68-99% and their structure was confirmed using IR, 1H-NMR, 13C-NMR and elemental analysis. The novel derivatives were studied in vitro for their antioxidant, anti-lipid peroxidation (AAPH) activities and inhibitory activity of lipoxygenase. Both classes strongly inhibit lipid peroxidation. Compound 2g was the most potent lipoxygenase inhibitor (IC50 = 80 µM). The inhibition of the carrageenin-induced paw edema (CPE) and nociception was also determined, with compounds 2d and 2e being the most potent. Compound 2e inhibited nociception higher than 2d. Pyrazoline 2d was found to be active in a preliminary test, for the investigation of anti-adjuvant-induced disease (AID) activity. Pyrazoline derivatives were found to be more potent than pyrazoles. Docking studies of the most potent LOX inhibitor 2g highlight hydrophobic interactions with VAL126, PHE143, VAL520 and LYS526 and a halogen bond between the chlorine atom and ARG182.


Assuntos
Anti-Inflamatórios/síntese química , Inibidores de Lipoxigenase/síntese química , Lipoxigenase/química , Pirazóis/síntese química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Concentração Inibidora 50 , Peroxidação de Lipídeos/efeitos dos fármacos , Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/farmacologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Pirazóis/química , Pirazóis/farmacologia , Ratos
13.
Molecules ; 26(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34279399

RESUMO

A series of L-serine amides of antioxidant acids, such as Trolox, (E)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)acrylic acid (phenolic derivative of cinnamic acid) and 3,5-di-tert-butyl-4-hydroxybenzoic acid (structurally similar to butylated hydroxytoluene), was synthesized. The hydroxy group of serine was esterified with two classical NSAIDs, ibuprofen and ketoprofen. The Trolox derivatives with ibuprofen (7) and ketoprofen (10) were the most potent inhibitors of lipid peroxidation (IC50 3.4 µΜ and 2.8 µΜ), several times more potent than the reference Trolox (IC50 25 µΜ). Most of the compounds decreased carrageenan-induced rat paw edema (37-67% at 150 µmol/kg). They were moderate inhibitors of soybean lipoxygenase, with the exception of ibuprofen derivative 8 (IC50 13 µΜ). The most active anti-inflammatory compounds exhibited a significant decrease in lipidemic indices in the plasma of Triton-induced hyperlipidemic rats, e.g., the most active compound 9 decreased triglycerides, total cholesterol and low-density lipoprotein cholesterol by 52%, 61% and 70%, respectively, at 150 µmol/kg (i.p.), similar to that of simvastatin, a well-known hypocholesterolemic drug. Since the designed compounds seem to exhibit multiple pharmacological actions, they may be of use for the development of agents against inflammatory and degenerative conditions.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Antioxidantes/síntese química , Hipolipemiantes/síntese química , Inibidores de Lipoxigenase/síntese química , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/uso terapêutico , Antioxidantes/farmacocinética , Antioxidantes/uso terapêutico , Carragenina/toxicidade , Colesterol/sangue , Edema/tratamento farmacológico , Edema/etiologia , Esterificação , Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/farmacocinética , Hipolipemiantes/uso terapêutico , Inibidores de Lipoxigenase/farmacocinética , Inibidores de Lipoxigenase/uso terapêutico , Ratos , Ratos Wistar , Serina/química , Triglicerídeos/sangue
14.
J Med Chem ; 64(13): 9550-9566, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34137625

RESUMO

Preclinical and clinical data reveal that inflammation is strongly correlated with the pathogenesis of a number of diseases including those of cancer, Alzheimer, and diabetes. The inflammatory cascade involves a multitude of cytokines ending ultimately with the activation of COX-2/LOX for the production of prostaglandins and leukotrienes. While the available inhibitors for these enzymes suffer from nonoptimal selectivity, in particular for COX-2, we present here the results of purposely designed tartarate derivatives that exhibit favorable selectivity and significant effectiveness against COX-2 and LOX. Integrated approaches of molecular simulation, organic synthesis, and biochemical/physical experiments identified 15 inhibiting COX-2 and LOX with respective IC50 4 and 7 nM. At a dose of 5 mg kg-1 to Swiss albino mice, 15 reversed algesia by 65% and inflammation by 33% in 2-3 h. We find good agreement between experiments and simulations and use the simulations to rationalize our observations.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Desenho de Fármacos , Edema/tratamento farmacológico , Inibidores de Lipoxigenase/farmacologia , Tartaratos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Carragenina , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Feminino , Humanos , Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Masculino , Camundongos , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Tartaratos/síntese química , Tartaratos/química
15.
J Enzyme Inhib Med Chem ; 36(1): 977-986, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33957835

RESUMO

Inflammation is associated with the development of several diseases comprising cancer and cardiovascular disease. Agents that suppress cyclooxygenase (COX) and lipoxygenase (LOX) enzymes, besides chemokines have been suggested to minimise inflammation. Here, a variety of novel heterocyclic and non-heterocyclic compounds were prepared from novel three furanone derivatives. The structures of all synthesised compounds were confirmed by elemental and spectral analysis including mass, IR, and 1H-NMR spectroscopy. Anti-inflammatory activities of these synthesised compounds were examined in vitro against COX enzymes, 15-LOX, and tumour necrosis factor-α (TNF-α), using inhibition screening assays. The majority of these derivatives showed significant to high activities, with three pyridazinone derivatives (5b, 8b, and 8c) being the most promising anti-inflammatory agents with dual COX-2/15-LOX inhibition activities along with high TNF-α inhibition activity.


Assuntos
4-Butirolactona/análogos & derivados , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Compostos Heterocíclicos/farmacologia , Inibidores de Lipoxigenase/farmacologia , 4-Butirolactona/síntese química , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Araquidonato 5-Lipoxigenase/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Estrutura Molecular , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/antagonistas & inibidores
16.
Bioorg Chem ; 112: 104969, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34023639

RESUMO

Dual inhibition of the enzymatic pathways of cyclooxygenases (COX-1/COX-2) and lipoxygenase (LOX) is a rational approach for developing more efficient and safe anti-inflammatory agents. Herein, dual inhibitors of COX and LOX for the management of inflammation are reported. The structural modifications of starting pyrrolidine-2,5-dione aldehyde derivatives resulted in two structurally diverse families (Family A & B). Synthesized derivatives from both Families displayed preferential COX-2 affinity in submicromolar to nanomolar ranges. Disubstitution pattern of the most active series of compounds having N-(benzyl(4-methoxyphenyl)amino moiety presents a new template that is mimic to the diaryl pattern of traditional COX-2 inhibitors. Compound 78 with IC50 value of 0.051 ± 0.001 µM emerged as the most active compound. Highly potent COX-2/5-LOX inhibitors have also demonstrated appreciable in-vivo anti-inflammatory activity through carrageenan induced paw edema test. Moreover, the involvement of histamine, bradykinin, prostaglandin, and leukotriene mediators to adjust the inflammatory response were also studied. Apart from COX inhibition, sulfonamide is considered an important template for carbonic anhydrase inhibition. Hence, we also evaluated six sulfonamide derivatives for off-target in-vitro bovine carbonic anhydrase-II inhibition. Biological results were finally rationalized by docking simulations. Typically, most active COX-2 inhibitors interact with the amino acid residues responsible for the COX-2 selectivity.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacologia , Descoberta de Drogas , Inibidores de Lipoxigenase/farmacologia , Pirrolidinas/farmacologia , Animais , Araquidonato 5-Lipoxigenase/metabolismo , Bovinos , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Humanos , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirrolidinas/síntese química , Pirrolidinas/química , Relação Estrutura-Atividade
17.
Eur J Med Chem ; 219: 113457, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33892270

RESUMO

Based on the observed pharmacophoric structural features for the reported dual COX/15-LOX inhibitors and inspired by the abundance of COX/LOX inhibitory activities reported for the 1,2,4-triazine and quinoline scaffolds, we designed and synthesized novel 1,2,4-triazine-quinoline hybrids (8a-n). The synthesized hybrids were evaluated in vitro as dual COXs/15-LOX inhibitors. The new triazine-quinoline hybrids (8a-n) exhibited potent COX-2 inhibitory profiles (IC50 = 0.047-0.32 µM, SI âˆ¼ 20.6-265.9) compared to celecoxib (IC50 = 0.045 µM, SI âˆ¼ 326). Moreover, they revealed potent inhibitory activities against 15-LOX enzyme compared to reference quercetin (IC50 = 1.81-3.60 vs. 3.34 µM). Hybrid 8e was the most potent and selective dual COX-2/15-LOX inhibitor (COX-2 IC50 = 0.047 µM, SI = 265.9, 15-LOX IC50 = 1.81 µM). These hybrids were further challenged by their ability to inhibit NO, ROS, TNF-α, IL-6 inflammatory mediators, and 15-LOX product, 15-HETE, production in LPS-activated RAW 264.7 macrophages cells. Compound 8e was the most potent hybrid in reducing ROS and 15-HETE levels showing IC50 values of 1.02 µM (11-fold more potent than that of celecoxib, IC50 = 11.75 µM) and 0.17 µM (about 43 times more potent than celecoxib, IC50 = 7.46 µM), respectively. Hybrid 8h exhibited an outstanding TNF-α inhibition with IC50 value of 0.40 µM which was about 25 times more potent than that of celecoxib and diclofenac (IC50 = 10.69 and 10.27 µM, respectively). Docking study of the synthesized hybrids into the active sites of COX-2 and 15-LOX enzymes ensures their favored binding affinity. To our knowledge, herein we reported the first 1,2,4-triazine-quinoline hybrids as dual COX/15-LOX inhibitors.


Assuntos
Anti-Inflamatórios/síntese química , Araquidonato 15-Lipoxigenase/metabolismo , Ciclo-Oxigenase 2/metabolismo , Quinolinas/química , Triazinas/química , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Araquidonato 15-Lipoxigenase/química , Sítios de Ligação , Domínio Catalítico , Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Citocinas/metabolismo , Desenho de Fármacos , Inflamação/prevenção & controle , Lipopolissacarídeos/farmacologia , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/uso terapêutico , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo , Células RAW 264.7 , Relação Estrutura-Atividade
18.
Drug Des Devel Ther ; 15: 1299-1313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790541

RESUMO

BACKGROUND: Organocatalytic asymmetric Michael addition is a strong approach for C-C bond formation. The objective of the study is to design molecules by exploiting the efficiency of Michael Adducts. We proceeded with the synthesis of Michael adducts by tailoring the substitution pattern on maleimide and trans-ß-nitro styrene as Michael acceptors. The synthesized compounds were evaluated for dual cyclooxygenases (COX) and lipoxygenase (LOX) inhibition. METHODS: The compounds (4, 9-11) were synthesized through Michael additions. The cyclooxygenases (COX-1 and 2) and lipoxygenase (5-LOX) assays were used for in vitro evaluations of compounds. After the acute toxicity studies, the in vivo analgesic potential was determined with acetic acid induced writhing, tail immersion, and formalin tests. Furthermore, the possible roles of adrenergic and dopaminergic receptors were also studied. Extensive computational studies were performed to get a better understanding regarding the binding of this compound with protein target. RESULTS: Four Michael adducts (4, 9-11) were synthesized. Compound 4 was obtained in enantio- and diastereopure form. The stereopure compound 4 showed encouraging COX-1 and-2 inhibitions with IC50 values of 128 and 65 µM with SI of 1.94. Benzyl derivative 11 showed excellent COX-2 inhibition with the IC50 value of 5.79 µM and SI value 7.96. Compounds 4 and 11 showed good results in in vivo models of analgesia like acetic acid test, tail immersion, and formalin tests. Our compounds were not active in dopaminergic and adrenergic pathways and so were acting centrally. Through extensive computational studies, we computed binding energies, and pharmacokinetic predictions. CONCLUSION: Our findings conclude that our synthesized Michael products (pyrrolidinedione 4 and nitroalkane 11) can be potent centrally acting analgesics. Our in silico predictions suggested that the compounds have excellent pharmacokinetic properties. It is concluded here that dual inhibition of COX/LOX pathways provides a convincing step towards the discovery of safe lead analgesic molecules.


Assuntos
Analgésicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Edema/tratamento farmacológico , Inibidores de Lipoxigenase/farmacologia , Maleimidas/farmacologia , Estireno/farmacologia , Ácido Acético , Analgésicos/síntese química , Analgésicos/química , Animais , Araquidonato 5-Lipoxigenase/metabolismo , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Edema/induzido quimicamente , Edema/metabolismo , Feminino , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Masculino , Maleimidas/síntese química , Maleimidas/química , Camundongos , Camundongos Endogâmicos BALB C , Prostaglandina-Endoperóxido Sintases/metabolismo , Estireno/síntese química , Estireno/química
19.
Bioorg Chem ; 110: 104818, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33784531

RESUMO

Here we report the inhibitory effects of nine non-steroidal anti-inflammatory drugs (NSAIDs) on soybean 15-lipoxygenase (15-LOX) enzyme (EC 1.13.11.12) by three different methods; UV-absorbance, colorimetric and chemiluminescence methods. Only two drugs, Ibuprofen and Ketoprofen, exhibited enzyme inhibition by UV-absorbance method but none of the drug showed inhibition through colorimetric method. Chemiluminescence method was found highly sensitive for the identification of 15-LOX inhibitors and it was more sensitive and several fold faster than the other methods. All tested drugs showed 15-LOX-inhibition with IC50 values ranging from 3.52 ± 0.08 to 62.6 ± 2.15 µM by chemiluminescence method. Naproxen was the most active inhibitor (IC50 3.52 ± 0.08 µM) followed by Aspirin (IC50 4.62 ± 0.11 µM) and Acetaminophen (IC50 6.52 ± 0.14 µM). Ketoprofen, Diclofenac and Mefenamic acid showed moderate inhibitory profiles (IC50 24.8 ± 0.24 to 39.62 ± 0.27 µM). Piroxicam and Tenoxicam were the least active inhibitors with IC50 values of 62.6 ± 2.15 µM and 49.5 ± 1.13 µM, respectively. These findings are supported by expression analysis, molecular docking studies and density functional theory calculations. The expression analysis and flow cytometry apoptosis analysis were carried out using mononuclear cells (MNCs) which express both human 15-LOX and 5-LOX. Selected NSAIDs did not affect the cytotoxic activity of MNCs at IC50 concentrations and the cell death showed dose dependent effect. However, MNCs apoptosis increased only at the higher concentrations, demonstrating that these drugs may not induce loss of immunity in septic and other inflammatory conditions at the acceptable inhibitory concentrations. The data collectively suggests that NSAIDs not only inhibit COX enzymes as reported in the literature but soybean 15-LOX and MNCs LOXs are also inhibited at differential values. A comparison of the metabolomics studies of arachidonic acid pathway after inhibition of either COX or LOX enzymes may reconfirm these findings.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Teoria da Densidade Funcional , Inibidores de Lipoxigenase/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Araquidonato 15-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/genética , Relação Dose-Resposta a Droga , Humanos , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Medições Luminescentes , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
20.
Molecules ; 26(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672652

RESUMO

Herein, we report the neuroprotective and antioxidant activity of 1,1'-biphenyl nitrones (BPNs) 1-5 as α-phenyl-N-tert-butylnitrone analogues prepared from commercially available [1,1'-biphenyl]-4-carbaldehyde and [1,1'-biphenyl]-4,4'-dicarbaldehyde. The neuroprotection of BPNs1-5 has been measured against oligomycin A/rotenone and in an oxygen-glucose deprivation in vitro ischemia model in human neuroblastoma SH-SY5Y cells. Our results indicate that BPNs 1-5 have better neuroprotective and antioxidant properties than α-phenyl-N-tert-butylnitrone (PBN), and they are quite similar to N-acetyl-L-cysteine (NAC), which is a well-known antioxidant agent. Among the nitrones studied, homo-bis-nitrone BPHBN5, bearing two N-tert-Bu radicals at the nitrone motif, has the best neuroprotective capacity (EC50 = 13.16 ± 1.65 and 25.5 ± 3.93 µM, against the reduction in metabolic activity induced by respiratory chain blockers and oxygen-glucose deprivation in an in vitro ischemia model, respectively) as well as anti-necrotic, anti-apoptotic, and antioxidant activities (EC50 = 11.2 ± 3.94 µM), which were measured by its capacity to reduce superoxide production in human neuroblastoma SH-SY5Y cell cultures, followed by mononitrone BPMN3, with one N-Bn radical, and BPMN2, with only one N-tert-Bu substituent. The antioxidant activity of BPNs1-5 has also been analyzed for their capacity to scavenge hydroxyl free radicals (82% at 100 µM), lipoxygenase inhibition, and the inhibition of lipid peroxidation (68% at 100 µM). Results showed that although the number of nitrone groups improves the neuroprotection profile of these BPNs, the final effect is also dependent on the substitutent that is being incorporated. Thus, BPNs bearing N-tert-Bu and N-Bn groups show better neuroprotective and antioxidant properties than those substituted with Me. All these results led us to propose homo-bis-nitrone BPHBN5 as the most balanced and interesting nitrone based on its neuroprotective capacity in different neuronal models of oxidative stress and in vitro ischemia as well as its antioxidant activity.


Assuntos
Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Inibidores de Lipoxigenase/farmacologia , Lipoxigenase/metabolismo , Fármacos Neuroprotetores/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Óxidos N-Cíclicos/síntese química , Óxidos N-Cíclicos/química , Humanos , Radical Hidroxila/antagonistas & inibidores , Peroxidação de Lipídeos/efeitos dos fármacos , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA