Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
J Surg Res ; 296: 603-611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350299

RESUMO

INTRODUCTION: Ischemic gut injury is common in the intensive care unit, impairs gut barrier function, and contributes to multiorgan dysfunction. One novel intervention to mitigate ischemic gut injury is the direct luminal delivery of oxygen microbubbles (OMB). Formulations of OMB can be modified to control the rate of oxygen delivery. This project examined whether luminal delivery of pectin-modified OMB (OMBp5) can reduce ischemic gut injury in a rodent model. METHODS: The OMBp5 formulation was adapted to improve delivery of oxygen along the length of small intestine. Adult Sprague-Dawley rats (n = 24) were randomly allocated to three groups: sham-surgery (SS), intestinal ischemia (II), and intestinal ischemia plus luminal delivery of OMBp5 (II + O). Ischemia-reperfusion injury was induced by superior mesenteric artery occlusion for 45 min followed by reperfusion for 30 min. Outcome data included macroscopic score of mucosal injury, the histological score of gut injury, and plasma biomarkers of intestinal injury. RESULTS: Macroscopic, microscopic data, and intestinal injury biomarker results demonstrated minimal intestinal damage in the SS group and constant damage in the II group. II + O group had a significantly improved macroscopic score throughout the gut mucosa (P = 0.04) than the II. The mean histological score of gut injury for the II + O group was significantly improved on the II group (P ≤ 0.01) in the proximal intestine only, within 30 cm of delivery. No differences were observed in plasma biomarkers of intestinal injury following OMBp5 treatment. CONCLUSIONS: This proof-of-concept study has demonstrated that luminal OMBp5 decreases ischemic injury to the proximal small intestine. There is a need to improve oxygen delivery over the full length of the intestine. These findings support further studies with clinically relevant end points, such as systemic inflammation and vital organ dysfunction.


Assuntos
Isquemia Mesentérica , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Roedores , Pectinas , Microbolhas , Isquemia/etiologia , Isquemia/terapia , Isquemia/patologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/prevenção & controle , Isquemia Mesentérica/etiologia , Isquemia Mesentérica/terapia , Isquemia Mesentérica/patologia , Biomarcadores , Mucosa Intestinal/patologia , Intestinos/patologia
2.
Shock ; 58(3): 241-250, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35959789

RESUMO

BACKGROUND: Intestinal ischemia-reperfusion (I/R) injury is a severe disease associated with high mortality. Stimulator of interferon genes (STING) is an intracellular protein that is activated by cytosolic DNA and is implicated in I/R injury, resulting in transcription of type I interferons (IFN-α and IFN-ß) and other proinflammatory molecules. Extracellular cold-inducible RNA-binding protein (eCIRP), a damage-associated molecular pattern, induces STING activation. H151 is a small molecule inhibitor of STING that has not yet been studied as a potential therapeutic. We hypothesize that H151 reduces inflammation, tissue injury, and mortality after intestinal I/R. Methods: In vitro, RAW264.7 cells were pretreated with H151 then stimulated with recombinant murine (rm) CIRP, and IFN-ß levels in the culture supernatant were measured at 24 hours after stimulation. In vivo, male C57BL/6 mice were subjected to 60-minute intestinal ischemia via superior mesenteric artery occlusion. At the time of reperfusion, mice were intraperitoneally instilled with H151 (10 mg/kg BW) or 10% Tween-80 in PBS (vehicle). Four hours after reperfusion, the small intestines, lungs, and serum were collected for analysis. Mice were monitored for 24 hours after intestinal I/R to assess survival. Results: In vitro, H151 reduced rmCIRP-induced IFN-ß levels in a dose-dependent manner. In vivo, intestinal levels of pIRF3 were increased after intestinal I/R and decreased after H151 treatment. There was an increase in serum levels of tissue injury markers (lactate dehydrogenase, aspartate aminotransferase) and cytokine levels (interleukin 1ß, interleukin 6) after intestinal I/R, and these levels were decreased after H151 treatment. Ischemia-reperfusion-induced intestinal and lung injury and inflammation were significantly reduced after H151 treatment, as evaluated by histopathologic assessment, measurement of cell death, chemokine expression, neutrophil infiltration, and myeloperoxidase activity. Finally, H151 improved the survival rate from 41% to 81% after intestinal I/R. Conclusions: H151, a novel STING inhibitor, attenuates the inflammatory response and reduces tissue injury and mortality in a murine model of intestinal I/R. H151 shows promise as a potential therapeutic in the treatment of this disease.


Assuntos
Proteínas de Membrana , Isquemia Mesentérica , Traumatismo por Reperfusão , Animais , Aspartato Aminotransferases/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Interferon Tipo I/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Intestinos/patologia , Lactato Desidrogenases/metabolismo , Masculino , Proteínas de Membrana/antagonistas & inibidores , Isquemia Mesentérica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Peroxidase/metabolismo , Proteínas de Ligação a RNA , Traumatismo por Reperfusão/tratamento farmacológico
3.
Am J Emerg Med ; 51: 223-227, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34775196

RESUMO

OBJECTIVE: The absence of a specific biomarker for acute mesenteric ischemia diagnosis results in a delay in diagnosis and treatment, as well as a high mortality rate. The current research examined whether the proteins adropin, HIF-1α, and apelin may be used to help in the early detection of acute mesenteric ischemia. MATERIALS AND METHODS: A total of 20 patients with acute mesenteric ischemia, 20 patients with abdominal pain, and 20 healthy controls were included in the study. The levels of adropin, HIF-1, and apelin in the serum were determined using the ELISA method. RESULTS: Adropin concentrations were significantly higher in the acute mesenteric ischemia group than in the abdominal pain and healthy control groups (p < 0.05). HIF-1α levels were considerably greater in patients with acute mesenteric ischemia compared to both the abdominal pain group and the healthy control group (p < 0.05). There was no difference in apelin levels between the acute mesenteric ischemia and abdominal pain groups (p > 0.05). HIF-1α was found to be moderate (AUC: 0.705) and adropin was found to be a weak biomarker (AUC: 0.692) in the ROC analysis for acute mesenteric ischemia. CONCLUSION: In this study of 20 patients with acute mesenteric ischemia, we found adropin and HIF-1α levels to be increased compared to patients with abdominal pain who did not have acute mesenteric ischemia.


Assuntos
Apelina/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Isquemia Mesentérica/metabolismo , Dor Abdominal/diagnóstico , Dor Abdominal/etiologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Isquemia Mesentérica/diagnóstico , Isquemia Mesentérica/patologia , Pessoa de Meia-Idade , Curva ROC
4.
Am J Physiol Gastrointest Liver Physiol ; 321(5): G588-G602, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34549599

RESUMO

Intestinal ischemia is a life-threatening emergency with mortality rates of 50%-80% due to epithelial cell death and resultant barrier loss. Loss of the epithelial barrier occurs in conditions including intestinal volvulus and neonatal necrotizing enterocolitis. Survival depends on effective epithelial repair; crypt-based intestinal epithelial stem cells (ISCs) are the source of epithelial renewal in homeostasis and after injury. Two ISC populations have been described: 1) active ISC [aISC; highly proliferative; leucine-rich-repeat-containing G protein-coupled receptor 5 (LGR5+)-positive or sex-determining region Y-box 9 -antigen Ki67-positive (SOX9+Ki67+)] and 2) reserve ISC [rISC; less proliferative; homeodomain-only protein X positive (HOPX+)]. The contributions of these ISCs have been evaluated both in vivo and in vitro using a porcine model of mesenteric vascular occlusion to understand mechanisms that modulate ISC recovery responses following ischemic injury. In our previously published work, we observed that rISC conversion to an activated state was associated with decreased HOPX expression during in vitro recovery. In the present study, we wanted to evaluate the direct role of HOPX on cellular proliferation during recovery after injury. Our data demonstrated that during early in vivo recovery, injury-resistant HOPX+ cells maintain quiescence. Subsequent early regeneration within the intestinal crypt occurs around 2 days after injury, a period in which HOPX expression decreased. When HOPX was silenced in vitro, cellular proliferation of injured cells was promoted during recovery. This suggests that HOPX may serve a functional role in ISC-mediated regeneration after injury and could be a target to control ISC proliferation.NEW & NOTEWORTHY This paper supports that rISCs are resistant to ischemic injury and likely an important source of cellular renewal following near-complete epithelial loss. Furthermore, we have evidence that HOPX controls ISC activity state and may be a critical signaling pathway during ISC-mediated repair. Finally, we use multiple novel methods to evaluate ISCs in a translationally relevant large animal model of severe intestinal injury and provide evidence for the potential role of rISCs as therapeutic targets.


Assuntos
Proliferação de Células , Células Epiteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Mucosa Intestinal/metabolismo , Isquemia Mesentérica/metabolismo , Reepitelização , Células-Tronco/metabolismo , Animais , Modelos Animais de Doenças , Células Epiteliais/patologia , Feminino , Proteínas de Homeodomínio/genética , Mucosa Intestinal/patologia , Masculino , Isquemia Mesentérica/genética , Isquemia Mesentérica/patologia , Fenótipo , Índice de Gravidade de Doença , Células-Tronco/patologia , Sus scrofa , Técnicas de Cultura de Tecidos
5.
J Surg Res ; 268: 326-336, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34399355

RESUMO

BACKGROUND: Acute mesenteric ischemia is a common surgical emergency. Restoration of blood flow is a critical objective of treating this pathology. However, many patients suffer from ischemia-reperfusion (I/R) injuries at the time of revascularization, requiring prolonged hospitalizations. B-1a cells are a subtype of B lymphocytes with roles in regulating inflammation and tissue injury by spontaneous release of natural IgM and IL-10. We hypothesized that treatment with B-1a cells protects mice from intestinal I/R. METHODS: Mesenteric ischemia was induced in mice by placing a vascular clip on the superior mesenteric artery for 60 minutes. At the time of reperfusion, B-1a cells or PBS control were instilled into the peritoneal cavity (PerC) of mice. PerC lavage, blood, intestine, and lungs were collected 4 h after reperfusion. Serum organ injury and inflammatory markers such as ALT, AST, LDH, lactate, IL-6, as well as lung and gut histology and myeloperoxidase (MPO) were assessed. RESULTS: In intestinal I/R, B-1a cell frequency and number in the PerC were significantly decreased compared to sham-operated mice. There was an increase in the serum levels of ALT, AST, LDH, lactate, and IL-6 when comparing the vehicle group with the sham group. These increases were significantly reduced in the B-1a cell treated group. B-1a cell treatment significantly decreased the intestine and lung injury scores as well as MPO content, compared to vehicle treated mice. B-1a cell treatment resulted in a reduction of apoptotic cells in these tissues. Serum IgM levels were decreased in intestinal I/R, while treatment with B-1a cells significantly increased their levels towards normal levels. CONCLUSIONS: B-1a cell treatment at the time of mesenteric reperfusion ameliorates end organ damage and reduces systemic inflammation through the improvement of serum IgM levels. Preserving B-1a cells pool could serve as a novel therapeutic avenue in intestinal I/R injury.


Assuntos
Lesão Pulmonar Aguda , Isquemia Mesentérica , Traumatismo por Reperfusão , Lesão Pulmonar Aguda/patologia , Animais , Linfócitos B/patologia , Humanos , Intestinos/irrigação sanguínea , Isquemia Mesentérica/patologia , Camundongos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle
6.
Am J Gastroenterol ; 116(7): 1506-1513, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34183578

RESUMO

INTRODUCTION: To identify factors associated with irreversible transmural necrosis (ITN) among critically ill patients experiencing nonocclusive mesenteric ischemia (NOMI) and to compare the predictive value regarding ITN risk stratification with that of the previously described Clichy score. METHODS: All consecutive patients admitted to the intensive care unit between 2009 and 2019 who underwent exploratory laparotomy for NOMI and who had an available contrast-enhanced computed tomography with at least 1 portal venous phase were evaluated for inclusion. Clinical, laboratory, and radiological variables were collected. ITN was assessed on pathological reports of surgical specimens and/or on laparotomy findings in cases of open-close surgery. Factors associated with ITN were identified by univariate and multivariate analysis to derive a NOMI-ITN score. This score was further compared with the Clichy score. RESULTS: We identified 4 factors associated with ITN in the context of NOMI: absence of bowel enhancement, bowel thinning, plasma bicarbonate concentration ≤15 mmol/L, and prothrombin rate <40%. These factors were included in a new NOMI-ITN score, with 1 point attributed for each variable. ITN was observed in 6%, 38%, 65%, 88%, and 100% of patients with NOMI-ITN score ranging from 0 to 4, respectively. The NOMI-ITN score outperformed the Clichy score for the prediction of ITN (area under the receiver operating characteristics curve 0.882 [95% confidence interval 0.826-0.938] vs 0.674 [95% confidence interval 0.582-0.766], respectively, P < 0.001). DISCUSSION: We propose a new 4-point score aimed at stratifying risk of ITN in patients with NOMI. The Clichy score should be applied to patients with occlusive acute mesenteric ischemia only.


Assuntos
Intestino Delgado/patologia , Isquemia Mesentérica/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Bicarbonatos/sangue , Estado Terminal , Feminino , Humanos , Intestino Delgado/irrigação sanguínea , Intestino Delgado/diagnóstico por imagem , Laparotomia , Masculino , Isquemia Mesentérica/sangue , Isquemia Mesentérica/complicações , Isquemia Mesentérica/diagnóstico por imagem , Pessoa de Meia-Idade , Análise Multivariada , Necrose , Complicações Pós-Operatórias/diagnóstico por imagem , Complicações Pós-Operatórias/patologia , Modelos de Riscos Proporcionais , Tempo de Protrombina , Medição de Risco , Sepse/complicações , Tomografia Computadorizada por Raios X
7.
Eur J Pharmacol ; 898: 173984, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33647256

RESUMO

Intestinal ischemia is a vascular emergency that arises when blood flow to the intestine is compromised. Reperfusion is necessary to restore intestinal function but might lead to local and systemic inflammatory responses and bacterial translocation, with consequent multiple organ dysfunction syndrome (MODS). During reperfusion occurs production of reactive oxygen species. These species contribute to intestinal injury through direct toxicity or activation of inflammatory pathways. Fullerol is a nanacomposite which has been shown to act as reactive oxygen species and reactive nitrogen species (RNS) scavengers. Thus, our aim was to evaluate whether Fullerol confer anti-inflammatory activity during intestinal ischemia and reperfusion (IIR). Intestinal ischemia was induced by total occlusion of the superior mesenteric artery. Groups were treated with vehicle or Fullerol 10 min before reperfusion. Mice were euthanized after 6 h of reperfusion, and small intestines were collected for evaluation of plasma extravasation, leukocyte influx, cytokine production and histological damage. Bacterial translocation to the peritoneal cavity and reactive oxygen and nitrogen species production by lamina propria cells were also evaluated. Our results showed that treatment with Fullerol inhibited bacterial translocation to the peritoneal cavity, delayed and decreased the lethality rates and diminished neutrophil influx and intestinal injury induced by IIR. Reduced severity of reperfusion injury in Fullerol-treated mice was associated with blunted reactive oxygen and nitrogen species production in leukocytes isolated from gut lamina propria and decreased production of pro-inflammatory mediators. Thus, the present study shows that Fullerol is a potential therapy to treat inflammatory bowel disorders associated with bacterial translocation, such as IIR.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Fulerenos/farmacologia , Intestinos/irrigação sanguínea , Intestinos/efeitos dos fármacos , Isquemia Mesentérica/tratamento farmacológico , Nanocompostos , Traumatismo por Reperfusão/prevenção & controle , Animais , Translocação Bacteriana/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Intestinos/microbiologia , Intestinos/patologia , Masculino , Isquemia Mesentérica/metabolismo , Isquemia Mesentérica/microbiologia , Isquemia Mesentérica/patologia , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/microbiologia , Traumatismo por Reperfusão/patologia , Índice de Gravidade de Doença
8.
Sci Rep ; 11(1): 5914, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723302

RESUMO

The most common cause of chronic mesenteric ischaemia is atherosclerosis which results in limitation of blood flow to the gastrointestinal tract. This pilot study aimed to evaluate 4D flow MRI as a potential tool for the analysis of blood flow changes post-prandial within the mesenteric vessels. The mesenteric vessels of twelve people were scanned; patients and healthy volunteers. A baseline MRI scan was performed after 6 h of fasting followed by a post-meal scan. Two 4D flow datasets were acquired, over the superior mesenteric artery (SMA) and the main portal venous vessels. Standard 2D time-resolved PC-MRI slices were also obtained across the aorta above the coeliac trunk, superior mesenteric vein, splenic vein and portal vein (PV). In the volunteer cohort there was a marked increase in blood flow post-meal within the PV (p = 0.028), not seen in the patient cohort (p = 0.116). Similarly, there were significant flow changes within the SMA of volunteers (p = 0.028) but not for the patient group (p = 0.116). Our pilot data has shown that there is a significant haemodynamic response to meal challenge in the PV and SMA in normal subjects compared to clinically apparent CMI patients. Therefore, the interrogation of mesenteric venous vessels exclusively is a feasible method to measure post-prandial flow changes in CMI patients.


Assuntos
Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Isquemia Mesentérica/diagnóstico , Circulação Esplâncnica , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Gerenciamento Clínico , Suscetibilidade a Doenças , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Angiografia por Ressonância Magnética/métodos , Masculino , Isquemia Mesentérica/etiologia , Isquemia Mesentérica/patologia , Pessoa de Meia-Idade , Veia Porta
9.
J Surg Res ; 263: 78-88, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33639373

RESUMO

BACKGROUND: Acute mesenteric ischemia arises through sudden interruption of mesenteric blood flow, mostly due to an occlusion of the superior mesenteric artery and is associated with a high mortality of approximately 50% to 90%. In previous studies, the single application of ß-alanine or aprotinin caused an ameliorated intestinal damage but without any systemic effects. METHODS: To analyze the combined effect of ß-alanine and aprotinin on acute ischemia and reperfusion of the small intestine, a model with anesthetized rats was used. Ischemia and reperfusion were initiated by occluding and reopening the superior mesenteric artery. After 120 min of ischemia and 180 min of reperfusion, the intestine was analyzed for tissue damage, the activity of the saccharase, and accumulation of granulocytes. In addition, systemic and metabolic as well as inflammatory parameters were measured in blood at certain points in time. RESULTS: The combination of ß-alanine and aprotinin resulted in a clearly stabilized mean arterial blood pressure and blood glucose level during the reperfusion period. Furthermore, the combined administration resulted in significantly reduced tissue damage parameters, cytokine and cell-free hemoglobin concentrations in blood plasma. In addition, the damage to the small intestine was significantly attenuated, so that the animals ultimately survived the entire test period because of the administration of both substances. CONCLUSIONS: Overall, the simultaneous application of both substances leads to a synergistic protection without the occurrence of undesirable side effects. The combined usage of ß-alanine and aprotinin can be seen as a promising approach to inhibit the onset of acute mesenteric ischemia.


Assuntos
Aprotinina/farmacologia , Isquemia Mesentérica/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , beta-Alanina/farmacologia , Animais , Aprotinina/uso terapêutico , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Humanos , Injeções Intralesionais , Mucosa Intestinal/irrigação sanguínea , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Artéria Mesentérica Superior/cirurgia , Isquemia Mesentérica/complicações , Isquemia Mesentérica/patologia , Ratos , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , beta-Alanina/uso terapêutico
11.
Auris Nasus Larynx ; 48(6): 1193-1198, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32723598

RESUMO

Non-occlusive mesenteric ischemia (NOMI) causes intestinal necrosis due to irreversible ischemia of the intestinal tract despite the absence of organic obstruction in the mesenteric blood vessels. The disease has extremely poor prognosis. We report three cases of NOMI hypothesized to have developed after head and neck cancer therapy; thus, we report these cases considering the available literature. Case 1: A 74-year-old man with T2N0M0 stage Ⅱ oropharyngeal carcinoma complained of abdominal pain 5 days after chemoradiotherapy. The patient was diagnosed with NOMI, and an emergency surgery was performed. Case 2: A 69-year-old man with T2N2bM0 stage IVA hypopharyngeal carcinoma complained of abdominal pain during TPF chemotherapy. The patient was diagnosed with NOMI, and he died on the same day. Case 3: A 82-year-old man with T2N2bM0 stage IVA hypopharyngeal carcinoma complained of abdominal pain with reduced level of consciousness, 5 days after total laryngopharyngectomy. The patient was diagnosed with NOMI, and an emergency surgery was performed on the same day. We therefore suggest that ENT physicians must be aware of NOMI as a complication that can develop after head and neck cancer therapy.


Assuntos
Neoplasias Hipofaríngeas/tratamento farmacológico , Neoplasias Hipofaríngeas/cirurgia , Isquemia Mesentérica/etiologia , Neoplasias Orofaríngeas/terapia , Idoso , Idoso de 80 Anos ou mais , Quimiorradioterapia , Evolução Fatal , Humanos , Intestinos/patologia , Masculino , Isquemia Mesentérica/diagnóstico por imagem , Isquemia Mesentérica/patologia , Necrose/etiologia , Complicações Pós-Operatórias
12.
CEN Case Rep ; 10(1): 74-77, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32865709

RESUMO

Peritoneal dialysis (PD)-related peritonitis is a common complication of PD. Nonocclusive mesenteric ischemia (NOMI) is a rare complication of PD-related peritonitis, has a high mortality rate, and therefore should be detected early once it occurs. We describe a case of a 70-year-old woman on PD presented with moderate abdominal pain and low blood pressure, which contributed to the early diagnosis of PD-related peritonitis complicated with NOMI. Increased white cell count of 7150/µL (neutrophil, 84%) in dialysate effluent was diagnostic of PD-related peritonitis, which was later found to be caused by Pseudomonas putida. Computed tomography with contrast performed after administering crystalloids revealed hepatic portal venous gas, pneumatosis intestinalis in the ascending colon, and normal enhancement of the bowel wall and mesenteric arteries, which suggested a reperfusion of the previously ischemic ascending colon. Colonoscopy on hospital day seventeen revealed mucosal hemorrhage and ulcers in the entire right colon and the terminal ileum while the remaining colon was normal. These findings are compatible with the consequence of NOMI. Increased peak systolic velocity of the superior mesenteric artery (SMA) implied its stenosis. Past studies show that ischemia of the colon in patients with chronic kidney disease commonly occurs in the right colon. Arteriosclerosis of the SMA due to the long history of chronic kidney disease and diabetes might have caused its vulnerability to low blood pressure. Abdominal complications including NOMI should be screened for when a patient presents with low blood pressure and strong abdominal pain. This is the first case report that shows colonoscopy images of the colonic ulcers post-NOMI and PD-related peritonitis.


Assuntos
Nefropatias Diabéticas/complicações , Falência Renal Crônica/complicações , Isquemia Mesentérica/etiologia , Diálise Peritoneal/efeitos adversos , Peritonite/complicações , Dor Abdominal/diagnóstico , Dor Abdominal/etiologia , Administração Intravenosa , Idoso , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Colo Ascendente/irrigação sanguínea , Colo Ascendente/diagnóstico por imagem , Colo Ascendente/patologia , Colonoscopia/métodos , Constrição Patológica/diagnóstico , Diagnóstico Precoce , Feminino , Hemorragia/diagnóstico , Humanos , Hipotensão/diagnóstico , Hipotensão/etiologia , Mucosa Intestinal/patologia , Isquemia/complicações , Isquemia/diagnóstico , Falência Renal Crônica/terapia , Artérias Mesentéricas/diagnóstico por imagem , Artérias Mesentéricas/patologia , Artéria Mesentérica Superior/fisiopatologia , Isquemia Mesentérica/diagnóstico , Isquemia Mesentérica/patologia , Peritonite/diagnóstico , Peritonite/tratamento farmacológico , Peritonite/microbiologia , Pseudomonas putida/isolamento & purificação , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento , Úlcera/diagnóstico
13.
Oxid Med Cell Longev ; 2020: 4196548, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381264

RESUMO

The aim of this study was to characterize and reveal the protective effects of cinnamaldehyde (CA) against mesenteric ischemia-reperfusion- (I/R-) induced lung and liver injuries and the related mechanisms. Sprague-Dawley (SPD) rats were pretreated for three days with 10 or 40 mg/kg/d, ig of CA, and then induced with mesenteric ischemia for 1 h and reperfusion for 2 h. The results indicated that pretreatment with 10 or 40 mg/kg of CA attenuated morphological damage in both lung and liver tissues of mesenteric I/R-injured rats. CA pretreatment significantly restored the levels of aspartate transaminase (AST) and alanine transaminase (ALT) in mesenteric I/R-injured liver tissues, indicating the improvement of hepatic function. CA also significantly attenuated the inflammation via reducing myeloperoxidase (MOP) activity and downregulating the expression of inflammation-related proteins, including interleukin-6 (IL-6), interleukin-1ß (IL-1ß), cyclooxygenase-2 (Cox-2), and tumor necrosis factor receptor type-2 (TNFR-2) in both lung and liver tissues of mesenteric I/R-injured rats. Pretreatment with CA significantly downregulated nuclear factor kappa B- (NF-κB-) related protein expressions (NF-κB p65, NF-κB p50, I kappa B alpha (IK-α), and inhibitor of nuclear factor kappa-B kinase subunit beta (IKKß)) in both lung and liver tissues of mesenteric I/R-injured rats. CA also significantly downregulated the protein expression of p53 family members, including caspase-3, caspase-9, Bax, and p53, and restored Bcl-2 in both lung and liver tissues of mesenteric I/R-injured rats. CA pretreatment significantly reduced TUNEL-apoptotic cells and significantly inhibited p53 and NF-κB p65 nuclear translocation in both lung and liver tissues of mesenteric I/R-injured rats. CA neither induced pulmonary and hepatic histological alterations nor affected the parameters of inflammation and apoptosis in sham rats. We conclude that CA alleviated mesenteric I/R-induced pulmonary and hepatic injuries via attenuating apoptosis and inflammation through inhibition of NF-κB and p53 pathways in rats, suggesting the potential role of CA in remote organ ischemic injury protection.


Assuntos
Acroleína/análogos & derivados , Isquemia Mesentérica/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Acroleína/farmacologia , Acroleína/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/etiologia , Inflamação/patologia , Inflamação/prevenção & controle , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Rim/patologia , Hepatopatias/etiologia , Hepatopatias/patologia , Hepatopatias/prevenção & controle , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Pulmão/patologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Lesão Pulmonar/prevenção & controle , Masculino , Isquemia Mesentérica/complicações , Isquemia Mesentérica/patologia , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia
14.
Int J Med Sci ; 17(17): 2751-2762, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162803

RESUMO

Background: To date, the effect of vasopressin on organ damages after acute mesenteric ischemia (MI) remains poorly understood. Aims: To investigate the effect of terlipressin, a selective vasopressin V1 receptor agonist, versus norepinephrine on the intestinal and renal injuries after acute MI, and to explore the underlying mechanism of terlipressin. Methods: Acute MI model was produced by clamping the superior mesenteric artery for 1 hour. Immediately after unclamping, terlipressin or norepinephrine was intravenously administered for 2 hours. Meanwhile, in vitro, RAW264.7 cells were treated with lipopolysaccharide or lipopolysaccharide+terlipressin. In addition, wortmannin was used to determine the role of phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) pathway in the potential impacts of terlipressin. Results: MI led to severe hypotension, caused notable intestinal and renal impairments and resulted in high mortality, which were markedly improved by terlipressin or norepinephrine. Terlipressin increased mean arterial pressure, decreased intestinal epithelial cell apoptosis, inhibited the generation of M1 macrophage in intestinal and renal tissues, and hindered the release of inflammatory cytokines after MI. Moreover, in cultured macrophages, terlipressin reduced the mRNA level of specific M1 markers and the release of inflammatory cytokines caused by lipopolysaccharide challenge. Wortmannin decreased the expression of PI3K and Akt induced by terlipressin in cells and in tissues, and abolished the above protective effects conferred by terlipressin. Conclusions: Terlipressin or norepinephrine could effectively improve organ damages and mortality after acute MI. Terlipressin elevates blood pressure and inhibits intestinal epithelial apoptosis and macrophage M1 polarization via the PI3K/Akt pathway.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Isquemia Mesentérica/tratamento farmacológico , Receptores de Vasopressinas/agonistas , Traumatismo por Reperfusão/tratamento farmacológico , Terlipressina/administração & dosagem , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Pressão Arterial/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Íleo/irrigação sanguínea , Íleo/efeitos dos fármacos , Íleo/patologia , Mucosa Intestinal/irrigação sanguínea , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Isquemia Mesentérica/complicações , Isquemia Mesentérica/patologia , Norepinefrina/administração & dosagem , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , Organismos Livres de Patógenos Específicos , Wortmanina/administração & dosagem
15.
J Immunol ; 205(10): 2834-2839, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33028618

RESUMO

Neutrophil infiltration to ischemic tissues following reperfusion worsens injury. A key driver of neutrophil recruitment and activation is the complement factor C5a, which signals through two receptors, C5aR1 and C5aR2. In this study, we used a neutrophil-dependent mouse model of intestinal ischemia-reperfusion (IR) injury to investigate the underexplored role of C5aR2 in neutrophil mobilization, recruitment, and disease outcomes. We show that intestinal IR induces rapid neutrophil mobilization along with a concomitant reduction in plasma C5a levels that is driven by both C5aR1 and C5aR2. Intestinal IR in C5aR2-/- mice led to worsened intestinal damage and increased neutrophil infiltration. Inhibition of C5aR1 signaling in C5aR2-/- mice with PMX53 prevented neutrophil accumulation and reduced IR pathology, suggesting a key requirement for enhanced neutrophil C5aR1 activation in the absence of C5aR2 signaling. Interestingly, C5aR2 deficiency also reduced circulating neutrophil numbers after IR, as well as following G-CSF-mediated bone marrow mobilization, which was independent of C5aR1, demonstrating that C5aR2 has unique and distinct functions from C5aR1 in neutrophil egress. Despite enhanced tissue injury in C5aR2-/- IR mice, there were significant reductions in intestinal proinflammatory cytokines, highlighting complicated dual protective/pathogenic roles for C5aR2 in pathophysiology. Collectively, we show that C5aR2 is protective in intestinal IR by inhibiting C5aR1-mediated neutrophil recruitment to the ischemic tissue. This is despite the potentially local pathogenic effects of C5aR2 in increasing intestinal proinflammatory cytokines and enhancing circulating neutrophil numbers in response to mobilizing signals. Our data therefore suggest that this balance between the dual pro- and anti-inflammatory roles of C5aR2 ultimately dictates disease outcomes.


Assuntos
Isquemia Mesentérica/imunologia , Infiltração de Neutrófilos , Receptor da Anafilatoxina C5a/metabolismo , Traumatismo por Reperfusão/imunologia , Animais , Complemento C5a/análise , Complemento C5a/metabolismo , Modelos Animais de Doenças , Humanos , Jejuno/citologia , Jejuno/imunologia , Jejuno/patologia , Masculino , Isquemia Mesentérica/sangue , Isquemia Mesentérica/complicações , Isquemia Mesentérica/patologia , Camundongos , Camundongos Knockout , Receptor da Anafilatoxina C5a/genética , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/patologia
16.
Arterioscler Thromb Vasc Biol ; 40(9): 2279-2292, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32611241

RESUMO

OBJECTIVE: Recruitment of neutrophils and formation of neutrophil extracellular traps (NETs) contribute to lethality in acute mesenteric infarction. To study the impact of the gut microbiota in acute mesenteric infarction, we used gnotobiotic mouse models to investigate whether gut commensals prime the reactivity of neutrophils towards formation of neutrophil extracellular traps (NETosis). Approach and Results: We applied a mesenteric ischemia-reperfusion (I/R) injury model to germ-free (GF) and colonized C57BL/6J mice. By intravital imaging, we quantified leukocyte adherence and NET formation in I/R-injured mesenteric venules. Colonization with gut microbiota or monocolonization with Escherichia coli augmented the adhesion of leukocytes, which was dependent on the TLR4 (Toll-like receptor-4)/TRIF (TIR-domain-containing adapter-inducing interferon-ß) pathway. Although neutrophil accumulation was decreased in I/R-injured venules of GF mice, NETosis following I/R injury was significantly enhanced compared with conventionally raised mice or mice colonized with the minimal microbial consortium altered Schaedler flora. Also ex vivo, neutrophils from GF and antibiotic-treated mice showed increased LPS (lipopolysaccharide)-induced NETosis. Enhanced TLR4 signaling in GF neutrophils was due to elevated TLR4 expression and augmented IRF3 (interferon regulatory factor-3) phosphorylation. Likewise, neutrophils from antibiotic-treated conventionally raised mice had increased NET formation before and after ischemia. Increased NETosis in I/R injury was abolished in conventionally raised mice deficient in the TLR adaptor TRIF. In support of the desensitizing influence of enteric LPS, treatment of GF mice with LPS via drinking water diminished LPS-induced NETosis in vitro and in the mesenteric I/R injury model. CONCLUSIONS: Collectively, our results identified that the gut microbiota suppresses NETing neutrophil hyperreactivity in mesenteric I/R injury, while ensuring immunovigilance by enhancing neutrophil recruitment.


Assuntos
Armadilhas Extracelulares/metabolismo , Microbioma Gastrointestinal , Isquemia Mesentérica/metabolismo , Mesentério/irrigação sanguínea , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Traumatismo por Reperfusão/metabolismo , Vênulas/metabolismo , Animais , Bacillus subtilis/patogenicidade , Adesão Celular , Células Cultivadas , Modelos Animais de Doenças , Escherichia coli/patogenicidade , Armadilhas Extracelulares/microbiologia , Feminino , Vida Livre de Germes , Interações Hospedeiro-Patógeno , Migração e Rolagem de Leucócitos , Leucócitos/metabolismo , Leucócitos/microbiologia , Masculino , Isquemia Mesentérica/microbiologia , Isquemia Mesentérica/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão/microbiologia , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Vênulas/microbiologia , Vênulas/patologia
17.
Eur J Pharmacol ; 882: 173265, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32574671

RESUMO

Acute mesenteric ischemia (AMI) is caused by an abrupt cessation of blood flow to the small intestine. Reperfusion is the return of blood flow to the ischemic bowel. Intestinal ischemia/reperfusion (I/R) leads to the formation of reactive oxygen species, local inflammatory response, and may lead to the patient's death. Pre-treatment of the intestinal may reduce the high mortality associated with AMI. 5-Hydroxytryptamine 1B (5-HT1B) and 5-HT1D receptors have anti-inflammatory and neuroprotective effects in different experimental studies. We aimed to investigate the potential involvement of these receptors in intestinal I/R injury. Firstly, we assessed the expression and localization of 5-HT1B and 5-HT1D receptors in the enteric nervous system using an immunofluorescence-based method. Intestinal I/R in rats was induced by 30 min occlusion of superior mesenteric artery and reperfusion for 2 h. Rats were randomly divided in different control and I/R groups (n = 6) receiving either vehicle, sumatriptan (5-HT1B/1D receptors agonist; 0.1 mg/kg), GR127,935 (5-HT1B/1D receptors antagonist; 0.1 mg/kg) and combination of sumatriptan (0.1 mg/kg) + GR127,935 (0.1 mg/kg) before determination of biochemical and histological parameters. In the enteric nervous system, 5-HT1B and 5-HT1D receptors were expressed 17% and 11.5%, respectively. Pre-treatment with sumatriptan decreased 5-hydroxytryptamine (5HT) level by 53%, and significantly decreased calcitonin gene-related peptide (CGRP) levels, lipid pereoxidation, neutrophil infiltration, and level of pro-inflammatory markers in the serum. Histopathologic studies also showed a remarkable decrease in intestinal tissue injury. These findings suggest that sumatriptan may inhibit intestinal injury induced by I/R through modulating the inflammatory response by activation of 5-HT1B/1D receptors.


Assuntos
Isquemia Mesentérica/metabolismo , Receptor 5-HT1B de Serotonina/metabolismo , Receptor 5-HT1D de Serotonina/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Íleo/efeitos dos fármacos , Íleo/metabolismo , Íleo/patologia , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Isquemia Mesentérica/patologia , Oxidiazóis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Piperazinas/farmacologia , Ratos Wistar , Traumatismo por Reperfusão/patologia , Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas da Serotonina/farmacologia , Sumatriptana/farmacologia
19.
World J Gastroenterol ; 26(15): 1758-1774, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32351292

RESUMO

BACKGROUND: Intestinal ischemia reperfusion (I/R) occurs in various diseases, such as trauma and intestinal transplantation. Excessive reactive oxygen species (ROS) accumulation and subsequent apoptotic cell death in intestinal epithelia are important causes of I/R injury. PTEN-induced putative kinase 1 (PINK1) and phosphorylation of dynamin-related protein 1 (DRP1) are critical regulators of ROS and apoptosis. However, the correlation of PINK1 and DRP1 and their function in intestinal I/R injury have not been investigated. Thus, examining the PINK1/DRP1 pathway may help to identify a protective strategy and improve the patient prognosis. AIM: To clarify the mechanism of the PINK1/DRP1 pathway in intestinal I/R injury. METHODS: Male C57BL/6 mice were used to generate an intestinal I/R model via superior mesenteric artery occlusion followed by reperfusion. Chiu's score was used to evaluate intestinal mucosa damage. The mitochondrial fission inhibitor mdivi-1 was administered by intraperitoneal injection. Caco-2 cells were incubated in vitro in hypoxia/reoxygenation conditions. Small interfering RNAs and overexpression plasmids were transfected to regulate PINK1 expression. The protein expression levels of PINK1, DRP1, p-DRP1 and cleaved caspase 3 were measured by Western blotting. Cell viability was evaluated using a Cell Counting Kit-8 assay and cell apoptosis was analyzed by TUNEL staining. Mitochondrial fission and ROS were tested by MitoTracker and MitoSOX respectively. RESULTS: Intestinal I/R and Caco-2 cell hypoxia/reoxygenation decreased the expression of PINK1 and p-DRP1 Ser637. Pretreatment with mdivi-1 inhibited mitochondrial fission, ROS generation, and apoptosis and ameliorated cell injury in intestinal I/R. Upon PINK1 knockdown or overexpression in vitro, we found that p-DRP1 Ser637 expression and DRP1 recruitment to the mitochondria were associated with PINK1. Furthermore, we verified the physical combination of PINK1 and p-DRP1 Ser637. CONCLUSION: PINK1 is correlated with mitochondrial fission and apoptosis by regulating DRP1 phosphorylation in intestinal I/R. These results suggest that the PINK1/DRP1 pathway is involved in intestinal I/R injury, and provide a new approach for prevention and treatment.


Assuntos
Dinaminas/metabolismo , Isquemia Mesentérica/patologia , Proteínas Quinases/metabolismo , Traumatismo por Reperfusão/patologia , Animais , Apoptose/genética , Células CACO-2 , Hipóxia Celular , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Intestino Delgado/irrigação sanguínea , Intestino Delgado/patologia , Masculino , Artéria Mesentérica Superior/cirurgia , Isquemia Mesentérica/etiologia , Camundongos , Mitocôndrias/patologia , Dinâmica Mitocondrial/genética , Fosforilação/genética , Proteínas Quinases/genética , RNA Interferente Pequeno/metabolismo , Traumatismo por Reperfusão/etiologia , Serina/metabolismo
20.
Peptides ; 129: 170318, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32330539

RESUMO

Intestinal or mesenteric ischemia generally leads to inflammation and injury, potentially developing hypoxia, causing cell death and tissue necrosis. This in turn can lead to sepsis and shock. Conversely, following shock, the intestinal tract is a main organ to experience ischemic/reperfusion injury. Increased intestinal cell-membrane permeability through mesenteric ischemia provoking bacterial translocation and gut-barrier injury can lead to sepsis and multi-organ failure. Hypotension induced by systemic vasodilation and vascular leak in systemic inflammatory response syndrome and sepsis is countered by immediate fluid resuscitation and vasopressor administration, primarily norepinephrine (NE), with possible arginine vasopressin (AVP) supplementation, an agonist of vasopressin V1A and V2 receptors. Selepressin is a selective V1A-receptor agonist, avoiding potential V2 receptor-associated adverse effects. Selepressin, non-selective AVP, and NE effects on mesenteric blood flow (MBF) and gastric mucosa perfusion (GMP) were compared in control rabbits and a lipopolysaccharide-induced, fluid-resuscitated rabbit endotoxemia model. AVP induced a pronounced decrease in MBF and GMP in non-endotoxemic and endotoxemic rabbits, whereas the reduction after selepressin treatment was significantly less for both indicators in the endotoxemic animals. By contrast, NE increased the MBF and did not affect GMP in both groups. Selepressin and AVP induced a pronounced dose-dependent increase in mesenteric vascular resistance in non-endotoxemic and endotoxemic rabbits, tending to be less in endotoxemic animals, whereas a minor increase in both groups was observed with NE. Therefore, in this safety study, the risk for mesenteric ischemia on selepressin treatment was not inferior to AVP, being less in endotoxemic than in non-endotoxemic animals.


Assuntos
Arginina Vasopressina/metabolismo , Endotoxemia/metabolismo , Mucosa Gástrica/metabolismo , Receptores de Vasopressinas/metabolismo , Sepse/metabolismo , Animais , Arginina Vasopressina/genética , Cromatografia Líquida de Alta Pressão , Endotoxemia/genética , Mucosa Gástrica/efeitos dos fármacos , Hipotensão/metabolismo , Hipotensão/patologia , Masculino , Isquemia Mesentérica/genética , Isquemia Mesentérica/metabolismo , Isquemia Mesentérica/patologia , Coelhos , Receptores de Vasopressinas/agonistas , Receptores de Vasopressinas/genética , Sepse/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA