Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
PLoS Biol ; 22(9): e3002757, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39231388

RESUMO

Integrins are fundamental for cell adhesion and the formation of focal adhesions (FA). Accordingly, these receptors guide embryonic development, tissue maintenance, and haemostasis but are also involved in cancer invasion and metastasis. A detailed understanding of the molecular interactions that drive integrin activation, FA assembly, and downstream signalling cascades is critical. Here, we reveal a direct association of paxillin, a marker protein of FA sites, with the cytoplasmic tails of the integrin ß1 and ß3 subunits. The binding interface resides in paxillin's LIM3 domain, where based on the NMR structure and functional analyses, a flexible, 7-amino acid loop engages the unstructured part of the integrin cytoplasmic tail. Genetic manipulation of the involved residues in either paxillin or integrin ß3 compromises cell adhesion and motility of murine fibroblasts. This direct interaction between paxillin and the integrin cytoplasmic domain identifies an alternative, kindlin-independent mode of integrin outside-in signalling particularly important for integrin ß3 function.


Assuntos
Paxilina , Ligação Proteica , Paxilina/metabolismo , Animais , Camundongos , Domínios Proteicos , Adesão Celular/fisiologia , Adesões Focais/metabolismo , Humanos , Movimento Celular , Integrina beta3/metabolismo , Integrina beta3/genética , Integrina beta3/química , Fibroblastos/metabolismo , Cadeias beta de Integrinas/metabolismo , Cadeias beta de Integrinas/química , Cadeias beta de Integrinas/genética , Integrina beta1/metabolismo , Transdução de Sinais
2.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928286

RESUMO

Integrin αIIbß3 mediates platelet aggregation by binding the Arginyl-Glycyl-Aspartic acid (RGD) sequence of fibrinogen. RGD binding occurs at a site topographically proximal to the αIIb and ß3 subunits, promoting the conformational activation of the receptor from bent to extended states. While several experimental approaches have characterized RGD binding to αIIbß3 integrin, applying computational methods has been significantly more challenging due to limited sampling and the need for a priori information regarding the interactions between the RGD peptide and integrin. In this study, we employed all-atom simulations using funnel metadynamics (FM) to evaluate the interactions of an RGD peptide with the αIIb and ß3 subunits of integrin. FM incorporates an external history-dependent potential on selected degrees of freedom while applying a funnel-shaped restraint potential to limit RGD exploration of the unbound state. Furthermore, it does not require a priori information about the interactions, enhancing the sampling at a low computational cost. Our FM simulations reveal significant molecular changes in the ß3 subunit of integrin upon RGD binding and provide a free-energy landscape with a low-energy binding mode surrounded by higher-energy prebinding states. The strong agreement between previous experimental and computational data and our results highlights the reliability of FM as a method for studying dynamic interactions of complex systems such as integrin.


Assuntos
Simulação de Dinâmica Molecular , Oligopeptídeos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Ligação Proteica , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Humanos , Plaquetas/metabolismo , Sítios de Ligação , Integrina beta3/metabolismo , Integrina beta3/química
3.
Structure ; 32(7): 899-906.e3, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38579706

RESUMO

Integrin αIIbß3 is the key receptor regulating platelet retraction and accumulation and a proven drug-target for antithrombotic therapies. Here we resolve the cryo-EM structures of the full-length αIIbß3, which covers three distinct states along the activation pathway. Firstly, we obtain the αIIbß3 structure at 3 Å resolution in the inactive state, revealing the overall topology of the heterodimer with the transmembrane (TM) helices and the ligand-binding domain tucked in a specific angle proximity to the TM region. After the addition of a Mn2+ agonist, we resolve two coexisting structures representing two new states between inactive and active state. Our structures show conformational changes of the αIIbß3 activating trajectory and a unique twisting of the integrin legs, which is required for platelets accumulation. Our structure provides direct structural evidence for how the lower legs are involved in full-length integrin activation mechanisms and offers a new strategy to target the αIIbß3 lower leg.


Assuntos
Microscopia Crioeletrônica , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Humanos , Sítios de Ligação , Manganês/metabolismo , Manganês/química , Modelos Moleculares , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Integrina beta3/química , Integrina alfa2/química
4.
J Agric Food Chem ; 72(13): 7043-7054, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38509000

RESUMO

14-3-3ζ protein, the key target in the regulation and control of integrin ß3 outside-in signaling, is an attractive new strategy to inhibit thrombosis without affecting hemostasis. In this study, 4'-O-methylbavachalconeB (4-O-MB) in Psoraleae Fructus was identified as a 14-3-3ζ ligand with antithrombosis activity by target fishing combined with ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) analysis. The competitive inhibition analysis showed that 4-O-MB targeted 14-3-3ζ and blocked the 14-3-3ζ/integrin ß3 interaction with inhibition constant (Ki) values of 9.98 ± 0.22 µM. Molecular docking and amino acid mutation experiments confirmed that 4-O-MB specifically bound to 14-3-3ζ through LSY9 and SER28 to regulate the 14-3-3ζ/integrin ß3 interaction. Besides, 4-O-MB affected the integrin ß3 early outside-in signal by inhibiting AKT and c-Src phosphorylation. Meanwhile, 4-O-MB could inhibit ADP-, collagen-, or thrombin-induced platelet aggregation function but had no effect on platelet adhesion to collagen-coated surfaces in vivo. Administration of 4-O-MB could significantly inhibit thrombosis formation without disturbing hemostasis in mice. These findings provide new prospects for the antithrombotic effects of Psoraleae Fructus and the potential application of 4-O-MB as lead compounds in the therapy of thrombosis by targeting 14-3-3ζ.


Assuntos
Agregação Plaquetária , Trombose , Camundongos , Animais , Integrina beta3/genética , Integrina beta3/química , Integrina beta3/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/farmacologia , Simulação de Acoplamento Molecular , Trombose/tratamento farmacológico , Trombose/genética , Trombose/metabolismo , Colágeno/metabolismo , Plaquetas/metabolismo
5.
Biophys J ; 123(17): 2716-2729, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38098231

RESUMO

The integrin heterodimer is a transmembrane protein critical for driving cellular process and is a therapeutic target in the treatment of multiple diseases linked to its malfunction. Activation of integrin involves conformational transitions between bent and extended states. Some of the conformations that are intermediate between bent and extended states of the heterodimer have been experimentally characterized, but the full activation pathways remain unresolved both experimentally due to their transient nature and computationally due to the challenges in simulating rare barrier crossing events in these large molecular systems. An understanding of the activation pathways can provide new fundamental understanding of the biophysical processes associated with the dynamic interconversions between bent and extended states and can unveil new putative therapeutic targets. In this work, we apply nonlinear manifold learning to coarse-grained molecular dynamics simulations of bent, extended, and two intermediate states of αIIbß3 integrin to learn a low-dimensional embedding of the configurational phase space. We then train deep generative models to learn an inverse mapping between the low-dimensional embedding and high-dimensional molecular space and use these models to interpolate the molecular configurations constituting the activation pathways between the experimentally characterized states. This work furnishes plausible predictions of integrin activation pathways and reports a generic and transferable multiscale technique to predict transition pathways for biomolecular systems.


Assuntos
Integrina alfa2 , Integrina beta3 , Simulação de Dinâmica Molecular , Aprendizado Profundo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Multimerização Proteica , Integrina alfa2/química , Integrina alfa2/metabolismo , Integrina beta3/química , Integrina beta3/metabolismo
6.
Anal Chem ; 95(33): 12406-12418, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37555842

RESUMO

Due to its key roles in malignant tumor progression and reprograming of the tumor microenvironment, integrin ß3 has attracted great attention as a new target for tumor therapy. However, the structure-function relationship of integrins ß3 remains incompletely understood, leading to the shortage of specific and effective targeting probes. This work uses a purified extracellular domain of integrin ß3 and integrin ß3-positive cells to screen aptamers, specifically targeting integrin ß3 in the native conformation on live cells through the SELEX approach. Following meticulous truncation and characterization of the initial aptamer candidates, the optimized aptamer S10yh2 was produced, exhibiting a low equilibrium dissociation constant (Kd) in the nanomolar range. S10yh2 displays specific recognition of cancer cells with varying levels of integrin ß3 expression and demonstrates favorable stability in serum. Subsequent analysis of docking sites revealed that S10yh2 binds to the seven amino acid residues located in the core region of integrin ß3. The S10yh2 aptamer can downregulate the level of integrin heterodimer αvß3 on integrin ß3 overexpressed cancer cells and partially inhibit cell migration behavior. In summary, S10yh2 is a promising probe with a small size, simple synthesis, good stability, high binding affinity, and selectivity. It therefore holds great potential for investigating the structure-function relationship of integrins.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias , Humanos , Integrina beta3/química , Integrina beta3/metabolismo , Aptâmeros de Nucleotídeos/farmacologia , Integrina alfaVbeta3/metabolismo , Movimento Celular , Microambiente Tumoral
7.
Adv Sci (Weinh) ; 9(7): e2103228, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35023301

RESUMO

Conventional antiplatelet agents indiscriminately inhibit both thrombosis and hemostasis, and the increased bleeding risk thus hampers their use at more aggressive dosages to achieve adequate effect. Blocking integrin αIIbß3 outside-in signaling by separating the ß3/Src interaction, yet to be proven in vivo, may nonetheless resolve this dilemma. Identification of a specific druggable target for this strategy remains a fundamental challenge as Src SH3 is known to be responsible for binding to not only integrin ß3 but also the proteins containing the PXXP motif. In vitro and in vivo mutational analyses show that the residues, especially E97, in the RT loop of Src SH3 are critical for interacting with ß3. DCDBS84, a small molecule resulting from structure-based virtual screening, is structurally validated to be directed toward the projected target. It specifically disrupts ß3/Src interaction without affecting canonical PXXP binding and thus inhibits the outside-in signaling-regulated platelet functions. Treatment of mice with DCDBS84 causes a profound inhibition of thrombosis, equivalent to that induced by extremely high doses of αIIbß3 antagonist, but does not compromise primary hemostasis. Specific targets are revealed for a preferential inhibition of thrombosis that may lead to new classes of potent antithrombotics without hemorrhagic side effects.


Assuntos
Plaquetas , Trombose , Animais , Plaquetas/metabolismo , Hemostasia/fisiologia , Integrina beta3/química , Integrina beta3/metabolismo , Camundongos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trombose/metabolismo , Trombose/prevenção & controle
8.
Oncogene ; 40(45): 6369-6380, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34588619

RESUMO

The therapeutic efficacy of 5-fluorouracil (5-FU) is often reduced by the development of drug resistance. We observed significant upregulation of lipocalin 2 (LCN2) expression in a newly established 5-FU-resistant colorectal cancer (CRC) cell line. In this study, we demonstrated that 5-FU-treated CRC cells developed resistance through LCN2 upregulation caused by LCN2 promoter demethylation and that feedback between LCN2 and NF-κB further amplified LCN2 expression. High LCN2 expression was associated with poor prognosis in CRC patients. LCN2 attenuated the cytotoxicity of 5-FU by activating the SRC/AKT/ERK-mediated antiapoptotic program. Mechanistically, the LCN2-integrin ß3 interaction enhanced integrin ß3 stability, thus recruiting SRC to the cytomembrane for autoactivation, leading to downstream AKT/ERK cascade activation. Targeting LCN2 or SRC compromised the growth of CRC cells with LCN2-induced 5-FU resistance. Our findings demonstrate a novel mechanism of acquired resistance to 5-FU, suggesting that LCN2 can be used as a biomarker and/or therapeutic target for advanced CRC.


Assuntos
Neoplasias Colorretais/patologia , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Integrina beta3/metabolismo , Lipocalina-2/genética , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Integrina beta3/química , Lipocalina-2/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Transplante de Neoplasias , Prognóstico , Regiões Promotoras Genéticas/efeitos dos fármacos , Estabilidade Proteica , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima , Quinases da Família src/metabolismo
9.
Blood ; 138(15): 1359-1372, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34375384

RESUMO

The αIIbß3 integrin receptor coordinates platelet adhesion, activation, and mechanosensing in thrombosis and hemostasis. Using differential cysteine alkylation and mass spectrometry, we have identified a disulfide bond in the αIIb subunit linking cysteines 490 and 545 that is missing in ∼1 in 3 integrin molecules on the resting and activated human platelet surface. This alternate covalent form of αIIbß3 is predetermined as it is also produced by human megakaryoblasts and baby hamster kidney fibroblasts transfected with recombinant integrin. From coimmunoprecipitation experiments, the alternate form selectively partitions into focal adhesions on the activated platelet surface. Its function was evaluated in baby hamster kidney fibroblast cells expressing a mutant integrin with an ablated C490-C545 disulfide bond. The disulfide mutant integrin has functional outside-in signaling but extended residency time in focal adhesions due to a reduced rate of clathrin-mediated integrin internalization and recycling, which is associated with enhanced affinity of the αIIb subunit for clathrin adaptor protein 2. Molecular dynamics simulations indicate that the alternate covalent form of αIIb requires higher forces to transition from bent to open conformational states that is in accordance with reduced affinity for fibrinogen and activation by manganese ions. These findings indicate that the αIIbß3 integrin receptor is produced in various covalent forms that have different cell surface distribution and function. The C490, C545 cysteine pair is conserved across all 18 integrin α subunits, and the disulfide bond in the αV and α2 subunits in cultured cells is similarly missing, suggesting that the alternate integrin form and function are also conserved.


Assuntos
Adesões Focais/metabolismo , Integrina beta3/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Animais , Linhagem Celular , Cricetinae , Dissulfetos/análise , Adesões Focais/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Integrina beta3/química , Integrina beta3/genética , Simulação de Dinâmica Molecular , Mutação , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Glicoproteína IIb da Membrana de Plaquetas/química , Glicoproteína IIb da Membrana de Plaquetas/genética
10.
Methods Mol Biol ; 2302: 69-79, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33877623

RESUMO

The ability to quantify protein-protein interactions without adding labels to protein has made isothermal titration calorimetry (ITC) a preferred technique to study proteins in aqueous solution. Here, we describe the application of ITC to the study of protein-protein interactions in membrane mimics using the association of integrin αIIb and ß3 transmembrane domains in phospholipid bicelles as an example. A higher conceptual and experimental effort compared to water-soluble proteins is required for membrane proteins and rewarded with rare thermodynamic insight into this central class of proteins.


Assuntos
Integrina alfa2/química , Integrina alfa2/metabolismo , Integrina beta3/química , Integrina beta3/metabolismo , Fosfolipídeos/metabolismo , Animais , Sítios de Ligação , Calorimetria , Humanos , Membranas Artificiais , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Domínios Proteicos , Mapas de Interação de Proteínas
11.
Sci Signal ; 14(665)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436498

RESUMO

The spike protein of SARS-CoV-2 binds the angiotensin-converting enzyme 2 (ACE2) on the host cell surface and subsequently enters host cells through receptor-mediated endocytosis. Additional cell receptors may be directly or indirectly involved, including integrins. The cytoplasmic tails of ACE2 and integrins contain several predicted short linear motifs (SLiMs) that may facilitate internalization of the virus as well as its subsequent propagation through processes such as autophagy. Here, we measured the binding affinity of predicted interactions between SLiMs in the cytoplasmic tails of ACE2 and integrin ß3 with proteins that mediate endocytic trafficking and autophagy. We validated that a class I PDZ-binding motif mediated binding of ACE2 to the scaffolding proteins SNX27, NHERF3, and SHANK, and that a binding site for the clathrin adaptor AP2 µ2 in ACE2 overlaps with a phospho-dependent binding site for the SH2 domains of Src family tyrosine kinases. Furthermore, we validated that an LC3-interacting region (LIR) in integrin ß3 bound to the ATG8 domains of the autophagy receptors MAP1LC3 and GABARAP in a manner enhanced by LIR-adjacent phosphorylation. Our results provide molecular links between cell receptors and mediators of endocytosis and autophagy that may facilitate viral entry and propagation.


Assuntos
Enzima de Conversão de Angiotensina 2/fisiologia , COVID-19/virologia , Integrina beta3/fisiologia , Receptores Virais/fisiologia , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , Internalização do Vírus , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Autofagia/fisiologia , Endocitose/fisiologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Integrina beta3/química , Integrina beta3/genética , Modelos Moleculares , Pandemias , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/fisiologia , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Sinais Direcionadores de Proteínas/genética , Sinais Direcionadores de Proteínas/fisiologia , Receptores Virais/química , Receptores Virais/genética , SARS-CoV-2/genética
12.
Proc Natl Acad Sci U S A ; 117(51): 32402-32412, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288722

RESUMO

Binding of the intracellular adapter proteins talin and its cofactor, kindlin, to the integrin receptors induces integrin activation and clustering. These processes are essential for cell adhesion, migration, and organ development. Although the talin head, the integrin-binding segment in talin, possesses a typical FERM-domain sequence, a truncated form has been crystallized in an unexpected, elongated form. This form, however, lacks a C-terminal fragment and possesses reduced ß3-integrin binding. Here, we present a crystal structure of a full-length talin head in complex with the ß3-integrin tail. The structure reveals a compact FERM-like conformation and a tightly associated N-P-L-Y motif of ß3-integrin. A critical C-terminal poly-lysine motif mediates FERM interdomain contacts and assures the tight association with the ß3-integrin cytoplasmic segment. Removal of the poly-lysine motif or disrupting the FERM-folded configuration of the talin head significantly impairs integrin activation and clustering. Therefore, structural characterization of the FERM-folded active talin head provides fundamental understanding of the regulatory mechanism of integrin function.


Assuntos
Integrina beta3/metabolismo , Talina/química , Talina/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Humanos , Integrina beta3/química , Leucina/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Mutagênese , Polilisina/química , Domínios Proteicos , Dobramento de Proteína , Talina/genética
13.
Biosystems ; 198: 104216, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32777252

RESUMO

A heterodimeric receptor subunit, Integrin αV, often complexed with Integrin ß3 plays a vital role in cell signaling to regulate angiogenesis and promote cancer progression. The paramount ß-turn formed from pentapeptide residues (PPQEE) in the cytoplasmic domain of Integrin αV was previously reported as crucial for cell signaling and its deletion was proved deleterious for protein's cell membrane adhesion and ligand binding properties. This study revealed conformational changes in the Integrin αV subunit upon deletion of PPQEE residues through in silico structural modelling approach followed by analysis of alteration of binding sites. Human Protein Atlas database helped to identify the association of Integrin αV to the unfavourable prognosis of three gastrointestinal cancers: stomach, liver and pancreatic cancers. Molecular modelling and docking techniques were carried out for the necessary complex formations (wild-type and mutant-type). Further comparison was performed for the complexes. The changes in protein's conformation and stability due to PPQEE deletion were observed in both independent subunit and heterodimer. The most noteworthy conformational shift was the disruption of a transmembrane helix into coil, which accounted for protein's impaired cell membrane adhesion, increased solvent accessibility and decreased stability. The deletion also caused a reduction of beta-turn regions, which disrupted ligand binding in the cytoplasmic domain of Integrin αV subunit. This study emphasized on structural basis of how the deletion of PPQEE residues alters stability, ligand binding and signaling activity of Integrin αV subunit highlighting the importance of these residues in maintenance of protein's native structure.


Assuntos
Integrina alfaV/metabolismo , Integrina beta3/metabolismo , Complexos Multiproteicos/metabolismo , Neoplasias/metabolismo , Oligopeptídeos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Simulação por Computador , Deleção de Genes , Humanos , Integrina alfaV/química , Integrina alfaV/genética , Integrina beta3/química , Integrina beta3/genética , Ligantes , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Neoplasias/classificação , Neoplasias/genética , Oligopeptídeos/química , Oligopeptídeos/genética , Conformação Proteica , Transdução de Sinais/genética
14.
Int J Lab Hematol ; 42(5): 628-635, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32558238

RESUMO

INTRODUCTION: Glanzmann thrombasthenia (GT) is most common of inherited platelet disorders, resulting from quantitative/qualitative defects in platelet surface integrin αIIbß3, encoded by ITGA2B and ITGB3 genes. Little is known about clinical and molecular characteristics of GT patients from highly consanguineous Pakistani population. METHODS: This study analyzed the clinical and molecular spectrum of six GT patients from four unrelated but consanguineous families. Platelet surface expression of αIIbß3 integrin was determined using flow cytometry analysis. ITGA2B and ITGB3 genes were screened for causative mutations by DNA sequencing. Detected mutations were characterized for their pathogenicity using a variety of in silico tools. RESULTS: Glanzmann thrombasthenia patients in this study generally presented early in life, had a severe course of clinical disease with transfusion dependency for management of bleeding episodes. Molecular analysis revealed 2 homozygous missense mutations in ITGB3 gene, c.422 A˃G (p.Y141C) in three GT patients from a single pedigree with familial segregation and c.1641 C>G (p.C547W) in three unrelated GT patients from three families manifesting type I GT with severe reduction in platelet αIIbß3 levels. In silico pathogenicity predictions, multiple sequence alignment and 3D protein modeling unanimously suggested deleterious nature of the detected mutations, possibly due to aberrant disulfide bonding. Of note, clinical diversity was observed even among GT patients with same mutation in GT1 family. CONCLUSION: This study provides an initial yet important account of clinical and genetic characterization of GT in local patients which may spark further studies to help molecular diagnosis, optimal disease management, and genetic counseling based prevention efforts.


Assuntos
Homozigoto , Integrina beta3/genética , Mutação de Sentido Incorreto , Trombastenia/diagnóstico , Trombastenia/genética , Substituição de Aminoácidos , Consanguinidade , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Humanos , Integrina beta3/química , Masculino , Modelos Moleculares , Paquistão , Linhagem , Conformação Proteica
15.
Platelets ; 31(3): 355-359, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31088191

RESUMO

Glanzmann thrombasthenia (GT) is an inherited disorder of platelet aggregation resulting from quantitative and/or qualitative abnormalities of the glycoprotein IIb/IIIa complex. We analyzed the expression of GPIIb/IIIa and the gene sequencing in two pedigrees with GT, so as to determine the type and the relationship between genotype and clinical phenotype. Platelet aggregation tests and flow cytometric studies were performed, along with gene sequencing. Both probands were classified as grade III of bleeding. Platelet aggregation was absent or defective upon stimulation with physiological stimuli like AA and ADP, but platelets agglutinated normally in response to ristocetin. MFI values were considerably reduced. Gene sequencing showed ITGB3 mutations p.Cys549Ser/p.Leu705CysfsTer4 in proband 1 and p.Cys549Ser/p.Gln254Lys in proband 2 and her sister. This study reports one novel ITGB3 mutant gene, p.Gln254Lys, of which we will explore the potential pathogenicity.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Integrina beta3/genética , Mutação , Linhagem , Trombastenia/diagnóstico , Trombastenia/genética , Alelos , Biomarcadores , Plaquetas/metabolismo , Análise Mutacional de DNA , Genótipo , Humanos , Imunofenotipagem , Integrina beta3/química , Modelos Moleculares , Fenótipo , Agregação Plaquetária/genética , Testes de Função Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Conformação Proteica , Relação Estrutura-Atividade
16.
J Thromb Haemost ; 17(12): 2211-2215, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31565851

RESUMO

BACKGROUND: Macrothrombocytopenia (MTP) is a rare but enigmatic complication of Glanzmann thrombasthenia (GT), an inherited bleeding disorder caused by the absence of platelet aggregation due to deficiencies of the αIIbß3 integrin. OBJECTIVES: We report a family with type I GT and a prolonged bleeding time but unusually associated with congenital mild thrombocytopenia and platelet size heterogeneity with giant forms. METHODS AND RESULTS: Sanger sequencing of DNA from the propositus identified 2 heterozygous ITGB3 gene mutations: p.P189S and p.C210S both of which prevent αIIbß3 expression and are causative of GT but without explaining the presence of enlarged platelets. High-throughput screening led to the detection of a predicted disease-causing heterozygous mutation in the TUBB1 gene: p.G146R, encoding ß1-tubulin, a component of the platelet cytoskeleton and a gene where mutations are a known cause of MTP. CONCLUSIONS: Family screening confirmed that this rare phenotype results from oligogenic inheritance while suggesting that the GT phenotype dominates clinically.


Assuntos
Plaquetas/patologia , Hemostasia/genética , Integrina beta3/genética , Mutação , Trombastenia/genética , Trombocitopenia/genética , Tubulina (Proteína)/genética , Feminino , Predisposição Genética para Doença , Heterozigoto , Humanos , Integrina beta3/sangue , Integrina beta3/química , Masculino , Modelos Moleculares , Herança Multifatorial , Linhagem , Fenótipo , Conformação Proteica , Fatores de Risco , Relação Estrutura-Atividade , Trombastenia/sangue , Trombastenia/diagnóstico , Trombocitopenia/sangue , Trombocitopenia/diagnóstico , Tubulina (Proteína)/sangue , Tubulina (Proteína)/química
17.
Cell Death Dis ; 10(6): 401, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127093

RESUMO

Urokinase plasminogen activator receptor (uPAR) is upregulated in podocytes of glomerular diseases and crucially mediates podocyte injury through integrin ß3 (ITGB3). We previously showed that the miR-30 family maintains podocyte structure and function by inhibiting injurious calcineurin signaling through nuclear factor of activated T cells C (NFATC). Here, we tested whether the miR-30-calcineurin-NFATC and uPAR-ITGB3 pathways, two of the major pathways leading to podocyte injury, could interact. We found that podocyte-specific miR-30 knockdown in mice induced uPAR upregulation and ITGB3 activation, accompanied by proteinuria and podocyte injury. These effects of miR-30 knockdown were reduced using inhibitors of ITGB3, calcineurin, and NFATC, respectively, which are known to be antiproteinuric. These results indicate that miR-30 deficiency leads to calcineurin-NFATC signaling activation, which in turn activates the uPAR-ITGB3 pathway. In cultured podocytes, miR-30 knockdown also activated uPAR-ITGB3 signaling, leading to Rho GTPase activation, synaptopodin downregulation and podocyte injury. To explore uPAR-ITGB3 signaling regulation by miR-30 in podocytopathy development, we treated mice with lipopolysaccharide (LPS) and found that miR-30 was downregulated in podocytes, accompanied by uPAR upregulation and ITGB3 activation. We obtained the same results in cultured podocytes treated with LPS. Podocyte-specific transgenic miR-30 abolished uPAR-ITGB3 signaling and ameliorated podocyte injury and proteinuria in mice. Taken together, these experiments show that uPAR-ITGB3 signaling is negatively regulated by miR-30 through calcineurin-NFATC pathway, a novel mechanism underlying podocyte injury in glomerular diseases. Our study has elucidated the relationship among the crucial players governing podocyte pathophysiology and the antiproteinuric actions of drugs commonly used for podocytopathies.


Assuntos
Calcineurina/metabolismo , MicroRNAs/metabolismo , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais , Animais , Antagomirs/metabolismo , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Humanos , Integrina beta3/química , Integrina beta3/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Transgênicos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Proteínas dos Microfilamentos/metabolismo , Podócitos/citologia , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tacrolimo/farmacologia , Regulação para Cima/efeitos dos fármacos , Proteínas rho de Ligação ao GTP/metabolismo
18.
J Phys Chem B ; 123(21): 4562-4570, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31050900

RESUMO

The absence of detergent and curvature makes nanodiscs excellent membrane mimetics. The lack of structural and mechanistic model of polymer-encapsulated lipid nanodiscs limits their use in the study of the structure, dynamics, and functions of membrane proteins. In this study, we parameterized and optimized the coarse-graining (CG) bead mapping for two differently charged and functionalized copolymers, containing styrene-maleic acid (SMAEA) and polymethacrylate (PMAQA), for the Martini force-field framework and showed nanodisc formation (<8 nm diameter) on a time scale of tens of microseconds using molecular dynamics (MD) simulations. Structural models of ∼2.0 or 4.8 kDa PMAQA and ∼2.2 kDa SMAEA polymer-based lipid nanodiscs highlight the importance of the polymer chemical structure, size, and polymer-lipid ratio in the optimization of the nanodisc structure. The ideal spatial arrangement of polymers in nanodiscs, nanodisc size, and thermal stability obtained from our MD simulation correlates well with the experimental observations. The polymer-nanodiscs were tested for the reconstitution of single-pass or multipass transmembrane proteins. We expect this study to be useful in the development of novel polymer-based lipid nanodiscs and for the structural studies of membrane proteins.


Assuntos
Precursor de Proteína beta-Amiloide/química , Integrina beta3/química , Maleatos/química , Nanopartículas/química , Ácidos Polimetacrílicos/química , Poliestirenos/química , Rodopsinas Microbianas/química , Sequência de Aminoácidos , Dimiristoilfosfatidilcolina/química , Humanos , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Nostoc/química , Fosfatidilcolinas/química
19.
Clin Transl Oncol ; 21(8): 1052-1060, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30632010

RESUMO

BACKGROUND: Integrins are highly attractive targets in oncology due to their involvement in angiogenesis in a wide spectrum of cancer entities. Among several integrin inhibitors, cilengitide is suggested to be one of the most promising inhibitors. However, little is known about the cellular processes induced during cilengitide chemotherapy in head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS: For the current study, 3 HNSCC cell lines, SCC4, SCC15 and SCC25; and 3 primary culture cells, TU53, TU57, and TU63 were used. CD90, cytokeratin, and vimentin were stained immunohistochemically to identify the biological characteristics of these cell lines and primary culture cells and the cytostatic effect of cilengitide was evaluated. Quantitative polymerase chain reaction (qPCR) arrays were applied to evaluate target protein genes ITGAV, ITGB3, and ITGB5 of integrin αvß3 and αvß5 at respective concentrations of 50 and 100 µM cilengitide for 72 h. RESULTS: Cilengitide has significantly inhibited the proliferation of HNSCC cells in a dose-dependent way. At the same concentration, cilengitide suppressed the proliferation of primary culture cells even more strongly than it did that of cell lines, suggesting that primary culture cells retain more of their internal biological characteristics than do cell lines. qPCR assay detected downregulation of ITGAV, ITGB3, and ITGB5 gene expression after exposure to 50 µM of cilengitide. However, after exposure to 100-µM cilengitide, expression of these genes significantly increased both in cell lines and primary culture cells. CONCLUSIONS: RGD-containing small-molecule synthetic peptides might be considered in tumor chemotherapy in the near future. The different reactions of primary culture cells and cell lines demonstrated that individualized chemotherapy plans may be a feasible option. However, research on the role of cilengitide in HNSCC therapy is still in its early stages, and further investigations are required.


Assuntos
Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/patologia , Cadeias beta de Integrinas/química , Integrina beta3/química , Venenos de Serpentes/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Apoptose/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo , Integrina beta3/genética , Integrina beta3/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Células Tumorais Cultivadas
20.
Mol Biol Cell ; 30(2): 181-190, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30462575

RESUMO

Integrins are transmembrane receptors that have a pivotal role in mechanotransduction processes by connecting the extracellular matrix to the cytoskeleton. Although it is well established that integrin activation/inhibition cycles are due to highly dynamic interactions, whether integrin mobility depends on local tension and cytoskeletal organization remains surprisingly unclear. Using an original approach combining micropatterning on glass substrates to induce standardized local mechanical constraints within a single cell with temporal image correlation spectroscopy, we measured the mechanosensitive response of integrin mobility at the whole cell level and in adhesion sites under different mechanical constraints. Contrary to ß1 integrins, high tension increases ß3 integrin residence time in adhesive regions. Chimeric integrins and structure-function studies revealed that the ability of ß3 integrins to specifically sense local tensional organization is mostly encoded by its cytoplasmic domain and is regulated by tuning the affinity of its NPXY domains through phosphorylation by Src family kinases.


Assuntos
Integrina beta1/metabolismo , Integrina beta3/metabolismo , Quinases da Família src/metabolismo , Animais , Fenômenos Biomecânicos , Adesão Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Integrina beta3/química , Mecanotransdução Celular , Camundongos , Modelos Biológicos , Fosforilação , Domínios Proteicos , Transporte Proteico , Análise Espectral , Quinases da Família src/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA