Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
1.
J Clin Invest ; 134(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225089

RESUMO

BACKGROUNDIt is unknown whether the risk of kidney disease progression and failure differs between patients with and without genetic kidney disorders.METHODSThree cohorts were evaluated: the prospective Cure Glomerulonephropathy Network (CureGN) and 2 retrospective cohorts from Columbia University, including 5,727 adults and children with kidney disease from any etiology who underwent whole-genome or exome sequencing. The effects of monogenic kidney disorders and APOL1 kidney-risk genotypes on the risk of kidney failure, estimated glomerular filtration rate (eGFR) decline, and disease remission rates were evaluated along with diagnostic yields and the impact of American College of Medical Genetics secondary findings (ACMG SFs).RESULTSMonogenic kidney disorders were identified in 371 patients (6.5%), high-risk APOL1 genotypes in 318 (5.5%), and ACMG SFs in 100 (5.2%). Family history of kidney disease was the strongest predictor of monogenic disorders. After adjustment for traditional risk factors, monogenic kidney disorders were associated with an increased risk of kidney failure (hazard ratio [HR] = 1.72), higher rate of eGFR decline (-3.06 vs. 0.25 mL/min/1.73 m2/year), and lower risk of complete remission (odds ratioNot achieving CR = 5.25). High-risk APOL1 genotypes were associated with an increased risk of kidney failure (HR = 1.67) and faster eGFR decline (-2.28 vs. 0.25 mL/min/1.73 m2), replicating prior findings. ACMG SFs were not associated with personal or family history of associated diseases, but were predicted to impact care in 70% of cases.CONCLUSIONSMonogenic kidney disorders were associated with an increased risk of kidney failure, faster eGFR decline, and lower rates of complete remission, suggesting opportunities for early identification and intervention based on molecular diagnosis.TRIAL REGISTRATIONNA.FUNDINGNational Institute of Diabetes and Digestive and Kidney Diseases grants U24DK100845 (formerly UM1DK100845), U01DK100846 (formerly UM1DK100846), U01DK100876 (formerly UM1DK100876), U01DK100866 (formerly UM1DK100866), U01DK100867 (formerly UM1DK100867), U24DK100845, DK081943, RC2DK116690, 2U01DK100876, 1R01DK136765, 5R01DK082753, and RC2-DK122397; NephCure Kidney International; Department of Defense Research Awards PR201425, W81XWH-16-1-0451, and W81XWH-22-1-0966; National Center for Advancing Translational Sciences grant UL1TR001873; National Library of Medicine grant R01LM013061; National Human Genome Research Institute grant 2U01HG008680.


Assuntos
Apolipoproteína L1 , Taxa de Filtração Glomerular , Insuficiência Renal , Humanos , Masculino , Feminino , Adulto , Apolipoproteína L1/genética , Pessoa de Meia-Idade , Insuficiência Renal/genética , Fatores de Risco , Criança , Estudos Retrospectivos , Adolescente , Estudos Prospectivos , Nefropatias/genética
2.
BMC Res Notes ; 17(1): 210, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39080672

RESUMO

BACKGROUND: The burden of chronic kidney disease (CKD) and kidney failure in Ghana is on the ascendency, with the prevalence of CKD estimated at 13.3%. Patients with CKD who progress to kidney failure require life sustaining kidney replacement therapy (KRT) which is almost exclusively available in Ghana as haemodialysis. Kidney transplantation is considered the best KRT option for patients with irreversible kidney failure due to its relative cost efficiency as well as its superiority in terms of survival and quality of life. However, because transplants may trigger an immune response with potential organ rejection, immunosuppressants such as tacrolimus dosing are required. OBJECTIVE: This study sought to determine single nucleotide polymorphisms in CYP3A5, CYP3A4 and MDR1 genes that affect the pharmacokinetics of Tacrolimus in a population of Ghanaian patients with kidney failure. METHOD: This cross-sectional study comprised of 82 kidney failure patients undergoing maintenance haemodialysis at the Renal and Dialysis unit of Korle-Bu Teaching Hospital (KBTH). Clinical and demographic data were collected and genomic DNA isolated. Samples were genotyped for specific SNPs using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). RESULTS: Participants, 58/82 (70.73%) harbored the wildtype CYP3A5*1/*1 AA genotype, 20/82 (24.39%) carried the heterozygous CYP3A5*1/*3 AG genotype, and 4/82 (4.88%) had the homozygous mutant CYP3A5*3/*3 GG genotype. Also, 6/82 (7.32%) carried the wildtype AA genotype, 11/82 (13.41%) had the heterozygous AG genotype, and 65/82 (79.27%) harbored the homozygous mutant GG genotype of CYP3A4*1B (-290 A>G). For MDR1_Ex21 (2677 G>T), 81/82 (98.78%) carried the wildtype GG genotype, while 1/82 (1.22%) had the heterozygous GT genotype. For MDR1_Ex26 (3435 C>T), 63/82 (76.83%) had the wildtype CC genotype, while 18/82 (21.95%) carried the heterozygous CT genotype, and 1/82 (1.22%) harbored the mutant TT genotype. CONCLUSION: SNPs in CYP3A4, CYP3A5, and MDR1 genes in a population of Ghanaian kidney failure patients were described. The varying SNPs of the featured genes suggest the need to consider the genetic status of Ghanaians kidney failure patients prior to transplantation and tacrolimus therapy.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Citocromo P-450 CYP3A , Imunossupressores , Polimorfismo de Nucleotídeo Único , Tacrolimo , Centros de Atenção Terciária , Humanos , Polimorfismo de Nucleotídeo Único/genética , Gana/epidemiologia , Feminino , Masculino , Citocromo P-450 CYP3A/genética , Tacrolimo/farmacocinética , Tacrolimo/administração & dosagem , Pessoa de Meia-Idade , Adulto , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Imunossupressores/administração & dosagem , Estudos Transversais , Insuficiência Renal/genética , Idoso , Diálise Renal
4.
Front Endocrinol (Lausanne) ; 15: 1392466, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911042

RESUMO

Background: The onset and progression of chronic kidney disease (CKD) has been linked to metabolic syndrome (MetS), with the results of recent observational studies supporting a potential link between renal failure and MetS. The causal nature of this relationship, however, remains uncertain. This study thus leveraged a Mendelian Randomization (MR) approach to probe the causal link of MetS with renal failure. Methods: A genetic database was initially used to identify SNPs associated with MetS and components thereof, after which causality was evaluated through the inverse variance weighted (IVW), MR-Egger regression, and weighted media techniques. Results were subsequently validated through sensitivity analyses. Results: IVW (OR = 1.48, 95% CI = 1.21-1.82, P =1.60E-04) and weighted median (OR = 1.58, 95% CI =1.15-2.17, P = 4.64E-03) analyses revealed that MetS was linked to an elevated risk of renal failure. When evaluating the specific components of MetS, waist circumference was found to be causally related to renal failure using the IVW (OR= 1.58, 95% CI = 1.39-1.81, P = 1.74e-11), MR-Egger (OR= 1.54, 95% CI = 1.03-2.29, P = 0.036), and weighted median (OR= 1.82, 95% CI = 1.48-2.24, P = 1.17e-8). The IVW method also revealed a causal association of hypertension with renal failure (OR= 1.95, 95% CI = 1.34-2.86, P = 5.42e-04), while renal failure was not causally related to fasting blood glucose, triglyceride levels, or HDL-C levels. Conclusion: These data offer further support for the existence of a causal association of MetS with kidney failure. It is thus vital that MetS be effectively managed in patients with CKD in clinical settings, particularly for patients with hypertension or a high waist circumference who are obese. Adequate interventions in these patient populations have the potential to prevent or delay the development of renal failure.


Assuntos
Análise da Randomização Mendeliana , Síndrome Metabólica , Polimorfismo de Nucleotídeo Único , Humanos , Síndrome Metabólica/genética , Síndrome Metabólica/complicações , Masculino , Feminino , Insuficiência Renal/genética , Pessoa de Meia-Idade , Circunferência da Cintura , Fatores de Risco
6.
Kidney Int ; 106(3): 419-432, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38797325

RESUMO

ZFYVE21 is an ancient, endosome-associated protein that is highly expressed in endothelial cells (ECs) but whose function(s) in vivo are undefined. Here, we identified ZFYVE21 as an essential regulator of vascular barrier function in the aging kidney. ZFYVE21 levels significantly decline in ECs in aged human and mouse kidneys. To investigate attendant effects, we generated EC-specific Zfyve21-/- reporter mice. These knockout mice developed accelerated aging phenotypes including reduced endothelial nitric oxide (ENOS) activity, failure to thrive, and kidney insufficiency. Kidneys from Zfyve21 EC-/- mice showed interstitial edema and glomerular EC injury. ZFYVE21-mediated phenotypes were not programmed developmentally as loss of ZFYVE21 in ECs during adulthood phenocopied its loss prenatally, and a nitric oxide donor normalized kidney function in adult hosts. Using live cell imaging and human kidney organ cultures, we found that in a GTPase Rab5- and protein kinase Akt-dependent manner, ZFYVE21 reduced vesicular levels of inhibitory caveolin-1 and promoted transfer of Golgi-derived ENOS to a perinuclear Rab5+ vesicular population to functionally sustain ENOS activity. Thus, our work defines a ZFYVE21- mediated trafficking mechanism sustaining ENOS activity and demonstrates the relevance of this pathway for maintaining kidney function with aging.


Assuntos
Envelhecimento , Caveolina 1 , Células Endoteliais , Rim , Óxido Nítrico Sintase Tipo III , Óxido Nítrico , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Caveolina 1/metabolismo , Caveolina 1/genética , Células Endoteliais/metabolismo , Complexo de Golgi/metabolismo , Rim/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Insuficiência Renal/metabolismo , Insuficiência Renal/fisiopatologia , Insuficiência Renal/genética
7.
Sci Transl Med ; 16(748): eadj3385, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776390

RESUMO

Variation in DNA methylation (DNAmet) in white blood cells and other cells/tissues has been implicated in the etiology of progressive diabetic kidney disease (DKD). However, the specific mechanisms linking DNAmet variation in blood cells with risk of kidney failure (KF) and utility of measuring blood cell DNAmet in personalized medicine are not clear. We measured blood cell DNAmet in 277 individuals with type 1 diabetes and DKD using Illumina EPIC arrays; 51% of the cohort developed KF during 7 to 20 years of follow-up. Our epigenome-wide analysis identified DNAmet at 17 CpGs (5'-cytosine-phosphate-guanine-3' loci) associated with risk of KF independent of major clinical risk factors. DNAmet at these KF-associated CpGs remained stable over a median period of 4.7 years. Furthermore, DNAmet variations at seven KF-associated CpGs were strongly associated with multiple genetic variants at seven genomic regions, suggesting a strong genetic influence on DNAmet. The effects of DNAmet variations at the KF-associated CpGs on risk of KF were partially mediated by multiple KF-associated circulating proteins and KF-associated circulating miRNAs. A prediction model for risk of KF was developed by adding blood cell DNAmet at eight selected KF-associated CpGs to the clinical model. This updated model significantly improved prediction performance (c-statistic = 0.93) versus the clinical model (c-statistic = 0.85) at P = 6.62 × 10-14. In conclusion, our multiomics study provides insights into mechanisms through which variation of DNAmet may affect KF development and shows that blood cell DNAmet at certain CpGs can improve risk prediction for KF in T1D.


Assuntos
Metilação de DNA , Diabetes Mellitus Tipo 1 , Variação Genética , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/complicações , Metilação de DNA/genética , Masculino , Feminino , Insuficiência Renal/genética , Insuficiência Renal/sangue , MicroRNAs/genética , MicroRNAs/sangue , Adulto , Ilhas de CpG/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/sangue , Fatores de Risco
8.
Nephron ; 148(8): 578-583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527446

RESUMO

Hereditary xanthinuria (HXAN) is a rare metabolic disorder that results from mutations in either the xanthine dehydrogenase (XDH) or the molybdenum cofactor sulfurase genes (MOCOS), respectively defining HXAN type I and type II. Hypouricemia, hypouricosuria, and abnormally high plasma and urine levels of xanthine, causing susceptibility to xanthine nephrolithiasis and deposition of xanthine crystals in tissues, are the metabolic hallmarks of HXAN. Several pathogenic variants in the XDH gene have so far been identified in patients with HXAN type I, but the clinical phenotype associated with the whole deletion of the human XDH gene is unknown. Herein, we report the case of a woman diagnosed with HXAN, whose molecular genetic testing revealed a homozygous microdeletion involving the XDH gene. Distinctive features of her medical history were the diagnosis of arterial hypertension and microalbuminuria at 22 years of age; a single pregnancy at the age of 25, complicated by proteinuria and transient kidney function deterioration in the third trimester; unexplained severe hypouricemia incidentally discovered during pregnancy; inability to breastfeed her newborn daughter due to primary agalactia; chronic kidney disease (CKD) stage 3 diagnosed at age 35; and progression to end-stage kidney disease over the next 12 years. Protocol noninvasive laboratory and imaging investigation was not informative as to the cause of CKD. This is the first description of the clinical phenotype associated with a natural knockout of the human XDH gene. Despite the lack of kidney histopathology data, the striking similarities with the phenotypes exhibited by comparable murine models validate the latter as useful sources of mechanistic insights for the pathogenesis of the human disease, supporting the hypothesis that the absence of xanthine dehydrogenase activity might represent a susceptibility factor for chronic tubulointerstitial nephritis, even in patients without kidney stones.


Assuntos
Homozigoto , Cálculos Renais , Xantina Desidrogenase , Humanos , Xantina Desidrogenase/genética , Xantina Desidrogenase/deficiência , Feminino , Cálculos Renais/genética , Adulto , Insuficiência Renal/genética , Insuficiência Renal/etiologia , Deleção de Genes , Adulto Jovem , Gravidez , Erros Inatos do Metabolismo
9.
Pediatr Nephrol ; 39(3): 905-909, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37572117

RESUMO

BACKGROUND  : Nephropathy in Denys-Drash syndrome (DDS) develops within a few months of birth, often progressing to kidney failure. Wilms tumors also develop at an early age with a high rate of incidence. When a patient does not have Wilms tumor but develops kidney failure, prophylactic bilateral nephrectomy, and kidney transplantation (KTX) is an optimal approach owing to the high risk of Wilms tumor development. In the case presented here, prophylactic bilateral nephrectomy and KTX were performed in a patient who had not developed Wilms tumor or kidney failure. However, the treatment option is controversial as it involves the removal of a tumor-free kidney and performing KTX in the absence of kidney failure. CASE DIAGNOSIS/TREATMENT: We present the case of a 7-year-old boy, born at 38 weeks gestation. Examinations at the age of 1 year revealed severe proteinuria and abnormal internal and external genitalia. Genetic testing identified a missense mutation in exon 9 of the WT1 gene, leading to the diagnosis of DDS. At the age of 6 years, he had not yet developed Wilms tumor and had grown to a size that allowed him to safely undergo a KTX. His kidney function was slowly deteriorating (chronic kidney disease (CKD) stage 3), but he had not yet developed kidney failure. Two treatment options were considered for this patient: observation until the development of kidney failure or prophylactic bilateral nephrectomy with KTX to avoid Wilms tumor development. After a detailed explanation of options to the patient and family, they decided to proceed with prophylactic bilateral nephrectomy and KTX. At the latest follow-up 4 months after KTX, the patient's kidney functioned well without proteinuria. CONCLUSION: We performed prophylactic bilateral nephrectomy with KTX on a DDS patient who had not developed kidney failure or Wilms tumor by the age of 7 years. Although the risk of development of Wilms tumor in such a patient is unclear, this treatment may be an optimal approach for patients who are physically able to undergo KTX, considering the potentially lethal nature of Wilms tumor in CKD patients.


Assuntos
Síndrome de Denys-Drash , Neoplasias Renais , Transplante de Rim , Insuficiência Renal Crônica , Insuficiência Renal , Tumor de Wilms , Masculino , Humanos , Criança , Síndrome de Denys-Drash/complicações , Síndrome de Denys-Drash/genética , Síndrome de Denys-Drash/cirurgia , Transplante de Rim/efeitos adversos , Tumor de Wilms/complicações , Tumor de Wilms/cirurgia , Tumor de Wilms/genética , Genes do Tumor de Wilms , Insuficiência Renal/genética , Nefrectomia/efeitos adversos , Neoplasias Renais/complicações , Neoplasias Renais/cirurgia , Neoplasias Renais/genética , Insuficiência Renal Crônica/genética , Proteinúria/genética , Proteínas WT1/genética
11.
Am J Med Genet A ; 191(9): 2324-2328, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37272762

RESUMO

NudC-like protein 2 (NUDCD2) is a 4-exon protein-coding gene at 5q34. The protein appears to act in concert with other genes regulating cell migration and microtubule extension. Early studies in model organisms show associations with LIS1, HERC2, and cohesin subunits via a co-chaperone function with Heat shock protein 90 (Hsp90). It is a candidate gene for human pathology. We present two unrelated patients with biallelic variants in NUDCD2. Their phenotypes comprise similar dysmorphic facies, midline brain hypoplasia, hypothyroidism, pulmonary and aortic valve stenosis, severe dysfunction of the liver and kidneys, profound hypotonia, and early death. The cellular analysis demonstrates the absence of the NUDCD2 protein in fibroblasts of one patient with biallelic loss-of-function variants. The data suggest that NUDCD2 deficiency causes this recognizable syndrome that has features of a ciliopathy with additional complications.


Assuntos
Anormalidades Múltiplas , Colestase , Insuficiência Renal , Humanos , Chaperonas Moleculares , Colestase/complicações , Colestase/diagnóstico , Colestase/genética , Proteínas de Choque Térmico HSP90 , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Insuficiência Renal/complicações , Insuficiência Renal/diagnóstico , Insuficiência Renal/genética
12.
J Med Genet ; 60(4): 397-405, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36038257

RESUMO

BACKGROUND: Monogenic disorders are estimated to account for 10%-12% of patients with kidney failure. We report the unexpected finding of an unusual uromodulin (UMOD) variant in multiple pedigrees within the British population and demonstrate a shared haplotype indicative of an ancestral variant. METHODS: Probands from 12 apparently unrelated pedigrees with a family history of kidney failure within a geographically contiguous UK region were shown to be heterozygous for a pathogenic variant of UMOD c.278_289delTCTGCCCCGAAG insCCGCCTCCT. RESULTS: A total of 88 clinically affected individuals were identified, all born in the UK and of white British ethnicity. 20 other individuals with the variant were identified in the UK 100,000 Genomes (100K) Project and 9 from UK Biobank (UKBB). A common extended haplotype was present in 5 of the UKBB individuals who underwent genome sequencing which was only present in <1 in 5000 of UKBB controls. Significantly, rare variants (<1 in 250 general population) identified within 1 Mb of the UMOD variant by genome sequencing were detected in all of the 100K individuals, indicative of an extended shared haplotype. CONCLUSION: Our data confirm a likely founder UMOD variant with a wide geographical distribution within the UK. It should be suspected in cases of unexplained familial nephropathy presenting in patients of white British ancestry.


Assuntos
Nefropatias , Insuficiência Renal , Humanos , Uromodulina/genética , Nefropatias/genética , Sequência de Bases , Haplótipos/genética , Insuficiência Renal/genética
13.
J Am Soc Nephrol ; 34(4): 572-589, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36522157

RESUMO

SIGNIFICANCE STATEMENT: Epigenetic changes have been proposed to mediate nephron endowment during development, a critical determinant of future renal disease development. Hydroxymethyl cytosine, an epigenetic modification important for gene regulation, is abundant in the human kidney, but its physiologic role and the role of DNA demethylase enzymes encoded by the Tet1 , Tet2 , or Tet3 , which mediate cytosine hydroxymethylation, are unclear. By genetically deleting Tet1 , Tet2 , or Tet3 in nephron progenitors in mice, the authors showed that combined Tet2 and Tet3 loss in nephron progenitors cause defective kidney development, leading to kidney failure and perinatal death. Tet2 and Tet3 deletion also caused an alteration in demethylation and expression of genes critical for nephron formation. These findings establish that Tet2- and Tet3 -mediated cytosine hydroxymethylation in nephron progenitors plays a critical role in nephron endowment. BACKGROUND: Nephron endowment is a key determinant of hypertension and renal disease in later life. Epigenetic changes have been proposed to mediate fetal programming and nephron number. DNA cytosine methylation, which plays a critical role in gene regulation, is affected by proteins encoded by the ten-eleven translocation (TET) DNA demethylase gene family ( Tet1 , Tet2 , and Tet3 ), but the roles of TET proteins in kidney development and nephron endowment have not been characterized . METHODS: To study whether epigenetic changes-specifically, active DNA hydroxymethylation mediated by Tet1 , Tet2 , and Tet3- are necessary for nephron progenitor differentiation and nephron endowment, we generated mice with deletion of Tet1 , Tet2 , or Tet3 in Six2-positive nephron progenitors cells (NPCs). We then performed unbiased omics profiling, including whole-genome bisulfite sequencing on isolated Six2-positive NPCs and single-cell RNA sequencing on kidneys from newborn mice. RESULTS: We did not observe changes in kidney development or function in mice with NPC-specific deletion of Tet1 , Tet2 , Tet3 or Tet1 / Tet2 , or Tet1 / Tet3 . On the other hand, mice with combined Tet2 and Tet3 loss in Six2-positive NPCs failed to form nephrons, leading to kidney failure and perinatal death. Tet2 and Tet3 loss in Six2 -positive NPCs resulted in defective mesenchymal to epithelial transition and renal vesicle differentiation. Whole-genome bisulfite sequencing, single-cell RNA sequencing, and gene and protein expression analysis identified a defect in expression in multiple genes, including the WNT- ß -catenin signaling pathway, due to a failure in demethylation of these loci in the absence of Tet2 and Tet3 . CONCLUSIONS: These findings suggest that Tet2- and Tet3 -mediated active cytosine hydroxymethylation in NPCs play a key role in kidney development and nephron endowment.


Assuntos
Dioxigenases , Morte Perinatal , Insuficiência Renal , Gravidez , Feminino , Camundongos , Humanos , Animais , Citosina/metabolismo , Dioxigenases/metabolismo , Néfrons/metabolismo , Diferenciação Celular/genética , Células-Tronco/fisiologia , Metilação de DNA , Insuficiência Renal/genética , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Homeodomínio/genética
14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(10): 1120-1123, 2022 Oct 10.
Artigo em Chinês | MEDLINE | ID: mdl-36184096

RESUMO

OBJECTIVE: To explore the genetic basis for a patient presenting with renal insufficiency. METHODS: The patient was subjected to whole exome sequencing, and the candidate variant was verified by Sanger sequencing. Transcriptional activity of the PAX2 gene was analyzed by using a PRS4-EGFP reporter plasmid. RESULTS: Genetic testing revealed that the patient has carried a novel de novo heterozygous variant c.418C>T (p.Arg140Trp) of the PAX2 gene. The influence of c.389C>G (p.Pro130Arg), c.478G>A (p.Ala160Thr), c.418C>G (p. Arg140Gly) and c.418C>T (p.Arg140Trp) variants on the transcriptional activity was also evaluated. Functional study has illustrated that the PAX2-P130R, PAX2-R140G and PAX2-R140W variants all had a significant inhibitory effect on the transcriptional activity, but not the PAX2-A160T variant. CONCLUSION: The isolated renal hypoplasia of the proband is probably due to the likely pathogenic variant of the PAX2 gene.


Assuntos
Coloboma , Insuficiência Renal , Coloboma/genética , Testes Genéticos , Humanos , Mutação , Fator de Transcrição PAX2/genética , Insuficiência Renal/genética , Refluxo Vesicoureteral
16.
Cell Rep Med ; 3(8): 100726, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977464

RESUMO

In a retrospective analysis of over 62,000 Black and non-Black participants from eight United States cohorts, Gutiérrez et al.1 examined estimated glomerular filtration rate (eGFR) equations to assess racial differences in kidney failure requiring replacement therapy and in mortality across different equations.


Assuntos
Falência Renal Crônica , Insuficiência Renal , Taxa de Filtração Glomerular , Humanos , Falência Renal Crônica/genética , Insuficiência Renal/genética , Estudos Retrospectivos , Estados Unidos/epidemiologia , População Branca/genética
17.
Ann Clin Lab Sci ; 52(3): 452-461, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35777809

RESUMO

OBJECTIVE: Peroxisome proliferator-activated receptor gamma (PPARG) polymorphisms are associated with hypertension, but the role of PPARG in hypertensive nephropathy is poorly understood. METHODS: Male Sprague-Dawley rats were applied to construct renovascular hypertension model by 2-kid-ney, 1-clip (2K1C) method. Tail vein bolus injection of adeno-associated virus (rAAV)-shPPARG was performed to knockout PPARG in 2K1C rats. The heart rate (HR), systolic pressure (SBP), diastolic pressure (DBP) and activity of rats were monitored after treatments. The role of PPARG in hypertension, renal damage, and circadian rhythm of renin-angiotensin system (RAS) was explored by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), western blot, Masson staining, hematoxylin eosin (HE) staining, Sirius red staining and enzyme-linked immunosorbent assay. RESULTS: PPARG was over-expressed in thoracic aortas of 2K1C rats. 2K1C treatment enhanced DBP and SBP in rats, which was reversed by PPARG silencing. PPARG silencing alleviated 2K1C-induced renal damage. 2K1C treatment reduced angiotensin II and increased angiotensin converting enzyme (ACE) and plasma renin activity (PRA) concentrations in rat plasma during the light period and decreased plasma PRA concentration during the dark period, which were all overturned by PPARG silencing. PPARG silencing effectively improved the RAS circadian rhythm in hypertension. CONCLUSION: PPARG silencing improved blood pressure control and alleviated renal damage by regulating RAS circadian rhythm in hypertensive rats.


Assuntos
Hipertensão , PPAR gama , Insuficiência Renal , Sistema Renina-Angiotensina , Animais , Pressão Sanguínea/fisiologia , Ritmo Circadiano/genética , Hipertensão/genética , Masculino , PPAR gama/genética , PPAR gama/farmacologia , Ratos , Ratos Sprague-Dawley , Insuficiência Renal/genética , Sistema Renina-Angiotensina/genética
18.
Kidney Int ; 102(3): 624-639, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35716955

RESUMO

Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genome-wide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR-baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant-by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with age-dependency of genetic cross-section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in-silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03-1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.


Assuntos
N-Acetilgalactosaminiltransferases , Insuficiência Renal Crônica , Insuficiência Renal , Estudos Transversais , Loci Gênicos , Estudo de Associação Genômica Ampla , Taxa de Filtração Glomerular/genética , Humanos , Rim , Estudos Longitudinais , N-Acetilgalactosaminiltransferases/genética , Insuficiência Renal/genética
19.
BMC Nephrol ; 23(1): 228, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761207

RESUMO

BACKGROUND: Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome is a rare disease with a high mortality rate caused by VPS33B or VIPAS39 mutations. ARC syndrome typically presents with arthrogryposis, renal tubular leak and neonatal cholestatic jaundice, and most patients with this disease do not survive beyond one year. CASE PRESENTATION: Here, we report the case of a 13-year-old girl with ARC featuring an incomplete and mild phenotype with novel compound heterozygous mutations of VPS33B. The patient presented with arthrogryposis (claw-shaped limbs), ichthyosis, jaundice, and pruritus. Laboratory tests revealed highly evaluated levels of total bilirubin (TB), direct bilirubin (DB), and total bile acid (TBA) as well as normal levels of gamma-glutamyltransferase (GGT). However, signs of renal dysfunction, as well as other manifestations of ARC syndrome, including nervous system abnormalities, deafness, and failure to thrive, were not observed. The patient's clinical symptoms of jaundice and pruritus were significantly alleviated by administration of ursodeoxycholic acid. Whole-exome sequencing (WES) revealed novel compound heterozygous mutations of VPS33B, c.1081 C > T (p.Q361X,257)/c.244 T > C (p.C82R). Both variants were predicted to be pathogenic in silico and have never been reported previously. To date, the patients' cholestatic jaundice has been well controlled with continuous treatment of ursodeoxycholic acid. CONCLUSIONS: We report the case of a Chinese female with ARC including novel compound heterozygous mutations of VPS33B and an incomplete and mild phenotype. Early diagnosis and suitable symptomatic therapies are critical for the management of ARC patients with mild manifestations and prolonged lifespan.


Assuntos
Artrogripose , Colestase , Icterícia Obstrutiva , Insuficiência Renal , Artrogripose/diagnóstico , Artrogripose/genética , Bilirrubina , Colestase/diagnóstico , Colestase/genética , Feminino , Humanos , Mutação/genética , Fenótipo , Prurido , Insuficiência Renal/diagnóstico , Insuficiência Renal/genética , Ácido Ursodesoxicólico , Proteínas de Transporte Vesicular/genética
20.
BioDrugs ; 36(4): 437-441, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35731461

RESUMO

Over the last few years, US Food and Drug Administration-approved drugs using RNA interference have come to the market. Many have treated liver-specific diseases utilizing N-acetyl galactosamine conjugation because of its effective delivery and limited off-target effects. The autosomal recessive disorder primary hyperoxaluria, specifically type 1, has benefited from these developments. Primary hyperoxaluria arises from mutations in the enzymes involved in endogenous oxalate synthesis. The severity of disease varies but can result in kidney failure and systemic oxalosis. Until recently, the treatment options were limited and focused primarily on supportive treatments, pyridoxine use in a subset of patients with primary hyperoxaluria type 1, and liver-kidney transplants in those who progressed to kidney failure. Two genes have been targeted with RNA interference; lumasiran targets glycolate oxidase and nedosiran targets lactate dehydrogenase A. Lumasiran was recently approved in the treatment of primary hyperoxaluria type 1 and nedosiran is in the approval process. Unfortunately, despite initial hopes that nedosiran may also be a treatment option for primary hyperoxaluria types 2 and 3, initial data suggest otherwise. The use of RNA interference liver-specific targeting for the treatment of primary hyperoxaluria type 1 will likely transform the natural history of the disease.


Assuntos
Hiperoxalúria Primária , Insuficiência Renal , Humanos , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/terapia , Interferência de RNA , RNA Interferente Pequeno , Insuficiência Renal/genética , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA