Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 3777, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630440

RESUMO

The spread of multidrug-resistant Staphylococcus aureus strains, including methicillin-resistant S. aureus (MRSA), has shortened the useful life of anti-staphylococcal drugs enormously. Two approaches can be followed to address this problem: screening various sources for new leads for antibiotics or finding ways to disable the resistance mechanisms to existing antibiotics. Plants are resistant to most microorganisms, but despite extensive efforts to identify metabolites that are responsible for this resistance, no substantial progress has been made. Plants possibly use multiple strategies to deal with microorganisms that evolved over time. For this reason, we searched for plants that could potentiate the effects of known antibiotics. From 29 plant species tested, Cytisus striatus clearly showed such an activity and an NMR-based metabolomics study allowed the identification of compounds from the plant extracts that could act as antibiotic adjuvants. Isoflavonoids were found to potentiate the effect of ciprofloxacin and erythromycin against MRSA strains. For the structure-activity relationship (SAR), 22 isoflavonoids were assessed as antibiotic adjuvants. This study reveals a clear synergy between isoflavonoids and the tested antibiotics, showing their great potential for applications in the clinical therapy of infections with antibiotic-resistant microorganisms such as MRSA.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Cytisus/química , Eritromicina/farmacologia , Isoflavonas/farmacologia , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Folhas de Planta/química , Antibacterianos/química , Ciprofloxacina/agonistas , Sinergismo Farmacológico , Eritromicina/agonistas , Isoflavonas/agonistas , Isoflavonas/química
2.
Molecules ; 21(1): 90, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26784151

RESUMO

The amount of secondary metabolites in plants can be enhanced or reduced by various external factors. In this study, the effect of strontium ions on the production of phytoestrogens in soybeans was investigated. The plants were treated with Hoagland's solution, modified with Sr(2+) with concentrations ranging from 0.5 to 3.0 mM, and were grown for 14 days in hydroponic cultivation. After harvest, soybean plants were separated into roots and shoots, dried, and pulverized. The plant material was extracted with methanol and hydrolyzed. Phytoestrogens were quantified by HPLC. The significant increase in the concentration of the compounds of interest was observed for all tested concentrations of strontium ions when compared to control. Sr(2+) at a concentration of 2 mM was the strongest elicitor, and the amount of phytoestrogens in plant increased ca. 2.70, 1.92, 3.77 and 2.88-fold, for daidzein, coumestrol, genistein and formononetin, respectively. Moreover, no cytotoxic effects were observed in HepG2 liver cell models after treatment with extracts from 2 mM Sr(2+)-stressed soybean plants when compared to extracts from non-stressed plants. Our results indicate that the addition of strontium ions to the culture media may be used to functionalize soybean plants with enhanced phytoestrogen content.


Assuntos
Glycine max/efeitos dos fármacos , Fitoestrógenos/agonistas , Extratos Vegetais/farmacologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Estrôncio/farmacologia , Cátions Bivalentes , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cumestrol/agonistas , Cumestrol/biossíntese , Cumestrol/isolamento & purificação , Genisteína/agonistas , Genisteína/isolamento & purificação , Genisteína/metabolismo , Células Hep G2 , Humanos , Hidroponia , Isoflavonas/agonistas , Isoflavonas/biossíntese , Isoflavonas/isolamento & purificação , Metanol , Fitoestrógenos/isolamento & purificação , Fitoestrógenos/metabolismo , Extratos Vegetais/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Solventes , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Estrôncio/metabolismo
3.
J Virol ; 86(13): 7334-44, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22532686

RESUMO

There is a growing need for novel antiviral therapies that are broad spectrum, effective, and not subject to resistance due to viral mutations. Using high-throughput screening methods, including computational docking studies and an interferon-stimulated gene 54 (ISG54)-luciferase reporter assay, we identified a class of isoflavone compounds that act as specific agonists of innate immune signaling pathways and cause activation of the interferon regulatory factor (IRF-3) transcription factor. The isoflavone compounds activated the ISG54 promoter, mediated nuclear translocation of IRF-3, and displayed highly potent activity against hepatitis C virus (HCV) and influenza virus. Additionally, these agonists efficiently activated IRF-3 in the presence of the HCV protease NS3-4A, which is known to blunt the host immune response. Furthermore, genomic studies showed that discrete innate immune pathways centered on IRF signaling were regulated following agonist treatment without causing global changes in host gene expression. Following treatment, the expression of only 64 cellular genes was significantly induced. This report provides the first evidence that innate immune pathways dependent on IRF-3 can be successfully targeted by small-molecule drugs for the development of novel broad-spectrum antiviral compounds.


Assuntos
Antivirais/metabolismo , Hepacivirus/imunologia , Fatores Imunológicos/metabolismo , Fator Regulador 3 de Interferon/biossíntese , Isoflavonas/agonistas , Orthomyxoviridae/imunologia , Transdução de Sinais/efeitos dos fármacos , Hepacivirus/fisiologia , Humanos , Imunidade Inata , Orthomyxoviridae/fisiologia , Transporte Proteico , Replicação Viral
4.
Life Sci ; 83(7-8): 293-300, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18640131

RESUMO

Pancreatic cancer (PC) remains the fourth most common cause of cancer related death in the United States. Therefore, novel strategies for the prevention and treatment are urgently needed. Numerous dietary and pharmacological agents have been proposed as alternative strategies for the prevention and/or treatment of PC. Isoflavone is a prominent flavonoid found in soy products and has been proposed to be responsible for lowering the incidence of PC in Asians. Similarly, curcumin, an active ingredient of turmeric, that inhibits growth of malignant neoplasms, has a promising role in the prevention and/or treatment of PC. Here we examined whether isoflavone together with curcumin could elicit a greater inhibition of growth of PC cells than either agent alone, and also sought to determine the molecular mechanism of action. We found that the inhibition of cell growth and induction of apoptosis was significantly greater in the combination group than that could be achieved by either agent alone. These changes were associated with decreased Notch-1 expression and DNA binding activity of NF-kappaB and its target genes such as Cyclin D1, Bcl-2, and Bcl-xL. Moreover, we found that the combination of four natural agents at lower concentration was much more effective. Collectively, our results suggest that diet containing multiple natural products should be preferable over single agents for the prevention and/or treatment of PC. The superior effects of the combinatorial treatment could partly be attributed to the inhibition of constitutive activation of Notch-1 and NF-kappaB signaling pathways.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Curcumina/farmacologia , Isoflavonas/farmacologia , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ásia/epidemiologia , Povo Asiático , Linhagem Celular Tumoral , Avaliação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Sinergismo Farmacológico , Humanos , Incidência , Isoflavonas/agonistas , Isoflavonas/uso terapêutico , Neoplasias Pancreáticas/epidemiologia , Neoplasias Pancreáticas/etnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA