Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 38(2): 110221, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021094

RESUMO

Protein-coding genes in trypanosomes occur in polycistronic transcription units (PTUs). How RNA polymerase II (Pol II) initiates transcription of PTUs has not been resolved; the current model favors chromatin modifications inducing transcription rather than sequence-specific promoters. Here, we uncover core promoters by functional characterization of Pol II peaks identified by chromatin immunoprecipitation sequencing (ChIP-seq). Two distinct promoters are located between divergent PTUs, each driving unidirectional transcription. Detailed analysis identifies a 75-bp promoter that is necessary and sufficient to drive full reporter expression and contains functional motifs. Analysis of further promoters suggests transcription initiation is regulated and promoters are either focused or dispersed. In contrast to the previous model of unregulated and promoter-independent transcription initiation, we find that sequence-specific promoters determine the initiation of Pol II transcription of protein-coding genes PTUs. These findings in Trypanosoma brucei suggest that in addition of chromatin modifications, promoter motifs-based regulation of gene expression is deeply conserved among eukaryotes.


Assuntos
Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo , Iniciação da Transcrição Genética/fisiologia , Proteínas de Protozoários/metabolismo , RNA Polimerase II/genética , Transcrição Gênica/fisiologia , Trypanosoma/metabolismo , Trypanosoma brucei brucei/patogenicidade
2.
Mol Cell ; 81(17): 3576-3588.e6, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34384542

RESUMO

RNA polymerase II (RNA Pol II) transcription reconstituted from purified factors suggests pre-initiation complexes (PICs) can assemble by sequential incorporation of factors at the TATA box. However, these basal transcription reactions are generally independent of activators and co-activators. To study PIC assembly under more realistic conditions, we used single-molecule microscopy to visualize factor dynamics during activator-dependent reactions in nuclear extracts. Surprisingly, RNA Pol II, TFIIF, and TFIIE can pre-assemble on enhancer-bound activators before loading into PICs, and multiple RNA Pol II complexes can bind simultaneously to create a localized cluster. Unlike TFIIF and TFIIE, TFIIH binding is singular and dependent on the basal promoter. Activator-tethered factors exhibit dwell times on the order of seconds. In contrast, PICs can persist on the order of minutes in the absence of nucleotide triphosphates, although TFIIE remains unexpectedly dynamic even after TFIIH incorporation. Our kinetic measurements lead to a new branched model for activator-dependent PIC assembly.


Assuntos
Complexo Mediador/metabolismo , RNA Polimerase II/metabolismo , Iniciação da Transcrição Genética/fisiologia , Núcleo Celular/metabolismo , Complexo Mediador/genética , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagem Individual de Molécula , TATA Box/genética , Proteína de Ligação a TATA-Box/genética , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição TFII/metabolismo , Transcrição Gênica/genética
3.
Mol Cell ; 81(17): 3560-3575.e6, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34375585

RESUMO

Transcription initiation by RNA polymerase II (RNA Pol II) requires preinitiation complex (PIC) assembly at gene promoters. In the dynamic nucleus, where thousands of promoters are broadly distributed in chromatin, it is unclear how multiple individual components converge on any target to establish the PIC. Here we use live-cell, single-molecule tracking in S. cerevisiae to visualize constrained exploration of the nucleoplasm by PIC components and Mediator's key role in guiding this process. On chromatin, TFIID/TATA-binding protein (TBP), Mediator, and RNA Pol II instruct assembly of a short-lived PIC, which occurs infrequently but efficiently within a few seconds on average. Moreover, PIC exclusion by nucleosome encroachment underscores regulated promoter accessibility by chromatin remodeling. Thus, coordinated nuclear exploration and recruitment to accessible targets underlies dynamic PIC establishment in yeast. Our study provides a global spatiotemporal model for transcription initiation in live cells.


Assuntos
Complexo Mediador/metabolismo , RNA Polimerase II/metabolismo , Iniciação da Transcrição Genética/fisiologia , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Complexo Mediador/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise Espaço-Temporal , Proteína de Ligação a TATA-Box/genética , Fator de Transcrição TFIID/genética , Transcrição Gênica/genética
5.
Annu Rev Biochem ; 90: 193-219, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34153211

RESUMO

In eukaryotes, transcription of protein-coding genes requires the assembly at core promoters of a large preinitiation machinery containing RNA polymerase II (RNAPII) and general transcription factors (GTFs). Transcription is potentiated by regulatory elements called enhancers, which are recognized by specific DNA-binding transcription factors that recruit cofactors and convey, following chromatin remodeling, the activating cues to the preinitiation complex. This review summarizes nearly five decades of work on transcription initiation by describing the sequential recruitment of diverse molecular players including the GTFs, the Mediator complex, and DNA repair factors that support RNAPII to enable RNA synthesis. The elucidation of the transcription initiation mechanism has greatly benefited from the study of altered transcription components associated with human diseases that could be considered transcription syndromes.


Assuntos
RNA Polimerase II/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIIH/genética , Iniciação da Transcrição Genética/fisiologia , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Complexo Mediador/genética , Complexo Mediador/metabolismo , Mutação , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Síndrome
6.
Biochim Biophys Acta Gene Regul Mech ; 1864(3): 194689, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33561560

RESUMO

The extensive processing and protein-assisted stabilization of transcripts have been taken as evidence for a viewpoint that the control of gene expression had shifted entirely in evolution from transcriptional in the bacterial endosymbiont to posttranscriptional in the plastid. This suggestion is however at odds with many observations on plastid gene transcription. Chloroplasts of flowering plants and mosses contain two or more RNA polymerases with distinct promoter preference and division of labor for the coordinated synthesis of plastid RNAs. Plant and algal plastids further possess multiple nonredundant sigma factors that function as transcription initiation factors. The controlled accumulation of plastid sigma factors and modification of their activity by sigma-binding proteins and phosphorylation constitute additional transcriptional regulatory strategies. Plant and algal plastids also contain dedicated one- or two-component transcriptional regulators. Transcription initiation thus continues to form a critical control point at which varied developmental and environmental signals intersect with plastid gene expression.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Plastídeos/metabolismo , Iniciação da Transcrição Genética/fisiologia , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/genética
7.
Nat Rev Microbiol ; 19(2): 95-109, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33122819

RESUMO

Transcription of DNA is a fundamental process in all cellular organisms. The enzyme responsible for transcription, RNA polymerase, is conserved in general architecture and catalytic function across the three domains of life. Diverse mechanisms are used among and within the different branches to regulate transcription initiation. Mechanistic studies of transcription initiation in bacteria are especially amenable because the promoter recognition and melting steps are much less complicated than in eukaryotes or archaea. Also, bacteria have critical roles in human health as pathogens and commensals, and the bacterial RNA polymerase is a proven target for antibiotics. Recent biophysical studies of RNA polymerases and their inhibition, as well as transcription initiation and transcription factors, have detailed the mechanisms of transcription initiation in phylogenetically diverse bacteria, inspiring this Review to examine unifying and diverse themes in this process.


Assuntos
Archaea/genética , Bactérias/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Iniciação da Transcrição Genética/fisiologia , Antibacterianos/farmacologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Regiões Promotoras Genéticas/genética , RNA Bacteriano/genética , Fator sigma/metabolismo
8.
Cell Rep ; 31(1): 107497, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268096

RESUMO

In higher eukaryotes, the mRNA sequence in the direct vicinity of the start codon, called the Kozak sequence (CRCCaugG, where R is a purine), is known to influence the rate of the initiation process. However, the molecular basis underlying its role remains poorly understood. Here, we present the cryoelectron microscopy (cryo-EM) structures of mammalian late-stage 48S initiation complexes (LS48S ICs) in the presence of two different native mRNA sequences, ß-globin and histone 4, at overall resolution of 3 and 3.5 Å, respectively. Our high-resolution structures unravel key interactions from the mRNA to eukaryotic initiation factors (eIFs): 1A, 2, 3, 18S rRNA, and several 40S ribosomal proteins. In addition, we are able to study the structural role of ABCE1 in the formation of native 48S ICs. Our results reveal a comprehensive map of ribosome/eIF-mRNA and ribosome/eIF-tRNA interactions and suggest the impact of mRNA sequence on the structure of the LS48S IC.


Assuntos
Fatores de Iniciação em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/ultraestrutura , Iniciação da Transcrição Genética/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Códon de Iniciação/genética , Códon de Iniciação/ultraestrutura , Microscopia Crioeletrônica/métodos , Elementos Facilitadores Genéticos/genética , Fator de Iniciação 1 em Eucariotos/genética , Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Humanos , Camundongos , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , RNA de Transferência/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Globinas beta/genética , Globinas beta/ultraestrutura
9.
Elife ; 82019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31841111

RESUMO

TraR and its homolog DksA are bacterial proteins that regulate transcription initiation by binding directly to RNA polymerase (RNAP) rather than to promoter DNA. Effects of TraR mimic the combined effects of DksA and its cofactor ppGpp, but the structural basis for regulation by these factors remains unclear. Here, we use cryo-electron microscopy to determine structures of Escherichia coli RNAP, with or without TraR, and of an RNAP-promoter complex. TraR binding induced RNAP conformational changes not seen in previous crystallographic analyses, and a quantitative analysis revealed TraR-induced changes in RNAP conformational heterogeneity. These changes involve mobile regions of RNAP affecting promoter DNA interactions, including the ßlobe, the clamp, the bridge helix, and several lineage-specific insertions. Using mutational approaches, we show that these structural changes, as well as effects on σ70 region 1.1, are critical for transcription activation or inhibition, depending on the kinetic features of regulated promoters.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Conformação de Ácido Nucleico , Fatores de Transcrição/metabolismo , Iniciação da Transcrição Genética/fisiologia , Sequência de Bases , Proteínas de Transporte , Microscopia Crioeletrônica , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Conformação Proteica , RNA Bacteriano/metabolismo , Fatores de Transcrição/química , Ativação Transcricional
10.
Nat Struct Mol Biol ; 26(8): 744-754, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31384063

RESUMO

Precise nucleosome organization at eukaryotic promoters is thought to be generated by multiple chromatin remodeler (CR) enzymes and to affect transcription initiation. Using an integrated analysis of chromatin remodeler binding and nucleosome occupancy following rapid remodeler depletion, we investigated the interplay between these enzymes and their impact on transcription in yeast. We show that many promoters are affected by multiple CRs that operate in concert or in opposition to position the key transcription start site (TSS)-associated +1 nucleosome. We also show that nucleosome movement after CR inactivation usually results from the activity of another CR and that in the absence of any remodeling activity, +1 nucleosomes largely maintain their positions. Finally, we present functional assays suggesting that +1 nucleosome positioning often reflects a trade-off between maximizing RNA polymerase recruitment and minimizing transcription initiation at incorrect sites. Our results provide a detailed picture of fundamental mechanisms linking promoter nucleosome architecture to transcription initiation.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Saccharomyces cerevisiae/genética , Sítio de Iniciação de Transcrição , Iniciação da Transcrição Genética/fisiologia , Montagem e Desmontagem da Cromatina/genética , DNA Fúngico/genética , DNA Intergênico/genética , DNA Intergênico/metabolismo , Substâncias Macromoleculares/metabolismo , Nuclease do Micrococo/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
PLoS Pathog ; 15(6): e1007852, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31188901

RESUMO

Precise promoter annotation is required for understanding the mechanistic basis of transcription initiation. In the context of complex genomes, such as herpesviruses where there is extensive genic overlap, identification of transcription start sites (TSSs) is particularly problematic and cannot be comprehensively accessed by standard RNA sequencing approaches. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus and the etiological agent of Kaposi's sarcoma and the B cell lymphoma primary effusion lymphoma (PEL). Here, we leverage RNA annotation and mapping of promoters for analysis of gene expression (RAMPAGE) and define KSHV TSSs transcriptome-wide and at nucleotide resolution in two widely used models of KSHV infection, namely iSLK.219 cells and the PEL cell line TREx-BCBL1-RTA. By mapping TSSs over a 96 h time course of reactivation we confirm 48 of 50 previously identified TSSs. Moreover, we identify over 100 novel transcription start site clusters (TSCs) in each cell line. Our analyses identified cell-type specific differences in TSC positions as well as promoter strength, and defined motifs within viral core promoters. Collectively, by defining TSSs at high resolution we have greatly expanded the transcriptional landscape of the KSHV genome and identified transcriptional control mechanisms at play during KSHV lytic reactivation.


Assuntos
Genoma Viral/fisiologia , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 8/fisiologia , Iniciação da Transcrição Genética/fisiologia , Ativação Viral , Células HEK293 , Infecções por Herpesviridae/virologia , Humanos
12.
Mol Cell ; 72(4): 687-699.e6, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30318445

RESUMO

Spt6 is a conserved factor that controls transcription and chromatin structure across the genome. Although Spt6 is viewed as an elongation factor, spt6 mutations in Saccharomyces cerevisiae allow elevated levels of transcripts from within coding regions, suggesting that Spt6 also controls initiation. To address the requirements for Spt6 in transcription and chromatin structure, we have combined four genome-wide approaches. Our results demonstrate that Spt6 represses transcription initiation at thousands of intragenic promoters. We characterize these intragenic promoters and find sequence features conserved with genic promoters. Finally, we show that Spt6 also regulates transcription initiation at most genic promoters and propose a model of initiation site competition to account for this. Together, our results demonstrate that Spt6 controls the fidelity of transcription initiation throughout the genome.


Assuntos
Chaperonas de Histonas/genética , Chaperonas de Histonas/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Iniciação da Transcrição Genética/fisiologia , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/fisiologia , Cromatina/fisiologia , Regulação Fúngica da Expressão Gênica/genética , Chaperonas de Histonas/metabolismo , Histonas/fisiologia , Proteínas Nucleares , Nucleossomos , Fatores de Alongamento de Peptídeos/fisiologia , Regiões Promotoras Genéticas/genética , RNA Polimerase II , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Fatores de Transcrição/fisiologia , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/metabolismo
13.
Mol Cell ; 70(6): 1111-1120.e3, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29932903

RESUMO

Gene transcription is carried out by multi-subunit RNA polymerases (RNAPs). Transcription initiation is a dynamic multi-step process that involves the opening of the double-stranded DNA to form a transcription bubble and delivery of the template strand deep into the RNAP for RNA synthesis. Applying cryoelectron microscopy to a unique transcription system using σ54 (σN), the major bacterial variant sigma factor, we capture a new intermediate state at 4.1 Å where promoter DNA is caught at the entrance of the RNAP cleft. Combining with new structures of the open promoter complex and an initial de novo transcribing complex at 3.4 and 3.7 Å, respectively, our studies reveal the dynamics of DNA loading and mechanism of transcription bubble stabilization that involves coordinated, large-scale conformational changes of the universally conserved features within RNAP and DNA. In addition, our studies reveal a novel mechanism of strand separation by σ54.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , Iniciação da Transcrição Genética/fisiologia , Bactérias/genética , Microscopia Crioeletrônica/métodos , DNA , DNA Bacteriano/genética , Escherichia coli/genética , Modelos Moleculares , Regiões Promotoras Genéticas/genética , Ligação Proteica , Conformação Proteica , Fator sigma/genética , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética
14.
Nat Rev Mol Cell Biol ; 19(10): 621-637, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29946135

RESUMO

RNA polymerase II (Pol II) core promoters are specialized DNA sequences at transcription start sites of protein-coding and non-coding genes that support the assembly of the transcription machinery and transcription initiation. They enable the highly regulated transcription of genes by selectively integrating regulatory cues from distal enhancers and their associated regulatory proteins. In this Review, we discuss the defining properties of gene core promoters, including their sequence features, chromatin architecture and transcription initiation patterns. We provide an overview of molecular mechanisms underlying the function and regulation of core promoters and their emerging functional diversity, which defines distinct transcription programmes. On the basis of the established properties of gene core promoters, we discuss transcription start sites within enhancers and integrate recent results obtained from dedicated functional assays to propose a functional model of transcription initiation. This model can explain the nature and function of transcription initiation at gene starts and at enhancers and can explain the different roles of core promoters, of Pol II and its associated factors and of the activating cues provided by enhancers and the transcription factors and cofactors they recruit.


Assuntos
Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Iniciação da Transcrição Genética/fisiologia , Animais , Cromatina , DNA , Eucariotos/genética , Eucariotos/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos , RNA Polimerase II/metabolismo , RNA Polimerase II/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Transcrição Gênica/fisiologia
15.
Development ; 145(13)2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29866902

RESUMO

Transcription factors of the Sox protein family contain a DNA-binding HMG box and are key regulators of progenitor cell fate. Here, we report that expression of Sox30 is restricted to meiotic spermatocytes and postmeiotic haploids. Sox30 mutant males are sterile owing to spermiogenic arrest at the early round spermatid stage. Specifically, in the absence of Sox30, proacrosomic vesicles fail to form a single acrosomal organelle, and spermatids arrest at step 2-3. Although most Sox30 mutant spermatocytes progress through meiosis, accumulation of diplotene spermatocytes indicates a delayed or impaired transition from meiotic to postmeiotic stages. Transcriptome analysis of isolated stage-specific spermatogenic cells reveals that Sox30 controls a core postmeiotic gene expression program that initiates as early as the late meiotic cell stage. ChIP-seq analysis shows that Sox30 binds to specific DNA sequences in mouse testes, and its genomic occupancy correlates positively with expression of many postmeiotic genes including Tnp1, Hils1, Ccdc54 and Tsks These results define Sox30 as a crucial transcription factor that controls the transition from a late meiotic to a postmeiotic gene expression program and subsequent round spermatid development.


Assuntos
Regulação da Expressão Gênica/fisiologia , Meiose/fisiologia , Fatores de Transcrição SOX/metabolismo , Espermátides/metabolismo , Espermatogênese/fisiologia , Testículo/metabolismo , Iniciação da Transcrição Genética/fisiologia , Animais , Perfilação da Expressão Gênica , Masculino , Camundongos , Elementos de Resposta/fisiologia , Fatores de Transcrição SOX/genética , Espermátides/citologia , Testículo/citologia
16.
Microbiol Res ; 207: 134-139, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29458847

RESUMO

To adapt to a wide range of nutritional and environmental changes, cells must adjust their gene expression profiles. This process is completed by the frequent transcription and rapid degradation of mRNA. mRNA decay is initiated by a series of endo- and exoribonucleases. These enzymes leave behind 2- to 5-nt-long oligoribonucleotides termed "nanoRNAs" that are degraded by specific nanoRNases; the degradation of nanoRNA is essential because nanoRNA can mediate the priming of transcription initiation that is harmful for the cell via an unknown mechanism. Identified nanoRNases include Orn in E. coli, NrnA and NrnB in B. subtilis, and NrnC in Bartonella. Even though these nanoRNases can degrade nanoRNA specifically into mononucleotides, the biochemical features, structural features and functional mechanisms of these enzymes are different. Sequence analysis has identified homologs of these nanoRNases in different bacteria, including Gammaproteobacteria, Betaproteobacteria, Alphaproteobacteria, Firmicutes and Cyanobacteria. However, there are several bacteria, such as those belonging to the class Thermolithobacteria, that do not have homologs of these nanoRNases. In this paper, the source of nanoRNA, the features of different kinds of nanoRNases and the distribution of these enzymes in prokaryotes are described in detail.


Assuntos
Bactérias/enzimologia , Exorribonucleases/genética , Regulação Bacteriana da Expressão Gênica/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Bactérias/genética , Estabilidade de RNA/genética , Iniciação da Transcrição Genética/fisiologia
17.
Nat Struct Mol Biol ; 24(12): 1139-1145, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29106413

RESUMO

Eukaryotic mRNA transcription initiation is directed by the formation of the megadalton-sized preinitiation complex (PIC). After PIC formation, double-stranded DNA (dsDNA) is unwound to form a single-stranded DNA bubble, and the template strand is loaded into the polymerase active site. DNA opening is catalyzed by Ssl2 (XPB), the dsDNA translocase subunit of the basal transcription factor TFIIH. In yeast, transcription initiation proceeds through a scanning phase during which downstream DNA is searched for optimal start sites. Here, to test models for initial DNA opening and start-site scanning, we measure the DNA-bubble sizes generated by Saccharomyces cerevisiae PICs in real time using single-molecule magnetic tweezers. We show that ATP hydrolysis by Ssl2 opens a 6-base-pair (bp) bubble that grows to 13 bp in the presence of NTPs. These observations support a two-step model wherein ATP-dependent Ssl2 translocation leads to a 6-bp open complex that RNA polymerase II expands via NTP-dependent RNA transcription.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIB/metabolismo , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição TFII/metabolismo , Sítio de Iniciação de Transcrição/fisiologia , Iniciação da Transcrição Genética/fisiologia , Domínio Catalítico/genética , DNA Helicases/metabolismo , Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIB/genética , Fator de Transcrição TFIIH/genética , Fatores de Transcrição TFII/genética
18.
Mol Biol (Mosk) ; 51(5): 824-830, 2017.
Artigo em Russo | MEDLINE | ID: mdl-29116069

RESUMO

Proteins of the Piwi family and short Piwi-interacting RNAs (piRNAs) ensure the protection of the genome from transposable elements. We have previously shown that nuclear Piwi protein tends to concentrate in the nucleoli of the cells of Drosophila melanogaster ovaries. It could be hypothesized that the function of Piwi in the nucleolus is associated with the repression of R1 and R2 retrotransposons inserted into the rDNA cluster. Here, we show that Piwi participates in recruiting Udd protein to nucleoli. Udd is a component of the conserved Selectivity Factor I-like (SL1-like) complex, which is required for transcription initiation by RNA polymerase I. We found that Udd localization depends on Piwi in germline cells, but not in somatic cells of the ovaries. In contrast, knockdowns of the SL1-like components (Udd or TAF1b) do not disrupt Piwi localization. We also observed that the absence of Udd or TAF1b in germline cells, as well as the impairment of Piwi nuclear localization lead to the accumulation of late stage egg chambers in the ovaries, which could be explained by reduced rRNA transcription. These results allow us to propose for the first time a role for Piwi in the nucleolus that is not directly associated with transposable element repression.


Assuntos
Nucléolo Celular/metabolismo , RNA Polimerase I/metabolismo , RNA Interferente Pequeno/metabolismo , Iniciação da Transcrição Genética/fisiologia , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Nucléolo Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Polimerase I/genética , RNA Interferente Pequeno/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Nat Commun ; 8: 15576, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28593988

RESUMO

Ebola virus (EBOV) is an enveloped negative-sense RNA virus that causes sporadic outbreaks with high case fatality rates. Ebola viral protein 30 (eVP30) plays a critical role in EBOV transcription initiation at the nucleoprotein (eNP) gene, with additional roles in the replication cycle such as viral assembly. However, the mechanistic basis for how eVP30 functions during the virus replication cycle is currently unclear. Here we define a key interaction between eVP30 and a peptide derived from eNP that is important to facilitate interactions leading to the recognition of the RNA template. We present crystal structures of the eVP30 C-terminus in complex with this eNP peptide. Functional analyses of the eVP30-eNP interface identify residues that are critical for viral RNA synthesis. Altogether, these results support a model where the eVP30-eNP interaction plays a critical role in transcription initiation and provides a novel target for the development of antiviral therapy.


Assuntos
Ebolavirus/genética , Nucleoproteínas/metabolismo , RNA Viral/biossíntese , Fatores de Transcrição/metabolismo , Iniciação da Transcrição Genética/fisiologia , Proteínas Virais/metabolismo , Linhagem Celular , Cristalografia por Raios X , Células HEK293 , Humanos , Ligação Proteica , Transcrição Gênica/genética , Replicação Viral/genética
20.
Protein Sci ; 26(7): 1303-1313, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28470684

RESUMO

RNA polymerase (RNAP) is the central motor of gene expression since it governs the process of transcription. In prokaryotes, this holoenzyme is formed by the RNAP core and a sigma factor. After approaching and binding the specific promoter site on the DNA, the holoenzyme-promoter complex undergoes several conformational transitions that allow unwinding and opening of the DNA duplex. Once the first DNA basepairs (∼10 bp) are transcribed in an initial transcription process, the enzyme unbinds from the promoter and proceeds downstream along the DNA while continuously opening the helix and polymerizing the ribonucleotides in correspondence with the template DNA sequence. When the gene is transcribed into RNA, the process generally is terminated and RNAP unbinds from the DNA. The first step of transcription-initiation, is considered the rate-limiting step of the entire process. This review focuses on the single-molecule studies that try to reveal the key steps in the initiation phase of bacterial transcription. Such single-molecule studies have, for example, allowed real-time observations of the RNAP target search mechanism, a mechanism still under debate. Moreover, single-molecule studies using Förster Resonance Energy Transfer (FRET) revealed the conformational changes that the enzyme undergoes during initiation. Force-based techniques such as scanning force microscopy and magnetic tweezers allowed quantification of the energy that drives the RNAP translocation along DNA and its dynamics. In addition to these in vitro experiments, single particle tracking in vivo has provided a direct quantification of the relative populations in each phase of transcription and their locations within the cell.


Assuntos
RNA Polimerases Dirigidas por DNA/química , DNA/química , Transferência Ressonante de Energia de Fluorescência/métodos , RNA/biossíntese , Iniciação da Transcrição Genética/fisiologia , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , RNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA